

Preliminary Results of UAS Quadcopter Aeroacoustic Testing

Nicole Pettingill, Nikolas Zawodny, Christopher Thurman NASA Langley Research Center

October 20, 2021

Acoustics Technical Working Group Meeting

2

Presentation Outline

- Introduction
- Background
- Facility and hardware set up
- Preliminary results
 - Hover
 - Forward Flight
 - Beamforming
- Conclusions and future work

Introduction

- Advanced Air Mobility (AAM) is working to create safe, sustainable, accessible, and affordable aviation to move people and packages.
- The AAM industry motivates us to characterize noise sources to assess the community impact of these new vehicle concepts.
- Noise may be a key barrier for community acceptance, and rotors contribute significantly to the noise signature of these vehicles.
- Wind tunnel tests of small rotors are beneficial in assessing the potential noise impact of both small unmanned aerial vehicles (sUAS) and larger urban air mobility (UAM) vehicles

Past Test **LSAWT 2017**

Pettingill, N. A. & Zawodny, N. S. "Identification and Prediction of Broadband Noise for a Small Quadcopter". VFS Forum 75 2019.

Zawodny, N. S. & Pettingill, N. A., "Acoustic Wind Tunnel Measurements of a Quadcopter in Hover and Forward Flight Conditions". 47th InterNoise 2018.

- Representative quadcopter was tested ٠ in the Low Speed Aeroacoustic Wind Tunnel (LSAWT)
- Performance and acoustic data ٠ measured
- Acoustic measurements taken by an • overhead 28 microphone linear array (overhead flyover observers)
- Results published in two papers* ٠

Birds-Eye

- Noise sources investigated were **self-noise**, **rotor-airframe interactions** and possible **rotor-rotor interactions**
- Rotor-rotor interactions in forward flight
 - Compared acoustics of one simultaneous operation case of front/aft rotor pair (R1 & R3) against superimposed result of two individual operation cases (R1 + R3)
 - Identified additional broadband noise for R1 & R3 vs. R1 + R3 at high thrust setting, which may be due to rotor-rotor interactions

Broadband Noise at 10 lb condition

Current Test Vehicle and Hardware

- Quadcopter: SUI Endurance
- Three blade sets
 - T-Motor COTS blade set
 - Optimum blade design:
 - ProtoLabs SLA with glass grit
 - ProtoLabs SLS "rough blade"
- Two hubs
 - COTS
 - SLA in-house hub
- Cylinder Spacers
 - Baseline (0.15R distance from rotor to airframe)
 - 2.5 inch spacer (0.48R)
 - 1.25 inch spacer (0.30R)

Current Test Vehicle and Hardware

- Quadcopter: SUI Endurance
- Three blade sets
 - T-Motor COTS blade set
 - Optimum blade design:
 - ProtoLabs SLA with glass grit
 - ProtoLabs SLS "rough blade"
- Two hubs
 - COTS
 - SLA in-house hub
- Cylinder Spacers
 - Baseline (0.15R distance from rotor to airframe)
 - 2.5 inch spacer (0.48R)
 - 1.25 inch spacer (0.30R)

Low Speed Aeroacoustic Tunnel LSAWT 2021

- LSAWT is an open-circuit free jet wind tunnel
- Test section dim: **5.6 m length**, **1.93 m inlet** diameter
- Acoustically treated (cutoff down to 250 Hz)
- Acoustic measurements taken by a 28
 microphone linear array
- **Phased array** installed **1.25 m away** from the rotor plane

Low Speed Aeroacoustic Tunnel **LSAWT 2021**

- Vehicle remained in upright • orientation ("Birds-Eye" array location)
- The vehicle pitch angle was • changed for the various flight conditions:

 $+\phi$ hover (0 deg.) Flyover (Off-axis) Flyover forward flight (4 deg.) (On-axis) $\phi = 30^{\circ}$ $\phi = 0^{\circ}$ forward flight (10 deg.) **Linear Microphone Array** 0°= 148° O NO. $\boldsymbol{\theta}_o = \mathbf{90}^\circ$ 3.54 m +Z $+\boldsymbol{\theta}$ **+X** Flow

Birds-Eye $\phi = 130^{\circ}$

Sideline $\phi = 90^{\circ}$

Results Comparison to 2017 Test

Results Comparison to 2017 Test

Forward Flight

$$\label{eq:average} \begin{split} \alpha_V &= -10 \text{ deg.} \\ T &= 10 \text{ lb.} \\ M_\infty &= 0.046 \end{split}$$

Hover Results Using the cylinder standoffs in hover

Rotor standoffs were placed on **all rotors** to elevate the rotors from the airframe

There is not a significant noise reduction elevating the rotors in hover, though the amplitudes of 2nd - 4th BPF are reduced

A rotor standoff was placed on **R3** to elevate it from the airframe

Individual rotor better shows possible improvement on rotor airframe noise for 3rd-6th BPF harmonics (between 480 -1 kHz)

Hover Results Replacing the blades with SLA – gritted blades

T-motor COTS blades were replaced with optimum design blades

These SLA blades were gritted with a glass grit to create a "trip" to prevent laminar boundary layer vortex shedding behavior

SLA-Gritted blades provide broadband noise reduction at frequencies higher than 10 kHz

However, these blades were difficult to trim in the full vehicle configuration

Forward Flight Results Using the cylinder standoffs in forward flight

Rotor standoffs were placed on aft rotors (R3 & R4) to elevate the rotors from the airframe

Between 1 and 9 kHz there is a decrease of broadband noise content (up to ~10 dB)

> **A-weighted** integrated levels show a reduction of up to 8 dB, when including all content between 0.1 and 20 kHz

Frequency (Hz)

Forward Flight Results Using the cylinder standoffs in forward flight

Rotor standoffs were placed on **all rotors** to elevate the rotors from the airframe

 θ_{\circ} (deg.)

Broadband noise levels between 1 and 9 kHz have minimal difference when comparing spectra

Additional harmonics present at mid-frequencies could be due to cylinders oscillating

Forward Flight Results Using the cylinder standoffs (R1 & R3)

Spectral trend is similar to full vehicle configuration

Baseline: 4 kHz

Aft Elevated: 4 kHz

All Elevated: 4 kHz

Conclusions

- Hover
 - Elevating rotors did not show a significant noise reduction in full vehicle hover flight conditions
 - When examining single R3 elevated case, elevating the rotor reduced the amplitude of the 4th-6th BPF harmonics
- Forward Flight
 - Elevating rotors (both aft-elevated and all-elevated) reduced mid-frequency broadband noise around 1-9 kHz
 - By elevating rotors could be reducing noise related to:
 - Rotor-airframe interaction noise
 - Rotor-rotor interaction noise
 - Rotor-airframe-rotor interaction noise
 - Individual aft rotor noise contribution

Future Work

- Periodic and broadband noise extraction using TTL signal
- Interrogate additional thrust and flight conditions
- Use low-fidelity tools to help identify noise sources
- Planning to submit papers to future conferences

Acknowledgments

Funding

Revolutionary Vertical Lift Technology (RVLT) Project **Special Thanks** LSAWT Crew John Swartzbaugh **Stanley Mason** Bryan Lamb Scott Parks **Jarrett Braxton**

Contact Information

Niki Pettingill

nicole.a.pettingill@nasa.gov

757-864-7912

Thank you, any questions?

Extra Slides

Aft Elevated (med. cyl) : 4 kHz

SHAC Testing Blade Set Comparison

Blade sets were tested in the Small Hover Anechoic Chamber (SHAC) prior to being placed on vehicle

SLA blades had a glass grit applied to them (and referred to as "SLA-tripped"), as it was found to reduce laminar boundary layer vortex shedding (LBLVS) broadband noise between **4 and 30 kHz**

Forward Flight Results Using the cylinder standoffs in forward flight

Unweighted integrated levels of various elevation configurations:

• Aft Elevated 0.48R

