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Presentation Outline



• Advanced Air Mobility (AAM) is working to 
create safe, sustainable, accessible, and 
affordable aviation to move people and 
packages.

• The AAM industry motivates us to 
characterize noise sources to assess the 
community impact of these new vehicle 
concepts.

• Noise may be a key barrier for community 
acceptance, and rotors contribute significantly 
to the noise signature of these vehicles.

• Wind tunnel tests of small rotors are 
beneficial in assessing the potential noise 
impact of both small unmanned aerial 
vehicles (sUAS) and larger urban air 
mobility (UAM) vehicles
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Introduction



• Representative quadcopter was tested 

in the Low Speed Aeroacoustic Wind 

Tunnel (LSAWT)

• Performance and acoustic data 

measured

• Acoustic measurements taken by an 

overhead 28 microphone linear array 

(overhead flyover observers)

• Results published in two papers*

Past Test

LSAWT 2017

Pettingill, N. A. & Zawodny, N. S. “Identification and Prediction of Broadband Noise for a Small 

Quadcopter”. VFS Forum 75 2019.

Zawodny, N. S. & Pettingill, N. A., “Acoustic Wind Tunnel Measurements of a Quadcopter in 

Hover and Forward Flight Conditions”. 47th InterNoise 2018.
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Broadband Noise at 10 lb condition
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Past Test

LSAWT 2017

• Noise sources investigated were self-noise, rotor-airframe 
interactions and possible rotor-rotor interactions

• Rotor-rotor interactions in forward flight

• Compared acoustics of one simultaneous operation case of 
front/aft rotor pair (R1 & R3) against superimposed result of two
individual operation cases (R1 + R3)

• Identified additional broadband noise for R1 & R3 vs. R1 + R3 at 
high thrust setting, which may be due to rotor-rotor interactions

Broadband noise due to multirotor 

interaction effects between 

simultaneously operating rotors



Current Test

Vehicle and Hardware

• Quadcopter: SUI Endurance

• Three blade sets
• T-Motor COTS blade set
• Optimum blade design: 

• ProtoLabs SLA with glass grit

• ProtoLabs SLS “rough blade”

• Two hubs
• COTS
• SLA in-house hub

• Cylinder Spacers
• Baseline (0.15R distance from rotor to 

airframe)
• 2.5 inch spacer (0.48R)
• 1.25 inch spacer (0.30R)

L

L

D

Representative Vehicle Characteristics

Tip speeds of 
0.2 < 𝑀 < 0.3Rotor diameter of 

D = 0.38 m (~15 in)

Hub to hub distance 
of L = 0.51 m (~20 in)

Fixed pitch 
control
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Current Test

Vehicle and Hardware
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• Quadcopter: SUI Endurance

• Three blade sets
• T-Motor COTS blade set
• Optimum blade design: 

• ProtoLabs SLA with glass grit 

• ProtoLabs SLS “rough blade”

• Two hubs
• COTS
• SLA in-house hub

• Cylinder Spacers
• Baseline (0.15R distance from rotor to 

airframe)
• 2.5 inch spacer (0.48R)
• 1.25 inch spacer (0.30R)

T-Motor COTS Rotor

Optimum Blade Design Rotor 

SLA-gritted 

blade 

SLS 

blade 



Low Speed Aeroacoustic Tunnel

LSAWT 2021

• LSAWT is an open-circuit free jet wind tunnel 

• Test section dim: 5.6 m length, 1.93 m inlet

diameter

• Acoustically treated (cutoff down to 250 Hz)

• Acoustic measurements taken by a 28 

microphone linear array

• Phased array installed 1.25 m away from the 

rotor plane
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Flow



Low Speed Aeroacoustic Tunnel

LSAWT 2021

• Vehicle remained in upright 

orientation (“Birds-Eye” array 

location)

• The vehicle pitch angle was 

changed for the various flight 

conditions: 

• hover (0 deg.)

• forward flight (4 deg.)

• forward flight (10 deg.)
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Flow



Results

Comparison to 2017 Test
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Overhead 
microphone 
(θ∘ = 90 deg.)

Hover

αv = 0 deg.

T = 10 lb.

M∞ = 0.0



Results

Comparison to 2017 Test
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Overhead 
microphone 
(θ∘ = 90 deg.)

Forward Flight

αv = -10 deg.

T = 10 lb.

M∞ = 0.046



Hover Results

Using the cylinder standoffs in hover

A rotor standoff was placed on R3 to elevate it from the 

airframe

Individual rotor better shows possible improvement on rotor 

airframe noise for 3rd-6th BPF harmonics (between 480 -1 

kHz)

Rotor standoffs were placed on all rotors to elevate the rotors from the 

airframe

There is not a significant noise reduction elevating the rotors in hover, though 

the amplitudes of 2nd - 4th BPF are reduced
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Hover Results

Replacing the blades with SLA – gritted blades

SLA-Gritted blades 

provide broadband noise 

reduction at frequencies 

higher than 10 kHz 

However, these blades 

were difficult to trim in 

the full vehicle 

configuration

T-motor COTS blades 

were replaced with 

optimum design blades

These SLA blades were 

gritted with a glass grit to 

create a “trip” to prevent 

laminar boundary layer 

vortex shedding behavior
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Forward Flight Results

Using the cylinder standoffs in forward flight

A-weighted integrated levels show a reduction of up 

to 8 dB, when including all content between 0.1 and 

20 kHz

Rotor standoffs were placed on aft rotors (R3 & R4) to 

elevate the rotors from the airframe

Between 1 and 9 kHz there is a decrease of broadband noise 

content (up to ~10 dB)
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Forward Flight Results

Using the cylinder standoffs in forward flight

Broadband noise levels between 1 and 9 kHz  have 

minimal difference when comparing spectra

Additional harmonics present at mid-frequencies 

could be due to cylinders oscillating

Rotor standoffs were placed on all rotors to elevate the 

rotors from the airframe
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Forward Flight Results

Using the cylinder standoffs (R1 & R3)
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Spectral trend is similar to 

full vehicle configuration



Baseline: 4 kHz

Beamforming Results

Using the cylinder standoffs (R1 & R3)
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Aft Elevated: 4 kHz

Beamforming Results

Using the cylinder standoffs (R1 & R3)
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All Elevated: 4 kHz

Beamforming Results

Using the cylinder standoffs (R1 & R3)

19



• Hover

• Elevating rotors did not show a significant noise reduction in full vehicle hover flight conditions

• When examining single R3 elevated case, elevating the rotor reduced the amplitude of the 4th-
6th BPF harmonics 

• Forward Flight

• Elevating rotors (both aft-elevated and all-elevated) reduced mid-frequency broadband noise 
around 1-9 kHz

• By elevating rotors could be reducing noise related to:

• Rotor-airframe interaction noise

• Rotor-rotor interaction noise

• Rotor-airframe-rotor interaction noise

• Individual aft rotor noise contribution

Conclusions
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• Periodic and broadband noise extraction using TTL signal

• Interrogate additional thrust and flight conditions

• Use low-fidelity tools to help identify noise sources

• Planning to submit papers to future conferences

Future Work
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Thank you, any questions?

Contact Information

Niki Pettingill

nicole.a.pettingill@nasa.gov

757-864-7912
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Aft Elevated (med. cyl) : 4 kHz

Beamforming Results

Using the cylinder standoffs (R1 & R3)
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Blade sets were tested in the Small Hover Anechoic Chamber (SHAC) prior to being placed on 
vehicle

SLA blades had a glass grit applied to them (and referred to as “SLA-tripped”), as it was found to 
reduce laminar boundary layer vortex shedding (LBLVS) broadband noise between 4 and 30 kHz
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SHAC Testing

Blade Set Comparison



Forward Flight Results

Using the cylinder standoffs in forward flight

Unweighted integrated levels of various elevation configurations:
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