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Materials and Methods

The aim of this study is to quantify, in the most robust way possible, the global- and regional-
scale increase in exposure to climate extremes for younger generations. To this end, we integrate
the exposure of an average member of a birth cohort to extreme events across their lifetime and
subsequently compare these results across cohorts and regions. This is achieved by combining

five sources of data, which are explained hereafter.

Employed data First, we developed the largest multi-model biophysical impact projections
database available to date as part of the Inter-Sectoral Impact Model Intercomparison Project
phase 2b (ISIMIP2b) (/6). Following the ISIMIP2b protocol, we performed simulations with 15
impact models that represent variables relevant for the six extreme event categories described
below (CARAIB (/7), LPJ-GUESS (/8), LPImL (79, 20), ORCHIDEE (21), VISIT (22, 23),
GEPIC (24), PEPIC (25, 26), CLM4.5 (27, 28), HO8 (29), JULES-W1 (30), MPI-HM (31, 32),
PCR-GLOBWRB (33, 34), WaterGAP2 (35, 36), HWMId-humidex (37), and KE-TG (38)). These
process-based models represent the state of the art of global-scale hydrological, vegetation,

agricultural, land surface, heat stress, and tropical cyclone modeling (39-45). Each model pro-
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vides relevent biophysical impact variables such as runoff, crop yields, or soil moisture at a
spatial resolution of 0.5° x 0.5° and at daily to annual time scales. The impact models are
each driven by up to four downscaled and bias-adjusted (46) global climate models (GCMs;
GFDL-ESM2M (47), HadGEM2-ES (48), IPSL-CM5A-LR (49), and MIROCS (50)) partic-
ipating in the fifth phase (57) of the Coupled Model Intercomparison Project (CMIPS) under
pre-industrial, historical, and RCP 2.6, 6.0 and 8.5 climate forcings. GCMs are designed to cap-
ture the spatially-explicit climate response to rising greenhouse gas concentrations and other an-
thropogenic forcings; as such, they are the cornerstone of scientific knowledge on future climate
change. Here, the four GCMs were selected based on data availability and representativeness
of the entire CMIP5 ensemble (see Supplementary Text 5 for a detailed description of the se-
lection, downscaling, and bias adjustment procedure). Besides transient historical and future
climate information, our simulations represent other human influences via input data mimick-
ing historical socioeconomic development until 2005 and assuming fixed year-2005 conditions
thereafter. Overall, our extreme event data set consists of 273 global-scale extreme event pro-
jections spanning the period 1861-2099 (table S2) and 101 pre-industrial control simulations
covering on average 542 years each. A more detailed description of the data is provided in (37).

Second, we employ data on life expectancy at the age of 5 available from the United Nations
World Population Prospects (52), indicating the number of years a 5-year old would be expected
to live if mortality patterns prevailing at the time of observation (year to which this period
indicator pertains) were to remain constant throughout their lifetimes. The data is available at
the country, regional, and global scale (fig. S4) in 5-year blocks for 1950-1955 to 2015-2020.
From this data, we calculate cohort life expectancy at birth which adjusts for child mortality 0-4
because child mortality distorts the pattern that shall be studied. First, we translate the data to
annual values using linear interpolation, assume the life expectancy value is representative for

the middle year of the 5-year block, and linearly extrapolate life expectancy from 2017 to 2025



in every country. To capture the entire length of the life span starting with birth, we subsequently
add 5 years and assign the value to the birth year of the respective cohort, thereby assuming that
this value represents life expectancy at birth excluding child mortality. Finally, we translate
this indicator from period to cohort life expectancy by adding 6 years to the value of the period
life expectancy estimate at birth (53). This is based on a rather conservative assumption of
future increases in life expectancy given the current uncertainty about future mortality trends.
We note that that this life expectancy data ignores impacts from climate change. Our approach
thus follows UN fertility and mortality projections, but omits climate change feedbacks on
population dynamics.

Third, future GMT trajectories are derived from scenarios compiled in support of the IPCC
Special Report on Global Warming of 1.5°C (SR1.5) (54, 55) and were subsequently made
available through the Integrated Assessment Modeling Consortium and the International In-
stitute for Applied Systems Analysis (56, 57). We select three marker scenarios: two sce-
narios limiting global warming to 1.5°C and 2.0 °C above pre-industrial levels (58), respec-
tively, and a third scenario consistent with current (2020) Nationally Determined Contributions
(NDCs) — also referred to as the current pledges scenario (fig. S1). The 1.5 °C and NDC scenar-
ios (originally labelled ‘MESSAGEix-GLOBIOM 1.0_LowEnergyDemand’ and ‘MESSAGE-
GLOBIOM 1.0_.ADVANCE_INDC’, respectively) were developed with the Integrated Assess-
ment Model MESSAGE-GLOBIOM version 1.0 (59). The 2.0 °C scenario was derived using
IMAGE version 3.0.1 (60). The 2 °C compatible scenario is assessed by the [IPCC SR1.5 to keep
warming below 2 °C with at least 66 % probability, whereas the 1.5 °C scenario limits warm-
ing to 1.5 °C with 50 % probability but potentially exceeds this level temporarily by less than
0.1°C (54). The GMT anomalies in 2091-2100 compared to the pre-industrial reference period
(1850-1900) are 1.4°C, 1.7°C and 2.4 °C for the 1.5°C, the 2.0°C and the current pledges

scenario, respectively (fig. S1).



Fourth, gridded population reconstructions and projections are obtained from the ISIMIP2b
input data repository. Historical reconstructions are based on version 3.2 of the History Database
of the Global Environment (HYDE3.2) (617) while future projections are derived from a gravity-
based downscaling model (62) under the Middle-of-the-Road Shared Socioeconomic Pathway
2 (SSP2) (63). Social and economic trends of the SSP2 scenario do not markedly shift from
the historical trends. Most countries complete the demographic transition, and the population
growth levels off in the second half of the century. Under SSP2, all countries in the world are
projected to develop with medium fertility, mortality and migration trends (64). The gridded
future population projections account for population growth, urbanization level, and spatial ur-
banization pattern by incorporating variations of these patterns across regions and SSPs (62).
For population change, countries are categorized according to fertility and income into three
groups (high fertility, low fertility with high incomes, and low fertility), whereas for urbaniza-
tion, countries are grouped based on income alone (Low, Medium and High income). While
population density evolves over time according to these drivers, climate-induced changes in mi-
gration, urbanisation, fertility, and mortality are not considered in this data set, and therefore not
in our approach. We analysed the uncertainty associated with the gridded population data by
testing the sensitivity of our results to using gridded population projections under an alternative
SSP. Using SSP3 — a pathway considered inconsistent with RCP2.6 — instead of SSP2 showed
little sensitivity of the results to the SSP choice, reflecting the fact that our analysis builds on
within-country relative population density variability rather that on absolute population totals.

Finally, we use country-scale cohort size data provided by the Wittgenstein Centre and avail-
able through its Human Capital Data Explorer (65). We consider cohort sizes of the year 2020
and linearly interpolate the 5-year block data to annual time scale, assuming the cohort size

value to be valid for the center year of the block.



Extreme event definition. A detailed description of the processing of the ISIMIP2b simula-
tions is provided in Ref. (37) and summarised hereafter. We consider 6 extreme event categories:
wildfires, crop failure, droughts, river floods, heatwaves, and tropical cyclones. We select these
six extreme event categories because we know from existing studies (16, 66) that these hazards
(1) will increase in frequency, intensity, and/or duration with projected climate change, (ii) can
lead to strong impacts when they occur, and (iii) can be tackled comprehensively in a modelling
framework such as ISIMIP. For each category and simulated calendar year, we compute the land
fraction per grid cell exposed at least once to an extreme event as defined in table S1. As such,
the land fraction annually exposed to extreme events becomes a comparable quantity across
event categories.

Since the 8 considered global hydrological models do not provide flood extent and apply dif-
ferent routing schemes (67), we employ the global-scale river routing model CaMa-Flood (68)
to compute the land area exposed to river flooding using daily gridded runoff from the global
hydrological models as input (table S2). For tropical cyclones, we use the average exposure
over a 100-member ensemble of tropical cyclone tracks downscaled from GCM output (38).
While the strongest increases in tropical cyclone impacts are expected from increasing cyclone
intensities (38, 69), our projections also show a rise in tropical cyclone frequency under con-
tinued warming, consistent with (37, 38). For wildfires, we quantify the pure climate change
effect on burned area using a suite of global vegetation models (see Supplementary Text 6 for
more details). A grid cell is considered to be exposed to a heatwave in a given year if the
Heat Wave Magnitude Index daily (HWMIA) (70, 71) of that year exceeds the 99" percentile of
the HWMId distribution under pre-industrial climate conditions of that grid cell. For droughts,
heatwaves, and crop failure, we define the extreme event occurrence based on the exceedance of
a pre-industrial percentile threshold (table S1). While the exact percentile value is an arbitrary

choice, the approach allows for a robust estimation of the threshold values thanks to the long



time span of the pre-industrial control simulations. Moreover, a sensitivity analysis with mul-
tiple heatwave definitions showed only little sensitivity of the relative exposure changes at the
global scale, suggesting a limited influence of the choice of the pre-industrial percentile value
on the analysis of the historical and future impact model simulations. Finally, we also analyse
lifetime cold spell exposure, which we define as the counterpart of heatwaves (see Supplemen-

tary Text 3).

Exposure calculation. In this study, we integrate the exposure of an average person in any
country or region to climate hazards across their lifetime. This cohort analysis considers land
areas only and is performed across 178 countries (fig. S7), 11 regions (fig. S4) and the globe.
We first compute country-scale spatial averages of annual land area exposure weighted by
population totals of the corresponding year over all available historical, RCP 2.6, 6.0 and 8.5
simulations. This way, our exposure assessment accounts for temporal changes in population
density under a Middle-of-the-Road scenario. The resulting time series is then mapped onto
the SR1.5 scenarios (1.5°C, 2°C and NDCs, respectively) by selecting from the concatenated
historical-RCP series the year with the GMT anomaly closest to the annual anomaly in each
SR1.5 scenario, thereby effectively using the ISIMIP2b hazard simulations as damage func-
tions (time-shift approach (72, 73); fig. 1 left panel). While the analysis can also be performed
directly on the RCPs, we decide to apply the time-shift approach because (i) of the increasing
policy relevance of low-end warming scenarios like the 1.5°C and 2°C-compatible scenarios;
(i1) the ISIMIP2b framework only samples a small set of greenhouse gas concentration pathways
(i.e. three RCPs), whereas we here analyse a range of potential warming scenarios (see below);
and (iii) we aim to better align hazard projections arising from climate models with different
transient climate response to cumulative carbon emissions (TCRE). Both in ISIMIP2b and the

SR1.5 scenarios, GMT anomalies are computed using the 1850-1900 historical period (51-year



average) as reference (37, 74). Simulations whereby the absolute GMT difference with the
SR1.5 scenario in any year exceeds 0.2 °C are excluded to avoid that low-end RCP projections
(e.g. RCP 2.6) inform high-end warming scenarios (e.g. current pledges). Our assumption that
the simulated hazards are scenario-independent is generally valid for the considered extreme
event categories (37) and allows us to maximise the hazard information considered in each
SR1.5 scenario. Moreover, a comparison of absolute lifetime exposure (see below) of the 2020
birth cohort under RCP2.6 computed, on the one hand, directly from the RCP2.6 projections,
and reconstructed, on the other hand, by applying the time-shift approach to the RCP2.6, 6.0,
and 8.5 projections, shows a close correspondence between both approaches (fig. S17). From
this we conclude that the time-shift approach is a valid method for translating RCP-based pro-
jections to alternative GMT trajectories in the context of our analysis. That said, some aspects
of these extreme events show a lagged response to global mean temperature increase, making
our assessment conservative (see Supplementary Text 2).

Next, we accumulate for each simulation, country and birth year within the period 1960-
2020 the extreme event exposure across an average life span in that country. As life expectancy
extends up to the year 2113 in some countries and birth cohorts, we assume that beyond 2099,
annually exposed land fractions, GMT anomalies and gridded population densities are constant
at the 2090-2099 average. In contrast, for some spatial units and early birth years, the life
expectancy at birth may not extend until 2020; for those individuals still alive in 2020 the
lifetime exposure accounts for the average, not actual life span. To obtain lifetime exposure
values at the regional and global scale, we compute for each birth cohort the weighted spatial
average of the country-scale exposure using the size of that particular cohort in each country
as weighing factor. Analogous to the well-established distinction between the Eulerian and
Lagrangian perspective in atmospheric science and between the period and cohort approach in

demography, we suggest that the resulting lifetime extreme event exposure values represent the



Lagrangian/cohort view on climate change hazards.

Computing the multi-model arithmetic mean per extreme event category then enables the
comparison of different birth cohorts (fig. 1 middle panel), whereby the results combine the
effect of changes in extreme event occurrence as a consequence of climate change and the

change in life expectancy in that spatial entity.

Exposure multiplication factor. To analyse the lifetime exposure data, we use the exposure

multiplication factor (£ M F’), which is defined as

)

where F is the lifetime exposure of a person born in the reference year 1960 — that is, all
people being 60 years old on 31 December 2020 — and E,,.,, is the lifetime exposure of a person
born in a later year. This metric allows us to compare birth cohorts across a range of birth years
(fig. 1 right panel). For instance, an E'M F' of 2 for a newborn and F.¢ of 3.5 heatwaves implies
that a person born in a given country in 1960 will on average face 3.5 heatwaves across their
lifetime, whereas a person born in 2020 on will on average face 7 heatwaves. To avoid EM F'
values being infinite, we assign the value of 100 in the exceptional cases when extreme events
emerge in a country or region. The £/ M F' metric relates to the probability ratio metric used in
previous studies (75—77), where the probability ratio is generally used as a ratio of frequencies
of occurrence with probabilities limited to [0, 1] by definition. However, the EM F' metric is
a ratio of event counts (not of event probabilities), and explicitly includes exposure next to
hazards, thereby moving towards more comprehensive risk definitions (76).

We consider three approaches to aggregate the information across extreme event categories.

The first method computes the geometric mean across the =M F' per event category. In this ap-



proach, percent changes in each of the categories equally contribute to the total change, but the
approach yields conservative estimates in spatial units not affected by one or several categories
under past and future conditions (e.g., tropical cyclones in high-latitude countries). Uncertain-
ties in this approach are computed as the geometric mean of the per-category £ M F' computed
based on the ensemble’s 25" and 75 percentile lifetime exposure relative to the multi-model
mean exposure under pre-industrial climate conditions. The second approach is to calculate the
geometric mean of the lifetime exposure across the six considered event categories and sub-
sequently compute the /M F. The third approach is to compute the harmonic mean across
the KM F per event category. The harmonic mean is suited for computing the mean across
ratios (such as the EM F') and is the most conservative of the Pythagorean means. Note that
the arithmetic mean or the sum are not considered here because the results would be dominated
by the strong increase in heatwave occurrence. The sensitivity to the aggregation procedure
is visualised in fig. S3; while the first and third aggregation method yield consistent results,
the second approach yields substantially higher exposure estimates. Taking a conservative ap-

proach, all further cross-category results are based on the first aggregation method.

Exposure scaling with GMT. To derive the EMFs shown in fig. 2, we first construct 28
stylised GMT trajectories. The trajectories are obtained through piecewise linear interpola-
tion between five scenarios: a present-day constant temperature (taken here as the 2009 GMT
anomaly of 0.87 °C), a linear temperature increase from 0.87 °C in 2009 to 3.5 °C by 2100, and
the three SR1.5 scenarios (1.5 °C, 2 °C, NDC). The resulting scenarios thereby cover, in 2100,
the 0.87 — 3.5 °C GMT anomaly range with a 0.1 °C increment (fig. S1).

For each pathway, we subsequently compute the lifetime exposure per spatial unit and event
category following the methodology explained above. As reference for the EMF' calcula-

tion, we consider the average exposure of a person with year-1960 life expectancy under pre-
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industrial climate conditions. To this end, we first compute, for each of the 101 pre-industrial
control simulations, the lifetime exposure for 100 bootstrapped time series. We then pool the
resulting exposure values for all available simulations within that extreme event category, and
calculate the arithmetic mean from the resulting distribution. The pre-industrial control expo-
sure thereby samples from one distribution comprising uncertainty from both internal variability
and structural climate and impact model deficiencies.

Once the M F' is calculated per extreme event category, the multi-event £ M F' is obtained
by computing the geometric mean across the M F' values per category (see above). The re-
sulting /M F' values are subsequently smoothed using a three-element moving average along
the vertical and visualised in fig. 2. Note that in fig. 2, uncertainty increases along the y-axis
as fewer hazard projections are available to sample from towards higher warming levels. This
sampling artefact explains the apparent reduction in droughts and river floods EMF for some
cohorts above 3°C warming relative to pre-industrial (fig. 2).

Next to the EM F', we also analyse the probability of experiencing, under pre-industrial
climate conditions, the lifetime exposure values obtained under the stylised pathways. To this
end, we calculate the empirical inverse percentiles from the pre-industrial control distribution of
the lifetime exposure under each of the stylised GMT trajectories. To obtain the pre-industrial
exposure distribution aggregated across the six extreme event categories, we first select 1000
random combinations of one simulation per extreme event category and subsequently com-
pute in each combination the geometric mean £’ M F' across the categories. Since each random
combination consists of 100 lifetime exposure values obtained via bootstrapping (see above),
this yields a distribution of 100000 lifetime exposure values. Like with the E'M F' fields, the
resulting probability fields are smoothed using a three-element moving average along the ver-
tical, except for tropical cyclones, where a fourth-order polynomial is fitted to the threshold

probability contour to account for the higher uncertainties in these projections obtained from a
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single impact model. The results are visualised as grey contours in fig. 2 and denote the 99.99*"
percentile, that is, above and right of these contours, one has less than 0.01 % probability of
living such life under pre-industrial climate conditions. We refer to the latter case as living an
unprecedented life.

With the exception of wildfires and tropical cyclones, our extreme events are defined based
on extreme percentiles estimated from the pre-industrial control simulations (table S1) (37).
Due to a statistical artefact (78, 79), the expected relative frequency of exceedance of those
percentiles (or of falling below for the 2.5 crop yield and soil moisture percentiles) may po-
tentially be larger in data that was not used to estimate the percentiles (such as data from the
historical simulations and the future scenario simulations) than in the pre-industrial control
data. However, we believe that this issue can be disregarded in our analysis, because (1) we use
a very large sample of pre-industrial control simulations (542 years on average) to estimate the
percentile values in each simulation, and (ii) our analysis consists of relative changes between
cohort lifespans that all fall entirely outside of the base period.

While fig. 2 is inspired by the burning ember diagrams shown in various IPCC reports
(80-82), we acknowledge that our results cannot be directly translated into this risk framework,
primarily because we only consider 2 dimensions of risk in our assessment, that is, hazard and
exposure. Further work could aim at including vulnerability into the assessment, for instance by

incorporating vulnerability projections and associated adaptation potentials (83) in the analysis.

Life expectancy versus climate change. To isolate the contribution of life expectancy change
to the total change in lifetime exposure, we repeat the lifetime exposure calculation but apply it
to the pre-industrial control simulations (see details below; figs. S15-S16). Assuming this term
corresponds to the pure life expectancy effect in the absence of climate change, the residual

represents the contribution from climate change.
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Data and code availability

Data Availability All materials that have contributed to the reported results are available
from Zenodo at https://zenodo.org/record/5497633, including the postprocessed
ISIMIP2b data. Correspondence and requests for further materials should be addressed to W.T.
(wim.thiery @vub.be). The raw ISIMIP2b impact simulations and gridded population data are
available at https://esg.pik-potsdam.de/search/isimip/, the life expectancy
dataat https://population.un.org/wpp/Download/Standard/Mortality/,
the cohort size dataathttp://dataexplorer.wittgensteincentre.org/wcde-v2/,
and the IPCC SR1.5 Scenario data at https://data.ene.iiasa.ac.at/iamc-1.

5c—explorer.

Code Availability All codes used for the analyses are available through the github repository
of the Department of Hydrology and Hydraulic Engineering at VUB (https://github.

com/VUB-HYDR/2021_Thiery_etal_Science).
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Supplementary Text
Supplementary Text 1 — Country-level analysis

Breaking the analysis down to country scale highlights strong spatial disparities (figs. S7-8).
Lifetime heatwave exposure for the 2020 birth cohort relative to the 1960 birth cohort increases
in every country in the world and under all future scenarios considered (fig. S7a-b). However,
in several countries the 2020 birth cohort will face more than 10 times as many extreme heat-
waves compared to the 1960 birth cohort under current pledges. This is for instance the case
in countries in Central Africa, the Middle East and West and Southeast Asia. Under a 1.5°C
scenario, these multiplication factors are often substantially reduced. Similar patterns emerge
for the other extreme event categories (fig. S8), though the multiplication factors are subject to
higher uncertainty and in some cases indicate reduced exposure, for instance in exposure to crop
failures in several Eurasian countries under 1.5 °C warming. Aggregated across all categories,
most countries ultimately show a decrease in the exposure multiplication factor going from the
current pledges scenario to 1.5 °C of global warming (fig. S7c-d), highlighting a clear incentive
for younger generations of limiting global warming to 1.5 °C instead of the 2.6-3.1 °C expected
from current pledges (84, 85).

Our drought definition is based on the frequency of occurrence of extremely low monthly
soil moisture values during at least seven consecutive months (table S1) as computed by 8 global
vegetation models and global hydrological models from the ISIMIP biomes and water sector, re-
spectively (CLM4.5, HO8, LPJmL, JULES-W1, MPI-HM, ORCHIDEE, PCR-GLOBWB, and
WaterGAP2; table S2). Thus, we mechanistically account for changes in both precipitation
and evapotranspiration in our drought projections. If precipitation increases in a region ac-
cording to a GCM projection, the hazard simulation driven by this GCM might project less

droughts. This is, for instance, the case in Russia under 1.5°C warming and current pledges,
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and in parts of Scandinavia under 1.5°C warming (fig. S8e-f). But if the evapotranspiration
increase is larger than the precipitation increase (especially during the dry season), drought fre-
quency may increase despite projected increases in precipitation, like is the case in East Africa
(fig. S8e-f) (86,87). This also explains why one region may face an increase in exposure to both

droughts and river floods (e.g. Southern Africa and large parts of Asia; fig. S8e-h).

Supplementary Text 2 — Why our estimates may be considered conservative

Our approach yields conservative lifetime exposure estimates for at least six reasons. First, it
treats consecutive extreme events (88) affecting a specific location within a calendar year as one,
leading to an underestimation of the number of events in present-day as well as their increase
in frequency. Second, it only considers changes in the frequency of extreme events, neglecting
possible increases in event intensity and duration (77). For tropical cyclones, for instance, pro-
jected increases in storm intensity can be considered equally important (38), whereas heatwave
duration and intensity are increasing next to heatwave frequency (89). Third, we do not take
into account the effects of compounding extremes, even though, for instance, severe droughts,
heatwaves and crop failures tend to co-occur (88, 90-93). Fourth, we only consider exposure
to local hazards, yet extreme events such as crop failures may lead to regional or even global
food price instability when occurring in isolation or concurrently (81, 92, 94). Fifth, we em-
ploy stringent definitions of extreme events, with for instance heatwaves occurring only about
four times in a lifetime on average for the 1960 birth cohort (fig. 1 middle panel). Several
extreme event categories therefore occur only over part of the globe (37), leading to an under-
represented risk when aggregating across extreme event categories. Finally, some aspects of
the extreme event categories we consider demonstrate a lagged response to global warming.
This notably applies for tropical cyclones, which cause substantial impacts via the storm surge

they generate. These storm surges are amplified by background sea level rise (95) which lags
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the global mean temperature increase by decades to centuries (96, 97). This lagged response
further augments inter-generational inequity, and this to the extent that even the already com-
mitted sea level rise will enhance lifetime exposure of generations well beyond the ones we
consider in this study (96, 97). On shorter time scales, this reasoning also applies to wildfires,
as fuel aridity may build up over several years in response to a long-term warming trend (98).
Overall, these six reasons highlight that our current results may underestimate changes in actual
extreme event exposure and thereby underscore the benefits of climate action for current and

future young generations.

Supplementary Text 3 — Cold spells

Next to the six extreme event categories considered in this study, the influence on climate change
on cold spell exposure could also be considered. To this end, we consider a grid cell to be
exposed to a cold spell in a given year if the Cold Wave Magnitude Index daily (CWMId) of
that year exceeds the 99" percentile of the CWMId distribution under pre-industrial climate
conditions of that grid cell. We define the CWMId as the maximum magnitude of all cold
periods occurring in a year, where a cold period is a period of at least six consecutive days with
daily maximum temperature falling below a threshold value T},;;o which is defined as the 10"
percentile of daily maximum temperatures under pre-industrial climate conditions, centered
on a 31-day window. The magnitude of each cold period in a year is the sum of the daily
magnitudes on the consecutive days composing the cold period, with daily magnitude calculated
according to My(T;) = 0if Ty > Thirs else (Tpizs — Ta)/ (Tpirs — Tpizs), where Ty is the daily
maximum temperature on day d of the cold period and T}p5 and Tpirs are the 25 and 75
percentile, respectively, of the annual minimum of the daily maximum temperature under pre-
industrial climate conditions. To estimate 7}10, Tpi25, and Tpi75, we use more than 400 years

of daily maximum temperature data at 0.5° x 0.5° spatial resolution representing pre-industrial
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climate conditions as available from the ISIMIP2b climate input data set. Based on these more
than 400 years of temperature data we subsequently derive the 99 percentile of the CWMId
distribution under pre-industrial climate conditions. As such, we characterise cold spells as the
mirror of heatwave events (except for the period which we require to be six instead of three
days).

The results of the analysis indicate an overall reduction of exposure to cold spells under
increasing global mean temperature levels and for younger cohorts (fig. S18a). Except for a few
countries in West Asia, lifetime cold spell exposure reduces consistently across most countries,
with the strongest reductions in Africa, the Middle East, Europe, Canada, and parts of South

America (fig. S18b).

Supplementary Text 4 — Vulnerability, impacts and adaptation

Our study is deliberately limited to exposure to climate hazards, given that both adaptation over
time and age-dependent vulnerability are extremely difficult to quantify. In that sense, we com-
pute changes in the hazards that people face throughout their lifetime (e.g. a heatwave or a river
flood), but make no call about the risk or impact which they generate (e.g. mortality, infrastruc-
ture damage). By altering their vulnerabilities, communities can also adapt to the changes in
exposure to hazards. For the extreme event categories considered here, these adaptation options
can take many forms: e.g. changing crop types, agricultural management (irrigation, fertiliser),
flood protection, reservoir deployment and management, fire management, and improved warn-
ing systems. Depending on the adaptation options that communities will (be able to) choose,
the level of risk arising from the hazard exposure will vary.

While adaptive capacities may increase over time, extreme events result in detrimental im-
pacts already today, even in developed countries with very high adaptive capacity (see, for

instance, the 2019-2020 wildfires in California and Australia). Moreover, for many develop-
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ing countries, increased adaptive capacity is needed to address today’s climate risks — it does
not imply that these countries can cope with unprecedented future hazards even under very
optimistic scenarios of socio-economic development. Recent research showed that adaptive ca-
pacities are far from uniformly rising Andrijevic2020a and that it will take until well into the
21st century for many developing countries to reach current OECD levels. Overall, there are
huge differences in adaptive capacities between countries with no signs that this gap will drasti-
cally reduce in the next decades, and even in countries with high adaptive capacities, it is unsure
whether entire populations will be able to adapt to severe climate change impacts. Finally, we
note the existence of quite hard (physiological) limits to adaptation for several of the extreme
events considered in this study. For instance, a wet-bulb temperature of 35°C defines the limit
of human survivability (99—101). In other cases, migration may be the final adaptation option,
which may in turn change both exposure and vulnerability to (a set of) hazards. For instance, a
poor Ugandan farmer migrating to the Capital to escape from increasing crop failure may end
up settling in one of Kampala’s informal settlements which are very prone to flooding, heat
stress, and vector-borne diseases (102, 103).

Overall, the aspect of changing vulnerability and adaptive capacity requires careful consid-
eration and the absence of a framework to quantitatively integrate future vulnerabilities into
climate risk scenarios is why our analysis focuses explicitly on exposure to climate hazards
instead of climate risk.

A cohort-based approach raises the question about its relationship to discounting over time
to adequately account and weigh intergenerational interests. However, the concept of discount-
ing does not apply to our study given its focus on extreme event exposure instead of climate
change impacts. Discounting is commonly used as a methodological approach within cost-
benefit analysis (CBA). Yet, our cohort-based extreme event exposure differs from the CBA

frameworks, because it only maps out the consequences and uncertainties of different future
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climate change pathways in terms of extreme event exposure. Incorporating an exposure per-
spective, such as ours, within a CBA would require to value the exposures and aggregate them
into a cost or welfare metric, since discounting can only be applied to value and welfare metrics.
Such aggregation — including the discounting — implicitly assumes that exposures between dif-
ferent groups are comparable and, therefore, trade-offs can be resolved. In principle, the results
of the extreme event exposures can serve as input to such analysis, but it requires to value the
exposures and aggregate them.

Next to informing a CBA, the extreme event exposure results could also inform a rights-
based approach. Rights-based approaches argue for “a general right against risking” (104).
Rights-based approaches are related to the precautionary principle and relate future risks im-
plied by current action to the infringement on future opportunities and the exercising of basic
rights.

In recent years, climate change and the risks for future generations has been increasingly
brought to courts. The cohort-based extreme event exposure approach can help to inform this
debate. However, we refrain from suggesting criteria or requirements that should be applied to
derive the level of climate change. A comprehensive consideration of competing rights would
need to take a broader set of rights into account and could not only rely on extreme event
exposure. The priorities of competing rights and the weighing of competing rights requires a
broader decision analysis framework that is beyond the scope of the present analysis. Finally,
the methodological difference between CBA- and rights-based approaches does not necessarily
imply a stronger or weaker level of future climate change and therefore higher or lower near
term emissions. This is partly due to the sensitivity of CBA results to the choice of the discount

rate (/05) and the role competing rights can play.
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Supplementary Text 5 — GCM selection and bias-adjustment procedure

Global Climate Models (GCMs) allow to simulate climate and weather extremes under histor-
ical and future atmospheric conditions. The ISIMIP2b climate forcing builds on a selection of
GCM output from the fifth phase of the Coupled Model Intercomparison Project (CMIPS) (106).
The ISIMIP2b forcing data covers four of the CMIP5 GCMs (IPSL-CM5A-LR, HadGEM2-ES,
MIROCS, GFDL-ESM2M). Uncertainty of future greenhouse gas emissions is spanned through
scenarios, which are the Representative Concentration Pathways (RCPs) (/07) used in CMIP5
and consequently in the IPCC’s Fifth Assessment Report. In support for the IPCC Special
Report on global warming of 1.5 °C, ISIMIP2b covered initially RCP2.6 and RCP6.0, a low
emission and an intermediate stabilization scenario, with the high emission RCP8.5 scenario
added at a later stage, leading to a lower hazard simulation availability (see table S2 for the
scenarios covered by each impact model). The four GCMs were selected by availability of
variables necessary for impact modeling and their position in the distribution of equilibrium
climate sensitivity (ECS) in the CMIP5 ensemble. With an ECS of 4.1 °C for IPSL-CM5A-
LR, 4.6 °C for HadGEM2-ES, 2.7 °C for MIROC5 and 2.4 °C for GFDL-ESM2M, the GCM
selection includes two models at the lower and two at the upper end of the CMIP5 ensemble
range (2.1°C to 4.7°C). The climate model data is regridded from its original resolution to
the ISIMIP impact model grid at a spatial resolution of 0.5° x 0.5°. The climate model data
is bias-adjusted (16, 46) to better represent the statistical distribution of observational weather
data while preserving simulated trends. In addition, we use sub-daily output of the GCMs listed

above that is not bias adjusted to force the high-resolution tropical-cyclone model.

Supplementary Text 6 — Wildfire simulations

The global burned area has seen a decrease in recent years, with the decrease explained mostly

by a decrease in the number of fires associated with agricultural expansion (/08, 109). In this
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study, the wildfire simulations are designed to quantify the pure climate change effect on wild-
fire activity. To this end, we compute the change in burned area purely from a change in climate
implemented via the GCM forcing, while keeping cropland area, population levels and other
socioeconomic factors constant at 2005 levels. The vegetation models used here are suited
for this type of analyses since their fire modules generally do not include human ignition (ex-
cept for ORCHIDEE in which ignition depends on population density, with population density
kept constant after 2005 in our simulation design). In addition, a historical land use-induced
negative trend in burned area does not preclude that exposure to wildfire activity may rise in
the next decades. Regional increases in wildfire activity have already been attributed to an-
thropogenic climate change (98) and fire weather is projected to substantially intensify in the
coming decades (//0). Moreover, exposure to fire may increase due to population expansion
in fire-prone regions, an effect which may even outweigh changes in burned area (/17). We
account for this effect thanks to the use of annual gridded population density projections when
spatially averaging the hazard maps. Combining our simulated climate-induced burned area
changes with projected population density data suggest a clear increase wildfire exposure de-
spite substantial uncertainties, corroborating a recent IPCC assessment of rising wildfire dam-

age risk under continued global warming (81, 82).
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Supplementary Figures
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Supplementary Figure 1 | Global mean temperature pathways. Historical and future evolu-
tion of global mean temperature (GMT) anomalies relative to the pre-industrial (PI) reference
scenario, taken here as the 1850-1900 average. Shown are three marker scenarios taken from
the IPCC Special Report on Global Warming of 1.5°C (54), and 25 additional stylised pathways
used for constructing fig. 2 (see Methods).
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Supplementary Figure 2 | Lifetime wildfire and tropical cyclone exposure on the rise. Same
as fig. 2, but for the extreme event categories (a) wildfires and (b) tropical cyclones.
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Supplementary Figure 3 | Cross-category lifetime exposure and influence of aggregation
method on exposure sensitivity. (a) Same as fig. 2, but with exposure aggregated by computing
the geometric mean across the exposure multiplication factor (£'M F') per category, (b) Same as
fig. 2, but with exposure aggregated by computing the geometric mean across the lifetime expo-
sure (£ X P), (¢) Same as fig. 2, but with exposure aggregated by computing the harmonic mean
across the EM F' per category. We note that the second aggregation method (geometric mean
on exposure) yields higher £ M F' values because the absence of events in one extreme event
category results in zero cross-category exposure in a given country. As this occurs more fre-
quently under pre-industrial control conditions, this leads to unrealistically low global-average
pre-industrial control exposure values and hence artificially high /M F' values.
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Supplementary Figure 4 | World Regions. Groups of countries based on (a) geographical
location and (b) income category for which life expectancy data is available (52). The income
groups are defined based on present-day conditions. The region definitions are taken from
the World Bank (//2) and abbreviated as follows (see e.g. fig. S11-12): East Asia & Pacific
(EASP), Europe & Central Asia (EUCA), Latin America & Caribbean (LAMC), Middle East &
North Africa (MENA), North America (NAM), South Asia (SAS), Sub-Saharan Africa (SSA).
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Supplementary Figure 5 | Regional lifetime exposure. Same as fig. S3a, but for world regions
shown in fig. S4a.
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Supplementary Figure 6 | Income-based lifetime exposure. Same as fig. S3a, but for income
group regions shown in fig. S4b.
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Supplementary Figure 7 | Local value of global mitigation. (a,b) Heatwave and (c,d) all-
category exposure multiplication factors at the country scale for the 2020 birth cohort relative
to the 1960 birth cohort under (a,c) the current pledges scenario and (b,d) the 1.5 °C scenario.
Country-scale exposure multiplication factors aggregate within-country variability in popula-
tion density and land fraction affected by extreme events.
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Supplementary Figure 8 | Country-scale exposure multiplication factors. Same as fig. S7,
but for the extreme event categories (a,b) wildfires, (¢,d) crop failures, (e,f) droughts, (g,h)
river floods, and (i,j) tropical cyclones. Country-scale exposure multiplication factors aggregate
within-country variability in population density and land fraction affected by extreme events.
Note that the large tropical cyclone multiplicatipg factors for some world regions with no or very
low numbers of observed tropical cyclone landfalls (e.g. West and Southwest Africa, Western
South America, Western Europe) are based on a small number of simulated tropical cyclones
and should therefore be treated with caution.
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Supplementary Figure 9 | Uneven distribution of lifetime exposure. All-category exposure
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Supplementary Figure 10 | Exposure increaselacross world regions. Regional EMFs relative
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Supplementary Figure 12 | Exposure increase relative to the 1960 birth cohort across in-
come country groups. Same as fig. S10 but using the 1960 birth cohort as reference for the
EMEF calculation. Note the different radial scale for heatwaves.
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Supplementary Figure 15 | Drivers of increasing exposure across world regions. All-
category exposure multiplication factors across birth cohorts separated by driver under the
current pledges scenario for a range of geographic regions (see fig. S4a for the region defi-
nitions (/12)). As the figure is based on exposure instead of EMF, we use the arithmetic mean
instead of the geometric mean to aggregate the information across the categories.
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Supplementary Figure 16 | Drivers of increasing exposure across income country groups.
Same as fig. S15, but for income country groups defined in fig. S4b. As the figure is based
on exposure instead of EMF, we use the arithmetic mean instead of the geometric mean to
aggregate the information across the categories.
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Supplementary Figure 17 | Evaluation of the time-shift approach. Lifetime extreme event
exposure of the 2020 birth cohort under RCP2.6 computed using the original RCP2.6 simula-
tions (x-axis) and by applying the time-shift approach to the RCP2.6, 6.0, and 8.5 simulations
(y-axis). Each color represents an extreme event category and each dot represents the ensemble
mean for one of the 12 considered regions (geographic regions, income categories, and global
as defined in fig. S4).
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Supplementary Figure 18 | Cold spell exposure change. (a) Exposure multiplication fac-
tors across birth cohorts (x-axis) under a range of global warming trajectories (fig. S1) reach-
ing 0.87°C to 3.5°C global mean temperature (GMT) anomalies in 2100 relative to the pre-
industrial (PI) reference period (1850-1900; y-axis) for coldwaves. All factors are computed
relative to the mean exposure of a hypothetical reference person living under pre-industrial
climate conditions with year-1960 life expectancy. (b) Same as fig. S7a, but for CWMId.
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Supplementary Table 1 | Definition of extreme events. For each category, the number of
impact models (M.) and future projections (P.) is reported. Further details are provided in the
Methods section and in (37)

Event

M. P

Definition of land area exposed

Wildfire

Crop failure

Drought

River Flood

Heatwave

Tropical cyclone

5

3

8

8

1

53

24

86

86

12

12

Annual aggregate of monthly burned land area simulated by global vegeta-
tion models

Fraction of grid cell where one of the considered crops (maize, wheat, soy
or rice) is grown and the corresponding crop yield falls short of the 2.5
percentile of the pre-industrial reference distribution; crop-specific land area
fractions are added up.

Entire grid cell if monthly soil moisture falls short of the 2.5'" percentile of
the preindustrial reference distribution for at least 7 consecutive months.
Flooding is assumed to occur whenever daily discharge (0.5° x 0.5° resolu-
tion) exceeds the preindustrial 100-year return level (i.e. the 99" percentile);
to derive the associated land area affected per grid cell, simulated runoff is
translated into inundation areas (2.5 x 2.5’ resolution) by CaMa-Flood (68).
Entire grid cell if the Heat Wave Magnitude Index daily (HWMIA) (70, 71)
of that year exceeds the 99" percentile of the HWMId distribution under
pre-industrial climate conditions of that grid cell. The HWMId is defined
as the maximum magnitude of all hot periods occurring in a year, where a
hot period is a period of at least 3 consecutive days with daily maximum
temperature exceeding a threshold value 700 Which is defined as the 90"
percentile of daily maximum temperatures under pre-industrial climate con-
ditions, centered on a 31-day window. The magnitude of each hot period in
a year is the sum of the daily magnitudes on the consecutive days composing
the hot period, with daily magnitude calculated according to My(7T,) = 0 if
Ty < Tpios else (Ty — Tpios) / (Tpirs — Tpios), where Ty is the daily maximum
temperature on day d of the hot period and T}25 and 775 are the 25" and
75" percentile, respectively, of the annual maximum of the daily maximum
temperature under pre-industrial climate conditions. To estimate 7,90, Tpizs,
and 7},;75, we use more than 400 years of daily maximum temperature data at
0.5° x 0.5° spatial resolution representing pre-industrial climate conditions
as available from the ISIMIP2b climate input data set. Based on these >400
years of temperature data we subsequently derive the 99" percentile of the
HWMId distribution under pre-industrial climate conditions.

Fraction of grid cell exposed to 1-minute sustained hurricane-force winds
(>64 kt) at least once a year (0.1°x 0.1° resolution); information re-
quired about wind fields is derived from center location and minimum pres-
sure/maximum wind speed (113, 114).
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Supplementary Table 2 | ISIMIP2b model simulations used for the analysis. Each model
simulation consists of a concatenated historical and future (RCP2.6, 6.0 or 8.5) simulation done
with one impact model (IM) and one global climate model (GCM). The last column indicates
the number of simulation years available from the pre-industrial control simulation (PIcontrol).
For tropical cyclones, each simulation represents the average of a 100-member ensemble of
tropical cyclone tracks downscaled from GCM output (38).

Extreme M GCM RCP Plcontrol (years)
Wildfires CARAIB GFDL-ESM2M 2.6, 6.0 439
Wildfires CARAIB HadGEM2-ES 2.6, 6.0 639
Wildfires CARAIB IPSL-CMS5A-LR 2.6,6.0 639
Wildfires CARAIB MIROCS 2.6,6.0 639
Wildfires LPJ-GUESS GFDL-ESM2M  2.6,6.0,8.5 439
Wildfires LPJ-GUESS HadGEM2-ES 2.6,6.0,8.5 639
Wildfires LPJ-GUESS IPSL-CMS5A-LR 2.6,6.0,8.5 639
Wildfires LPJ-GUESS MIROCS5 2.6,6.0,8.5 639
Wildfires LPJmL GFDL-ESM2M  2.6,6.0,8.5 439
Wildfires LPJmL HadGEM2-ES 2.6,6.0,8.5 639
Wildfires LPJmL IPSL-CM5A-LR 2.6,6.0,8.5 639
Wildfires LPJmL MIROC5 2.6,6.0,8.5 639
Wildfires ORCHIDEE GFDL-ESM2M  2.6,6.0,8.5 239
Wildfires ORCHIDEE HadGEM2-ES 2.6,6.0,8.5 239
Wildfires ORCHIDEE IPSL-CM5A-LR 2.6,6.0,8.5 439
Wildfires ORCHIDEE MIROCS5 2.6,6.0,8.5 239
Wildfires VISIT GFDL-ESM2M 2.6, 6.0,8.5 439
Wildfires VISIT IPSL-CMS5A-LR 2.6,6.0,8.5 639
Wildfires VISIT MIROCS 2.6,6.0,8.5 639
Crop failures GEPIC GFDL-ESM2M 2.6, 6.0 439
Crop failures GEPIC HadGEM?2-ES 2.6,6.0 639
Crop failures GEPIC IPSL-CMS5A-LR 2.6,6.0 639
Crop failures GEPIC MIROCS5 2.6,6.0 639
Crop failures LPJmL GFDL-ESM2M  2.6,6.0 439
Crop failures LPImL HadGEM?2-ES 2.6,6.0 639
Crop failures LPImL IPSL-CMS5A-LR 2.6,6.0 639
Crop failures LPImL MIROC5 2.6,6.0 639
Crop failures PEPIC GFDL-ESM2M  2.6,6.0 439
Crop failures PEPIC HadGEM2-ES 2.6,6.0 639
Crop failures PEPIC IPSL-CMS5A-LR 2.6,6.0 639
Crop failures PEPIC MIROCS 2.6,6.0 639
Droughts CLM4.5 GFDL-ESM2M  2.6,6.0,8.5 239
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Table 2 continued from previous page

Extreme M GCM RCP Plcontrol (years)
Droughts CLM4.5 HadGEM?2-ES 2.6,6.0,8.5 239
Droughts CLM4.5 IPSL-CM5A-LR 2.6,6.0,8.5 239
Droughts CLM4.5 MIROCS5 2.6,6.0,8.5 239
Droughts HO8 GFDL-ESM2M  2.6,6.0,8.5 439
Droughts HO8 HadGEM2-ES 2.6,6.0,8.5 639
Droughts HO8 IPSL-CMS5A-LR 2.6,6.0,8.5 639
Droughts HOS8 MIROCS5 2.6,6.0,8.5 639
Droughts LPJmL GFDL-ESM2M  2.6,6.0,8.5 439
Droughts LPJmL HadGEM2-ES 2.6,6.0,8.5 639
Droughts LPJmL IPSL-CM5A-LR 2.6,6.0,8.5 639
Droughts LPImL MIROC5 2.6,6.0,8.5 639
Droughts JULES-W1 GFDL-ESM2M  2.6,6.0,8.5 439
Droughts JULES-W1 HadGEM2-ES 2.6,6.0,8.5 639
Droughts JULES-W1 IPSL-CM5A-LR 2.6,6.0,8.5 639
Droughts JULES-W1 MIROCS5 2.6,6.0,8.5 639
Droughts MPI-HM GFDL-ESM2M  2.6,6.0 439
Droughts MPI-HM IPSL-CM5A-LR 2.6, 6.0 639
Droughts MPI-HM MIROC5 2.6,6.0 639
Droughts ORCHIDEE GFDL-ESM2M  2.6,6.0,8.5 439
Droughts ORCHIDEE HadGEM2-ES 2.6,6.0,8.5 439
Droughts ORCHIDEE IPSL-CMS5A-LR 2.6,6.0,8.5 639
Droughts ORCHIDEE MIROCS 2.6,6.0,8.5 439
Droughts PCR-GLOBWB GFDL-ESM2M 2.6, 6.0 439
Droughts PCR-GLOBWB HadGEM2-ES 2.6,6.0 639
Droughts PCR-GLOBWB IPSL-CMS5A-LR 2.6,6.0 639
Droughts PCR-GLOBWB MIROCS 2.6, 6.0 639
Droughts WaterGAP2 GFDL-ESM2M 2.6,6.0,8.5 439
Droughts WaterGAP2 HadGEM2-ES 2.6,6.0,8.5 639
Droughts WaterGAP2 IPSL-CM5A-LR 2.6,6.0,8.5 639
Droughts WaterGAP2 MIROC5 2.6,6.0,8.5 639
River floods CLM4.5 GFDL-ESM2M  2.6,6.0,8.5 439
River floods CLM4.5 HadGEM?2-ES 2.6,6.0,8.5 439
River floods CLM4.5 IPSL-CM5A-LR 2.6,6.0,8.5 439
River floods CLM4.5 MIROCS5 2.6,6.0,8.5 439
River floods HOS8 GFDL-ESM2M 2.6, 6.0,8.5 439
River floods HO8 HadGEM2-ES 2.6,6.0,8.5 639
River floods HO8 IPSL-CM5A-LR 2.6,6.0,8.5 639
River floods HO8 MIROCS 2.6,6.0,8.5 639
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Table 2 continued from previous page

Extreme M GCM RCP Plcontrol (years)
River floods LPImL GFDL-ESM2M 2.6,6.0,8.5 439
River floods LPImL HadGEM?2-ES 2.6,6.0,8.5 639
River floods LPJmL IPSL-CM5A-LR 2.6,6.0,8.5 639
River floods LPJmL MIROC5 2.6,6.0,8.5 639
River floods JULES-W1 GFDL-ESM2M  2.6,6.0,8.5 439
River floods JULES-W1 HadGEM?2-ES 2.6,6.0,8.5 439
River floods JULES-W1 IPSL-CM5A-LR 2.6,6.0,8.5 639
River floods JULES-W1 MIROCS5 2.6,6.0,8.5 439
River floods MPI-HM GFDL-ESM2M 2.6, 6.0 439
River floods MPI-HM IPSL-CM5A-LR 2.6, 6.0 639
River floods MPI-HM MIROC5 2.6,6.0 639
River floods ORCHIDEE GFDL-ESM2M  2.6,6.0,8.5 439
River floods ORCHIDEE HadGEM2-ES 2.6,6.0,8.5 439
River floods ORCHIDEE IPSL-CM5A-LR 2.6,6.0,8.5 639
River floods ORCHIDEE MIROCS5 2.6,6.0,8.5 439
River floods PCR-GLOBWB GFDL-ESM2M 2.6, 6.0 439
River floods PCR-GLOBWB HadGEM?2-ES 2.6,6.0 639
River floods PCR-GLOBWB IPSL-CM5A-LR 2.6, 6.0 639
River floods PCR-GLOBWB MIROCS5 2.6,6.0 639
River floods WaterGAP2 GFDL-ESM2M  2.6,6.0,8.5 439
River floods WaterGAP2 HadGEM?2-ES 2.6,6.0,8.5 639
River floods WaterGAP2 IPSL-CMS5A-LR 2.6,6.0,8.5 639
River floods WaterGAP2 MIROCS5 2.6,6.0,8.5 639
Heatwaves HWMId-humidex GFDL-ESM2M 2.6, 6.0, 8.5 439
Heatwaves HWMId-humidex HadGEM?2-ES 2.6,6.0,8.5 639
Heatwaves HWMId-humidex IPSL-CM5A-LR 2.6,6.0,8.5 639
Heatwaves HWMId-humidex MIROCS5 2.6,6.0,8.5 639
Tropical cyclones KE-TG-meanfield GFDL-ESM2M 2.6, 6.0, 8.5 439
Tropical cyclones KE-TG-meanfield HadGEM2-ES 2.6,6.0,8.5 439
Tropical cyclones KE-TG-meanfield IPSL-CM5SA-LR 2.6,6.0,8.5 639
Tropical cyclones KE-TG-meanfield MIROCS 2.6,6.0,8.5 639
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