ASCEND

www.ascend.events

Lunar ³He: Mining Concepts, Extraction Research, and Potential ISRU Synergies

Aaron D.S. Olson, Ph.D.

Electrostatics & Surface Physics Lab - Swamp Works

NASA Kennedy Space Center

This material is a work of the U.S. Government and is not subject to copyright protection in the United States <u>Published by the Amer</u>ican Institute of Aeronautics and Astronautics, Inc., with permission.

³He Could be a Significant Future Fusion Fuel

Deuterium-Helium-3

 $D + {}^{3}\text{He} \rightarrow p (14.68 \text{ MeV}) + {}^{4}\text{He} (3.67 \text{ MeV})$

There has been substantial progress toward ³He fueled reactors

LIVE Las Vegas 15–17 Nov. 202

ASCEND

ONLINE EVERY WHERE 8-10 + 15-17 Nov. 2021

The Moon Could Enable over 700 years of ³He Energy

Solar Wind 96% H⁺ 4% He⁺⁺ 0.002% ³He⁺⁺

ASCEND

Total ³He to hit the Moon is about 500 million tonnes over 4.5 billion years One million tonnes in the top 3 meters

L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* **10**, 167 (1986).

Las Vegas 15–17 Nov. 20 ONLINE EVERYWHERE 8-10 + 15-17 Nov. 20

Lunar ³He Miner Designs - Based on Recuperative Heating

ASCEND

LIVE Las Vegas 15–17 Nov. 2021

EVERYWHERE 8–10 + 15–17 Nov. 2021

Spiral Lunar ³He Miner Concept

- Mobile miner on a support arm or tether
- Centralized volatiles processing
- Spiral mining path

ASCEND

Complexities of the support arm

LIVE

15-17 Nov. 2021

Las Vegas

SA: Mobile Miner support arm

LIVE Washington, DC 15 Nov. 2021

ONLINE

EVERYWHERE

8-10 + 15-17 Nov. 2021

In-Situ Extraction & Capture Lunar ³He Miner Concepts

- Impermeable Membrane and diffusion through depth of regolith
- Mobile or "stationary" enclosure approaches

Credit: Y.T. Li et al., 1988

Credit: L.J. Wittenberg, 1993

ASCEND

LIVE Las Vegas 15–17 Nov. 2021 ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

Helium Extraction Experimental Approach

The Solar Wind Implanter (SWIM) Concept

LIVE

Washington, DC 15 Nov. 2021

JSC-1A

Las Vegas

ASCEND

 Implant helium into falling <100 µm JSC-1A lunar simulant

- Replicate solar wind implantation energy at
 - ~1 keV/amu with the use of parallel electrode grids
- Use ⁴He instead of ³He due to cost and availability
 - ⁴He diffuses out of regolith like ³He

SWIM Design: Acceleration Grid Assembly

The SWIM Grids Produce a Uniform Electrostatic Potential

SWIM Design : Principal Components

LIVE

Washington, DC

15 Nov. 2021

Power supplies

- -20 kV, 15 mA high voltage
- -500 V, 5 A filament bias
- 30 V, 5 A filament heating

ASCEND

LIVE

EVERYWHERE

8-10 + 15-17 Nov. 2021

Las Vegas

15-17 Nov. 2021

SWIM Cathode Voltage: 2.5 kV (0.63 keV/amu) Chamber Pressure: 15 mTorr

Anode grid Cathode grid 500

HEAT was Designed to Test Agitation and Thermal Extraction

ASCEND

LIVE Las Vegas 15–17 Nov. 2021 ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

Simulant Flows Around Copper & Steel Tubes in HEAT

ASCEND

LIVE Las Vegas 15–17 Nov. 2021 ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

Filling and Discharging the HEAT HPHX - 16x Speed

Flow into HPHX

Flow out of HPHX

ASCEND

LIVE Las Vegas 15–17 Nov. 2021 ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

Sample Concentration Analyzer (SCAN) Components

ASCEND

LIVE Las Vegas 15–17 Nov. 2021

ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

⁴He Release from an Implanted Simulant Sample

LIVE

Washington, DC

15 Nov. 2021

LIVE Las Vegas

15-17 Nov. 2021

EVERYWHERE

8-10 + 15-17 Nov. 2021

ASCEND

⁴He Release from SWIM Implanted Simulant & Lunar Regolith

Flow Induced Agitation Reduces Retained ⁴He in Simulant

Sample(s)	Retained ⁴ He Concentration (ppb)
After SWIM Implantation	2.4
HEAT – 1.5 g/s flow rate	0.7
HEAT – 9 g/s flow rate	0.1

Experimental Limitations

- < 1 keV/amu average helium implantation energy likely resulted in shallower ion implantation compared to lunar soil
- Samples were only heated to 600 °C potentially up to 25% of the implanted ⁴He remained, i.e., 100% released at 1000 °C for Apollo samples

ASCEND^T LIVE Las Vegas 15–17 Nov. 20 ONLINE EVERYWHERE 8-10 + 15-17 Nov. 2

Potential In-Situ Resource Utilization Synergies

- Utility scale ³He mining produces tonnes of valuable by product volatiles
- Artemis NASA and its partners are going to the Moon to stay
- 400+ tonnes to be excavated to refuel a lander needing 10 tonnes of O₂ (from 15 tonnes of ISRU derived water)
 - Up to 6 g of ³He could be released and collected

ASCEND

 Passive agitation release of ³He in ISRU and construction activities could be leveraged to demonstrate feasibility of ³He lunar processing

Washington, DC

Thank You

ASCEND #ascendspace In G Y

LIVE Las Vegas 15–17 Nov. 2021 ONLINE EVERYWHERE 8–10 + 15–17 Nov. 2021

ASCEND"

LIVE Washington, DC 15 Nov. 2021

www.ascend.events

