2 3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe

D. LARIO,¹ I. G. RICHARDSON,^{2,1} E. PALMERIO,^{3,4} N. LUGAZ,⁵ S. D. BALE,^{6,3,7,8} M. L. STEVENS,⁹ C. M. S. COHEN,¹⁰ J. GIACALONE,¹¹ D. G. MITCHELL,¹² A. SZABO,¹ T. NIEVES-CHINCHILLA,¹ L. B. WILSON III,¹ E. R. CHRISTIAN,¹ M. E. HILL,¹² D.J. MCCOMAS,¹³ R. L. MCNUTT JR.,¹² N. A. SCHWADRON,^{13,5} AND M. E. WIEDENBECK¹⁴ ¹Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ²Department of Astronomy, University of Maryland, College Park, MD 20742, USA ³Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA ⁴CPAESS, University Corporation for Atmospheric Research, Boulder, CO 80301, USA ⁵Institute for the Study of Earth, Oceans, and Space, Department of Physics, University of New Hampshire, Durham, NH 03824, USA ⁶Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA ⁷ The Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK ⁸School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK ⁹Center for Astrophysics—Harvard & Smithsonian, Cambridge, MA 02138, USA ¹⁰California Institute of Technology, Pasadena, CA 91125, USA ¹¹Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA ¹² The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA ¹³Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA ¹⁴ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA (Received; Revised; Accepted) Submitted to ApJ ABSTRACT We analyze two specific features of the intense solar energetic particle (SEP) event observed by Parker Solar Probe (PSP) between 2020 November 29 and 2020 December 2. The interplanetary counterpart of the coronal mass ejection (CME) on 2020 November 29 that generated the SEP event (hereafter ICME-2) arrived at PSP (located at 0.8 au from the Sun) on 2020 December 1. ICME-2 was preceded by the passage of an interplanetary shock at 18:35 UT on 2020 November 30 (hereafter S2), that in turn was preceded by another ICME (i.e., ICME-1) observed in situ on 2020 November 30. The two interesting features of this SEP event at PSP are: First, the presence of the intervening ICME-1 affected the evolution of the ≤ 8 MeV proton intensity time profiles resulting in the observation of inverted energy spectra throughout the passage of ICME-1. Second, the sheath region preceding ICME-2 was characterized by weak magnetic fields compared to those measured immediately after the passage of the shock S2 and during the passage of ICME-2. Comparison with prior SEP events measured at 1 au but with similar characteristics indicates that (1) low-energy particles accelerated by S2 were excluded from propagating throughout ICME-1, and (2) the low magnetic fields measured in the sheath of ICME-2 resulted from the properties of the upstream solar wind encountered by ICME-2 that was propagated into the sheath; whereas the high energetic particle energy density in the sheath did not play a dominant role in the formation of these low magnetic fields.

1. INTRODUCTION

Large solar energetic particle (SEP) events are typically associated with shock waves driven away from the Sun by coronal mass ejections (CMEs) (e.g., Kahler et al. 1984). As a CME propagates and expands in interplanetary (IP) space, the ambient solar wind plasma piles up in front of the CME, forming a sheath-like region (e.g., Siscoe & Odstrcil

2008). Fast CMEs, whose speed relative to the solar wind exceeds the magnetosonic speed, generate fast forward shocks 42 ahead of them, compressing the upstream solar wind (Hundhausen 1972). The interplanetary manifestation of a CME, 43 also known as an interplanetary coronal mass ejection (ICME), generally includes a magnetically dominated plasma 44 region, known as the "magnetic ejecta" (ME), that is usually preceded by a dense sheath and occasionally by a fast 45 forward shock at the leading edge (e.g., Lugaz et al. 2018). An ICME whose leading edge propagates faster than the 46 preceding solar wind, but not fast enough to drive a shock, deflects and compresses the upstream plasma flow, forming 47 a disturbed sheath-like region with a fast magnetosonic wave at the leading edge that may not have steepened into a 48 fully-developed shock (e.g., Liu et al. 2006; Kilpua et al. 2017). Sheath regions are typically characterized by increased 49 solar wind density and temperature together with an enhanced magnetic field that fluctuates in intensity and direction, 50 whereas the ME is typically characterized by in-situ signatures that differ from those in the ambient solar wind such 51 as a smoothly rotating field, low plasma β (defined as the ratio of the plasma pressure to the magnetic pressure), 52 low solar wind proton temperature, presence of bidirectional suprathermal electrons, enhanced ion abundances with 53 elevated charge states, and a linearly decreasing speed profile, indicative of expansion (e.g., Zurbuchen & Richardson 54 2006, and references therein). Not all ICME signatures appear in every single ICME, and when they appear they are 55 not often synchronized (Neugebauer & Goldstein 1997; Richardson & Cane 2010a), presumably because they arise 56 from different physical processes occurring near the Sun or during propagation of the ICME (Zurbuchen & Richardson 57 2006). In this paper, we will use the term ICME to identify the ME, while the sheath region ahead of the ME and 58 the IP shock will be treated as separate entities, noting however, that some recent authors consider "ICME" to refer 59 to the shock, sheath and ME together (e.g., Salman et al. 2020; Temmer et al. 2021). 60

Strong IP shocks ahead of fast ICMEs may be efficient accelerators of low-energy (≤ 20 MeV) ions when arriving 61 at 1 au (e.g., Bavassano-Cattaneo et al. 1986; Giacalone 2015, and references therein). Energetic particle intensity 62 enhancements associated with the passage of IP shocks have been historically referred to as "energetic storm particle" 63 (ESP) events because of their frequent association with geomagnetic storms (Bryant et al. 1962). ESP events show a 64 wide variety of energy spectra and intensity-time profiles (e.g., van Nes et al. 1984; Lario et al. 2003). A particular type 65 of particle enhancement, showing an intensity that exponentially increases ahead of the shock, maximizes at the time 66 of the shock passage and remains approximately constant downstream of the shock, is consistent with the predictions 67 of the diffusive shock-acceleration (DSA) theory developed by Lee (1983) (see also Gordon et al. 1999). However, 68 agreement between theoretical predictions and observations is rarely found (Kennel et al. 1986; Lario et al. 2005; Desai 69 et al. 2012), although there is better agreement when considering only strong shocks (Giacalone 2012). In the case 70 of fast ICMEs, the sheath formed between the shock and the leading edge of the ICME may include structures such 71 as planar and rotational discontinuities, mini-flux ropes, and magnetic islands (e.g., Kataoka et al. 2005; Palmerio 72 et al. 2016; Shaikh et al. 2018; Moissard et al. 2019) that have been suggested to play significant roles in particle 73 acceleration (e.g., Zhao et al. 2018) and transport (e.g., Sanderson et al. 2000). In intense ESP events, enhanced 74 energetic particle intensities may have an effect on the plasma and magnetic field observed upstream of the IP shock 75 (Lario & Decker 2002; Russell et al. 2013; Lario et al. 2015a,b), similar to the foreshock diamagnetic cavities found 76 upstream of the Earth's bow shock (Sibeck et al. 2001). The formation of these cavities is attributed to the effect of 77 ions reflected from the bow shock that, via beam instabilities, generate waves that scatter and isotropize the reflected 78 ion beams, producing an increase in the thermal pressure that creates an overpressure compared to surrounding regions 79 not connected to the bow shock. Subsequent filling by shock-accelerated particles provides the additional pressure to 80 expand these cavities and hence decrease the density and magnetic field strength (see Sibeck et al. 2002, and references 81 therein). 82

After the passage of the shock and the sheath region, the entry of the spacecraft into the ICME is usually accompanied 83 by a depression of the energetic particle intensities with respect to the intensities measured at the time of the IP shock 84 passage and throughout the sheath region (e.g., Sanderson et al. 1990; Kahler & Reames 1991; Cane et al. 1993; 85 Richardson & Cane 2011). This suggests that, under the assumption that ICMEs are isolated magnetic structures, 86 the access of shock-accelerated particles into the ICME is limited. Energetic particles can penetrate into the ICME 87 primarily through cross-field diffusion and/or drift processes (Cane et al. 1995). The larger Larmor radius and speed 88 of high-energy particles leads to a more efficient penetration of these particles within the ICME than the lower energy 89 particles that are more easily excluded from the ICME (Laitinen & Dalla 2021). The decrease of particle intensity is 90 determined then by the size, geometry and gradient scale lengths of the region in which the field lines in the ICME 91 are isolated from the external regions as well as the scattering conditions undergone by the particles around the ICME 92 (Laitinen & Dalla 2021). 93

In this paper, we analyze two peculiarities observed by Parker Solar Probe (PSP; Fox et al. 2016) during the first widespread solar energetic particle (SEP) event of solar cycle 25 (Kollhoff et al. 2021). This SEP event originated when a fast CME, associated with a M4.4 class X-ray flare with onset at 12:34 UT on 2020 November 29 (day of year 334) from NOAA active region (AR) 12790 at S23E99 occurred (Chitta et al. 2021). According to the CME catalog of the Coordinated Data Analyses Web (CDAW; Yashiro et al. 2004)¹ based on images from the Large Angle and Spectrometric Coronagraph (LASCO; Brueckner et al. 1995) on board the Solar and Heliospheric Observatory (SOHO; Domingo et al. 1995), this CME propagated with a plane-of-sky speed of 2077 km s⁻¹ (measured at the position angle PA=94°, where PA is measured counter-clockwise from solar north). At that time, PSP was located at 0.80 au from the Sun and 96° eastward of Earth in longitude. Therefore the flare and CME originated from a region very close to the central meridian seen from PSP. As expected, the interplanetary counterpart of this CME (henceforth ICME-2) arrived at PSP on 2020 December 1 (day of year 336), preceded by the passage of an IP shock at 18:35 UT on 2020 November 30 (henceforth S2). An overview of the energetic particle observations by the Integrated Science Investigation of the Sun (IS \odot IS; McComas et al. 2016) onboard PSP has been presented by Cohen et al. (2021), whereas detailed observations of the SEP event by the multiple spacecraft distributed at heliocentric distances $\lesssim 1$ au have been described by Kollhoff et al. (2021).

The two peculiarities of this SEP event analyzed here are [1] the impact on the SEP event of the passage by PSP of 109 an ICME (henceforth ICME-1) that preceded shock S2, and [2] the sheath region of ICME-2 that was characterized by 110 a low magnetic field magnitude compared to the fields measured immediately after the passage of S2 and during the 111 passage of ICME-2. We compare the properties of this SEP event at PSP with prior events with similar characteristics 112 observed at 1 au and, in the light of these earlier events, discuss both the effects of ICME-1 on the development 113 of the SEP event observed by PSP, and whether the weak magnetic fields in the sheath region of ICME-2 could be 114 accounted for by a high energetic particle energy density. Section 2 describes the observations of the 2020 November 115 29 SEP event by PSP. The evolution of the particle intensities in similar SEP events preceded by intervening ICMEs 116 is described in Section 3, paying special attention to the well-studied SEP event that occurred on 2000 July 14 (often 117 known as the "Bastille Day" event) that had a number of similarities with the 2020 November 29 event at PSP. In 118 Section 4, we compare SEP events associated with IP shocks with downstream magnetic field profiles similar to that 119 in the ICME-2 sheath and discuss the possible effect of the energy density of shock-accelerated particles on the sheath 120 magnetic fields. In Section 5 we discuss the main results of the comparative analyses and Section 6 summarizes the 121 main conclusions of this work. 122

2. PSP OBSERVATIONS

We use in-situ measurements of plasma, magnetic field, and energetic particles at PSP collected by the Solar Wind 124 Electrons Alphas and Protons (SWEAP) experiment (Kasper et al. 2016), the fluxgate magnetometers of the FIELDS 125 suite of instruments (Bale et al. 2016), and the energetic particle instruments of the Integrated Science Investigation 126 of the Sun (IS_OIS: McComas et al. 2016). In particular, we use data from the Solar Probe Cup (SPC) of SWEAP. 127 which measures the solar wind proton temperature, density, and velocity (Case et al. 2020). IS \odot IS consists of a 128 suite of two energetic particle instruments: (1) EPI-Lo, which measures particles using the time-of-flight (ToF) versus 129 energy technique and determines the composition, spectra, and anisotropies of particles with energies from ~ 20 keV 130 nucleon⁻¹ to several MeV nucleon⁻¹ (Hill et al. 2017), and (2) EPI-Hi, which uses the dE/dx versus residual energy 131 technique to measure particles over the energy range of $\sim 1-200$ MeV nucleon⁻¹ (Wiedenbeck et al. 2017). The EPI-Hi 132 telescopes employ a system of dynamic thresholds designed to measure elevated particle intensities (McComas et al. 133 2016). During the SEP event on 2020 November 29, intensities were high enough to trigger the pre-established intensity 134 thresholds at different energies. The EPI-Hi particle intensities displayed in this paper have been corrected for changes 135 in the geometric factors that resulted from the varying energy thresholds of the instrument during this period (see 136 details in Cohen et al. 2021). 137

Figure 1 shows, from top to bottom, (a) proton intensities measured by the triple coincidence data system (ChanR) of EPI-Lo (Hill et al. 2017) averaged over all the apertures of the instrument (except for the apertures 3 and 10 blocked by EPI-Hi, 11 and 12 due to partial effects of the EPI-Hi blockage, 31 noisy due to dust penetration, and 51 and 52 due to noisy counts), and the average of the intensities obtained from the sides A and B of the double-ended High-Energy Telescope (HET; Wiedenbeck et al. 2017) of EPI-Hi; (b) the average of the electron count rates measured in the wedges

94

95

96

97

98

99

100

101

102

103

104

105

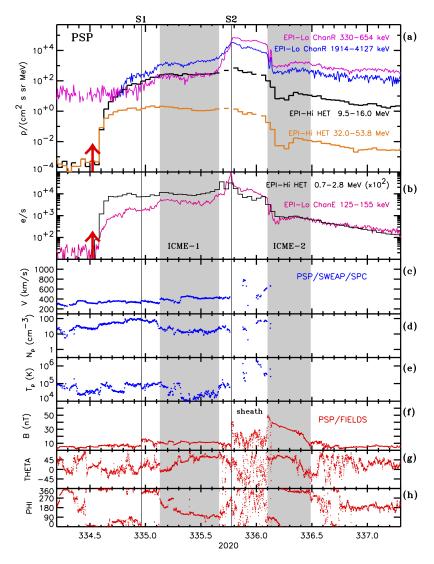
106

107

108

 $^{^1}$ cdaw.gsfc.nasa.gov/CME_list/

LARIO ET AL.


¹⁴³ 3 and 7 of EPI-Lo (red trace) and in sides A and B of HET (black trace); solar wind proton (c) speed, (d) density, ¹⁴⁴ and (e) temperature as obtained from SPC measurements; and magnetic field (f) magnitude, (g) elevation angle, and ¹⁴⁵ (h) azimuth angle in the spacecraft-centered Radial–Tangential–Normal (RTN) coordinate system as measured by ¹⁴⁶ FIELDS.

During the time interval covered in Figure 1, PSP was slewed such that the SPC instrument was pointed 45° off of the 147 Sun-spacecraft line. The spacecraft also executed 180° conical rolls about the Sun-spacecraft line at varying intervals 148 2-3 times per day. With this orientation, the solar wind was outside of the 30° nominal (Sun-pointed) SPC field of view. 149 The nominal field of view for SPC is defined as the cone for which flux may be detected simultaneously upon all four 150 quadrants of the sensor (Case et al. 2020), enabling determination of the vector flow direction and the geometric factor 151 required for calculation of the absolute proton density. While at least two of the four SPC sensor plates measured zero 152 flux, a significant proton signal was often measured at the other two plates during part of 2020 November 29 and 30. 153 In order to estimate the solar wind speed, temperature, and density, the SPC charge flux distributions from the plates 154 with signals were grouped into five-minute segments and fit using the SPC Maxwellian response function under the ad 155 hoc constraint that the flow was purely parallel to the RTN radial direction. This constraint and the resulting solar 156 wind speed estimates (Figure 1c) were corroborated to within $\pm 50 \text{ km s}^{-1}$ by observing the apparent change in speed, 157 in the spacecraft frame, across each conical roll maneuver. The proton density estimate (Figure 1d) was compared 158 with observations from the FIELDS Radio Frequency Spectrometer (RFS) Low Frequency Receiver (Moncuguet et al. 159 2020), which resolved density-sensitive electron plasma frequency oscillations for an extended period on 2020 November 160 29–December 1, showing a good corroboration of the peak density within $\sim 10\%$. Finally, the temperature estimates 161 shown in Figure 1e are derived from the Z_{SC} diagonal component of the proton pressure tensor only, where Z_{SC} is 162 the spacecraft axis perpendicular to the heat shield of the spacecraft that coincides with the symmetry axis of the 163 SPC field of view and that nominally points toward the Sun except during specific spacecraft maneuvers (Guo et al. 164 2021) such as those performed during the period under analysis. This quantity is equal to the scalar temperature, i.e. 165 $T_p = T_{Z,SC}$ when the proton phase space distribution is isotropic. The assumption that $T_p \approx T_{Z,SC}$ is typically good to within ~25-50% in the solar wind. Finally, we note that the SPC measurements under this unusual circumstance 166 167 are frequently noise-limited. This means that the probability of detecting and measuring the solar wind proton peak 168 is not consistent, but correlated with the proton density (peak magnitude) and anticorrelated with the temperature 169 (peak width). The subset of measurements that have been successfully reconstructed here may thus be assumed to be 170 colder and denser, on average, than a complete solar wind sample would be. 171

The red arrows in Figure 1 indicate the occurrence of the M4.4 flare temporally associated with the origin of the 172 SEP event. The solid vertical lines S1 and S2 in Figure 1 indicate the passage of possible IP shocks at 23:07 UT on 173 day 334 and at 18:35 UT on day 335, respectively. The identification of the shock passages is based exclusively on the 174 observation of discontinuous increases in the magnetic field magnitude. The lack of accurate plasma measurements does 175 not allow a precise determination of whether these magnetic field increases correspond to actual shock passages. The 176 gray vertical bars indicate the passage of two ICMEs (ICME-1 from 03:07 UT to 15:56 UT on day 335, and ICME-177 2 from 02:24 UT to 11:45 UT on day 336) as identified by smooth magnetic field evolution with hints of coherent 178 field rotation (Nieves-Chinchilla et al. 2021). Similarly to the IP shock identification, the lack of appropriate plasma 179 measurements does not allow a more complete assessment of the signatures usually observed during the passage of 180 ICMEs (e.g., Zurbuchen & Richardson 2006), although a depression of the solar wind proton temperature seems to be 181 observed during the passage of ICME-1 (Figure 1e). 182

The most likely solar origin of ICME-1 is a CME observed by LASCO/C2 at 21:12 UT on day 331 from AR 12787 183 at N32E89 with a plane-of-sky speed 572 km s⁻¹ as reported in the CDAW CME catalog. Extreme ultraviolet (EUV) 184 images from the Extreme Ultraviolet Imager (EUVI; Wuelser et al. 2004) on board STEREO-A detected an EUV wave 185 with onset at $\sim 20:30$ UT on day 331 most likely associated with the origin of the CME. The average transit speed of 186 the ICME-1 leading edge to travel from the Sun to PSP is about ~ 426 km s⁻¹, whereas that of the preceding shock 187 (indicated by S1 in Figure 1) is \sim 449 km s⁻¹. In comparison, considering the onset of the M4.4 flare as origin of the 188 ICME-2 on the Sun, we infer an average transit speed for the shock S2 to travel from the Sun to PSP of \sim 1114 km 189 s^{-1} and for the leading edge of ICME-2 of ~883 km s⁻¹. Possible interactions between ICME-1 and ICME-2 during 190 their transit from the Sun to PSP are analyzed by Nieves-Chinchilla et al. (2021) and Palmerio et al. (2021). 191

The onset of the SEP event at PSP occurred shortly after the occurrence of the M4.4 flare indicated by red arrows in Figures 1a and 1b. We note that the passage of shock S1 was not associated with a significant change in the low-energy $(\leq 20 \text{ MeV})$ proton intensity time profiles that were still increasing. A few minutes prior to the entry of the spacecraft

Figure 1. From top to bottom: (a) 10-min averages of the proton intensities observed by the triple coincidence system (ChanR) of EPI-Lo (two top traces) and averages of the hourly proton intensities measured by the sides A and B of EPI-Hi HET (black and orange traces); (b) 10-min averages of the electron counting rates observed by the wedges 3 and 7 of EPI-Lo (red line) and average of the hourly electron rates measured by the sides A and B of EPI-Hi/HET (red trace); proton solar wind (c) speed, (d) density, and (e) temperature recovered from SWEAP/SPC measurements; and magnetic field (f) magnitude, (g) elevation angle, and (h) azimuth angle in RTN coordinates as measured by FIELDS. The solid vertical lines identify the possible passages of shocks. The gray shaded bands identify the passage of ICME-1 and ICME-2. The red arrows in (a) and (b) indicate the onset of the M4.4 solar flare temporally associated with the origin of the SEP event. Data gaps in the EPI-Hi/HET curves in (a) and (b) correspond to intervals when EPI-Hi/HET changed between different thresholds.

into ICME-1, proton intensities at energies between ~ 221 keV and ~ 20 MeV increased, whereas proton intensities at higher energies remained constant or slightly decreased throughout the passage of ICME-1. The electron intensities also increased upon the entry of PSP into ICME-1, with the enhancement being more prominent at lower energies, followed by a slight decline extending into the trailing half of ICME-1.

195

196

197

198

199

200

201

202

203

2.1. Inverted particle energy spectra throughout the passage of ICME-1

A peculiarity of the low-energy proton intensities observed throughout the passage of ICME-1 is the profound change in the proton energy spectrum between ~ 220 keV and ~ 8 MeV during the passage of ICME-1 compared with the upstream spectrum. The two top panels of Figure 2 show proton intensities obtained from the EPI-Lo triple coincidence (ChanR) measurements in different energy channels from 94 keV to 7.67 MeV. For clarity purposes we show energy

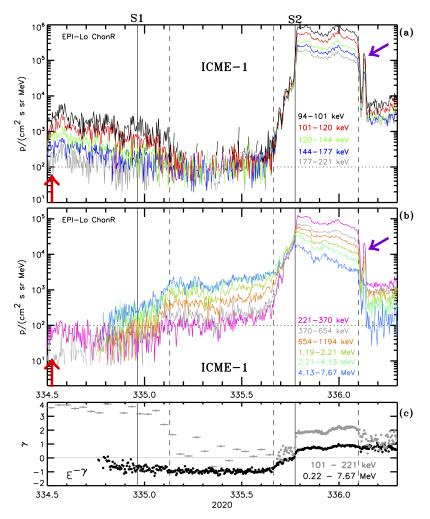


Figure 2. From top to bottom: 5-min averages of the proton intensities observed at energies from (a) 94 keV to 221 keV and (b) 221 keV to 7.67 MeV by the triple coincidence system (ChanR) of EPI-Lo; (c) spectral index γ assuming that the differential flux intensities follow a power law $\propto E^{-\gamma}$ for energies 101-221 keV (gray symbols) and 221-7675 keV (black symbols).

channels below and above 221 keV in Figures 2a and 2b, respectively. Prior to the occurrence of the M4.4 solar flare associated with the SEP event, ≤ 300 keV proton intensities were already elevated (as well as the ≤ 20 MeV proton intensities measured by the LET telescope of EPI-Hi; not shown here) due to previous events. Proton intensities at energies ≤ 221 keV showed a decrease upon the entry of PSP into ICME-1. In fact, only sporadic individual ChanR counts at energies ≤ 221 keV were measured throughout the ICME-1 passage. In contrast, as already mentioned, higher energy proton intensities increased at the entry into ICME-1 and remained constant or slightly increased throughout ICME-1. The horizontal dotted line in Figures 2a and 2b indicates the intensity value 10^2 protons (cm² s sr MeV)⁻¹, showing that throughout ICME-1, the higher the energy of the particles, the higher the measured intensity, resulting in an "inverted" spectrum at energies between 221 keV and 7.67 MeV.

Figure 2c shows the spectral index γ obtained by assuming that the energy spectra follow a power law $\propto E^{-\gamma}$ over the energy ranges 101–221 keV (gray symbols) and 221–7675 keV (black symbols). In order to fit the energy spectra, we have assumed an energy for each channel in the specified energy range given by the geometric mean energy of the channel and used hourly averages of ≤ 221 keV proton intensities prior to the trailing edge of ICME-1 and 5-minute intensity averages for the rest of the period as well as for energies ≥ 221 keV. Thus, an unusual feature of this SEP event is the inverted energy spectra (i.e. $\gamma < 0$) observed over the energy range 221 keV–7.67 MeV for a period of more than ~21 hours, from the onset of the event up to the passage of the trailing edge of ICME-1. In order to determine the conditions that led to the observation of this inverted spectrum, in Section 3 we analyze similar events associated with the passage of IP shocks with the presence of a preceding ICME.

The exit of PSP from ICME-1 was marked by an increase in ≤ 8 MeV proton intensities in such a way that intensities 222 at different energies were similar, leading to a relatively flat spectrum ($\gamma \sim 0$). Unfortunately, changes in the energy 223 threshold mode used by EPI-Hi occurring close to shock passage (Cohen et al. 2021) resulted in data gaps that do not 224 allow us to see the complete evolution of the high-energy proton intensities before the arrival of S2 (cf. Figure 1a). 225 The low-energy (≤ 8 MeV) proton intensities peaked with the arrival of the shock S2, which was followed by a period 226 of elevated intensities throughout the sheath region of ICME-2. Detailed analyses of the particle and magnetic field 227 observations in the vicinity of shock S2 are presented in Giacalone et al. (2021). The entry of PSP into ICME-2 228 was accompanied by a drastic depletion of particle intensities at all energies as is usually observed upon the entry of 229 spacecraft into ICMEs (e.g., Cane & Lario 2006). Interestingly, the low intensities within ICME-2 were interrupted 230 by a 30-minute interval with enhanced particle intensities (clearly seen at the higher-time resolution of EPI-Lo data 231 as indicated by the purple arrow in Figures 2a and 2b). This short-lived particle increase coincided with a depression 232 in the magnetic field intensity (evident from close inspection of Figure 1f), suggesting that either PSP briefly exited 233 ICME-2 or that magnetic reconnection occurred at the leading edge of ICME-2 resulting in open field lines, and thus 234 the observation of particles with a similar energy spectrum as that observed throughout the sheath region. 235

2.2. Pressure exerted by energetic protons during the SEP event

236

Another feature of this event at PSP was the relatively low magnetic field magnitude observed in the sheath region of 237 ICME-2 as compared with the field intensity measured immediately after the passage of the shock S2 and throughout 238 the passage of ICME-2 (Figure 1f). Elevated particle intensities, with a well-ordered energy spectrum, were observed 239 throughout this sheath region (Figure 2). Previous studies have shown that enhanced pressures associated with 240 suprathermal ions can create "crater-like" diamagnetic cavities of depressed magnetic field strengths in the Earth's 241 foreshock region (e.g., Sibeck et al. 2001, 2002). In addition, depressed magnetic field regions where the pressure 242 exerted by energetic particles exceeds both the magnetic field pressure $P_{\rm B}$ and thermal solar wind pressure $P_{\rm TH}$ are 243 occasionally observed upstream of IP shocks during intense ESP events (e.g., Lario & Decker 2002; Russell et al. 244 2013; Lario et al. 2015a). So it is reasonable to ask whether the low magnetic fields in the sheath of ICME-2 may be 245 associated with high energetic particle pressure in the sheath. 246

Figure 3c shows the evolution of P_B (red symbols), P_{TH} (blue symbols), and P_{EP} (beige, black, purple and green 247 traces) during the SEP event. The magnetic field pressure has been computed as $P_B = B^2/2\mu_0$ (where B is the magnetic 248 field intensity shown in Figure 1f and μ_0 is the magnetic permeability). The solar wind thermal pressure is usually 249 computed as $P_{TH} = N_p \kappa T_p + N_e \kappa T_e$ where κ is the Boltzmann constant, N_p and T_p are the solar wind proton density 250 and temperature, and N_e and T_e the solar wind electron density and temperature. Owing to the limited plasma data 251 during this period, in addition to neglecting the contribution of heavy ions, we assume charge neutrality $N_p = N_e$ and 252 $T_e=2T_p$ based on statistical surveys of proton and electron temperatures in post-shock plasmas (e.g., Gosling et al. 253 1987; Wilson et al. 2019a,b, 2020). 254

The pressure P_{EP} exerted by energetic particles has been computed as $P_{EP} = (4\pi/3)(2m)^{1/2} \int_{E_1}^{E_2} E^{1/2} j(E) dE$, where 255 E is the proton kinetic energy, j(E) is the proton differential flux, m is the proton mass, and E_1 and E_2 are the limits 256 of the energy range over which P_{EP} is computed. Strictly speaking, the expression used to estimate P_{EP} assumes 257 isotropic particle distributions and should be evaluated in the plasma frame (e.g., Roelof et al. 2010). Energetic 258 particle anisotropies observed downstream of shocks are usually small (e.g., Sanderson et al. 1985, 2000). In fact, for 259 this specific event, isotropic pitch-angle distributions were observed downstream of S2 (cf. Figure 3 in Giacalone et al. 260 2021). The limited energy interval available from the particle observations leads us to use $E_1=94$ keV as a lower limit 261 to evaluate P_{EP} . Therefore, P_{EP} evaluated between $E_1=94$ keV and the highest energy over which the SEP event 262 was observed should be considered as a partial value of the actual pressure exerted by the energetic particles. The 263 expression of $P_{\rm EP}$ computed in the spacecraft frame approximates the correct partial pressure of energetic particles to 264 the order of $\mathcal{O}(U/v)$ where U is the plasma flow speed and v the particle speed (Roelof et al. 2010). Considering that 265 94 keV protons have a speed of \sim 4200 km s⁻¹ and the solar wind speed measured during this event (Figure 1c) we 266 estimate $U/v \leq 0.1$ upstream of S2, whereas downstream of S2 the uncertainty in P_{EP} can be about ~0.2. 267

In order to evaluate j(E), we have used hourly averages of the ChanR and HET proton intensities displayed in Figure 3a covering an energy interval from $E_1=94$ keV to $E_2=58$ MeV, and assume that j(E) follows the functional form $E^{-\xi} \exp(-E/E_0)$ proposed by Ellison & Ramaty (1985). Figure 3b shows the energy spectra at the times A-F indicated in Figure 3a. Since this functional form seems to underestimate the intensities observed at mid (~2-7 MeV) energies, we have assumed also three power laws over the energy ranges 94–221 keV, 0.22–7.67 MeV, and 11.3–58 MeV

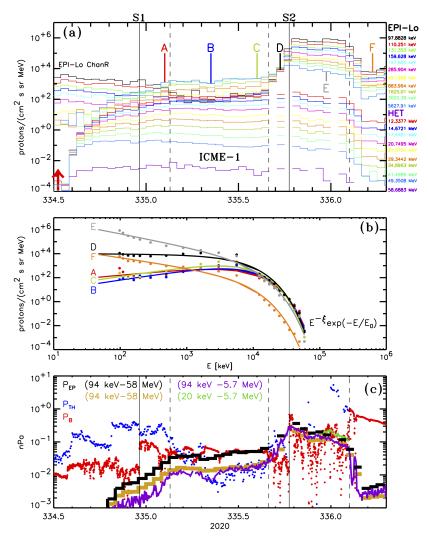


Figure 3. From top to bottom: (a) hourly averages of the proton intensities observed at the different energy channels of the triple coincidence system (ChanR) of EPI-Lo and of the average of the proton intensities measured by EPI-Hi/HET-A and EPI-Hi/HET-B (the listed energies correspond to the geometric mean energy of each channel); (b) energy spectra at the times A-F indicated in the top panel; (c) Magnetic field pressure P_B (red symbols); thermal plasma pressure P_{TH} (blue symbols); and partial energetic particle pressure P_{EP} computed assuming for the particle energy spectrum either a functional form $E^{-\xi} \exp(E/E_0)$ (beige trace), three piecewise power laws over the energy interval 94 keV-58 MeV (black trace) and two power laws over the energy interval $E_1=94$ keV and $E_2=5.7$ MeV (purple trace) and extending the lowest energy power law to 20 keV (green trace).

covered by ChanR and HET. By using the geometric mean energies of each channel to fit the energy spectra and 273 the intersection points between these power-laws, we piece together the complete spectrum over the energy interval 274 E_1-E_2 . Figure 3c shows $P_{\rm EP}$ computed assuming the functional form $E^{-\xi} \exp(-E/E_0)$ (beige traces), and the three 275 power laws (black traces). In order to check the contributions that protons of different energies made to P_{EP}, we 276 also estimate the particle pressure over the energy interval $E_1=94$ keV and $E_2=5.7$ MeV using the two low-energy 277 power laws and using 5-min averages of the ChanR intensities (purple trace in Figure 3c). Under the assumption that 278 the lowest energy power law can be extended down to 20 keV, we also evaluate P_{EP} over the energy range 20 keV-279 5.7 MeV (green trace in Figure 3c). The lower limit of 20 keV is selected based on the distinction between thermal and 280 suprathermal populations downstream of fast strong IP shocks (cf. Figures 8g and 10g in Lario et al. 2019). The only 281 significant difference between P_{EP} evaluated using this low energy extrapolation and P_{EP} evaluated using the piecewise 282 power law approximation up to 94 keV is observed in the second half of the sheath region, where P_{EP} increases by a 283 factor ≤ 2 . The underestimation of the 2-7 MeV proton intensities by the Ellison-Ramaty functional form may be due 284

to the fact that either the calibration of the intensities in these energy channels is not yet optimal (EPI-Lo science team, private communication, 2021) or that this functional form does not provide an accurate representation of the actual measured energy spectrum. The former will yield an overestimation of P_{EP} when the observed energy spectrum is approximated by a piecewise power law, whereas the latter does not have a significant effect in the P_{EP} evaluation using the Ellison-Ramaty functional form because of the equal weight given to all energy points when fitting the energy spectra.

With this caveat, Figure 3c shows that during the onset of the SEP event and throughout ICME-1, the main 291 contribution to P_{EP} was exerted by $\gtrsim 6$ MeV protons. Throughout this period, P_{EP} remained below P_B . The low 292 temperatures typically observed throughout the passage of an ICME leads to periods with $P_{EP} > P_{TH}$. At the exit of 293 ICME-1, the contribution of low-energy protons starts to dominate P_{EP} , and throughout the exponential increase of 294 low-energy proton intensities prior to S2, $P_{EP} > P_B$, whereas $P_{EP} \sim P_B$ in the sheath region. The discrete plasma values 295 recovered around the S2 passage suggest $P_{EP} \sim P_{TH}$ when particle fluxes start to increase at the exit of ICME-1, but 296 $P_{EP} < P_{TH}$ in the sheath region. Therefore, the energetic particle pressure in the sheath does not appear to dominate 297 since $P_{EP} \sim P_B$ but $P_{EP} < P_{TH}$. In order to examine whether P_{EP} played an essential role in producing the weak 298 magnetic field observed in the sheath region, we compare this event with other events showing similar magnetic field 299 intensity profiles downstream of IP shocks in Section 4. 300

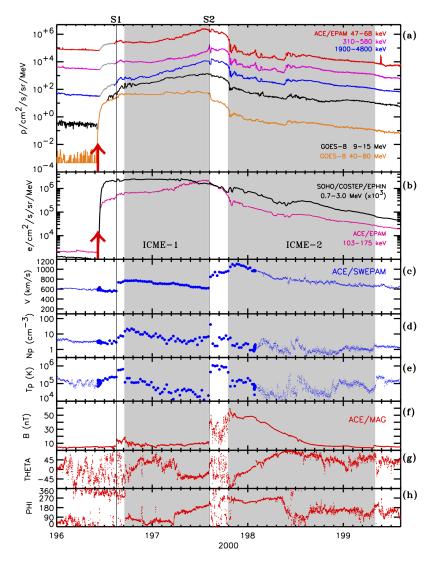
3. EVENTS WITH PRECEDING ICMES

301

302

303

304


305

306

As discussed in the previous section, a peculiarity of the 2020 November 29 SEP event at PSP is the in-situ observation of an ICME (ICME-1), associated with an earlier CME, during the rising phase of the SEP event that clearly affected the transport of low-energy protons to the spacecraft and hence the observed energy spectra (cf. Figures 1 and 2). In this section, we analyze similar SEP events observed at 1 au where an intervening ICME was observed preceding the arrival of an IP shock with elevated particle intensities.

A well-known case is the "Bastille Day" event on 2000 July 14 that has been widely studied by several authors 307 (e.g., Smith et al. 2001; Lepping et al. 2001). Figure 4 shows, with the same format as Figure 1, particle, plasma, 308 and magnetic field data collected by near-Earth spacecraft during this event. In particular we show (a) ion data 309 collected by the Low-Energy Magnetic Spectrometer (LEMS120) of the Electron Proton Alpha Monitor (EPAM) 310 on board the Advanced Composition Explorer (ACE/EPAM/LEMS120; Gold et al. 1998) and the energetic particle 311 sensor (EPS) on board the Geostationary Operational Environmental Satellite GOES-8 (Sauer 1993); (b) 103–175 keV 312 electron intensities measured by the deflected electron detector (DE) of ACE/EPAM (Gold et al. 1998) and 0.7–3.0 MeV 313 electron intensities measured by the Electron, Proton Helium Instrument (EPHIN) of the Comprehensive Suprathermal 314 and Energetic Particle Analyzer (COSTEP) on board SOHO (SOHO/COSTEP/EPHIN; Müller-Mellin et al. 1995); 315 solar wind proton (c) speed, (d) density, and (e) temperature measured by the Solar Wind Electron, Proton, and Alpha 316 Monitor (SWEPAM) on board ACE (ACE/SWEPAM; McComas et al. 1998); and magnetic field (f) magnitude and 317 (g-h) angular direction in the spacecraft-centered RTN coordinated system measured by the magnetometer experiment 318 on board ACE (ACE/MAG; Smith et al. 1998). During periods of large SEP intensities, data from ACE/SWEPAM 319 exist only in its "search" mode that collects data at approximately every ~ 33 minutes (Skoug et al. 2004). These data 320 are plotted as thick blue symbols in Figures 4c–e. 321

This SEP event was associated with a fast halo CME, with a plane of sky speed of 1674 km s⁻¹ in the CDAW 322 catalog, first observed by SOHO/LASCO at 10:54 UT on 2000 July 14 (day of year 196) and temporally associated 323 with an X5.7 flare at 10:21 UT on the same day from AR 9077 at N22W07 (Andrews 2001). The leading edge of the 324 associated ICME arrived at ACE at $\sim 19:00$ UT on day 197 (implying an average transit speed of ~ 1268 km s⁻¹) and 325 was preceded by a shock that passed ACE at 14:16 UT on day 197 (average transit speed of ~ 1482 km s⁻¹). We 326 have labeled the passages of this shock and ICME at ACE in Figure 4 as S2 and ICME-2, respectively. Shock S2 was 327 preceded by an ICME (ICME-1 in Figure 4) with leading edge at $\sim 17:00$ UT on day 196 and upstream shock (S1) 328 at 14:59 UT. The trailing edge of ICME-1 is drawn at the passage of S2. We note that Lepping et al. (2001) set the 329 trailing edge of ICME-1 at $\sim 14:00$ UT on day 197 just before the arrival of S2 based on a model fitting for the magnetic 330 cloud seen inside ICME-1 using hourly averaged magnetic field data (see their Figure 3). However, other ICME-like 331 characteristics were observed until just before the arrival of S2 (Smith et al. 2001). Thus, a difference between the PSP 332 event and the Bastille Day event is that, in the case of the Bastille Day event, S2 was propagating into the trailing 333 edge of ICME-1 whereas for the 2020 November 29 event at PSP, S2 and ICME-1 were separated by ~ 2.65 hours based 334 on the magnetic field and limited plasma observations available used to identify ICME-1 (Figure 1). 335

Figure 4. From top to bottom: (a) 5-min averages of the omni-directional proton intensities observed by ACE/EPAM/LEMS120 (three top traces) and EPS of GOES-8 (two bottom traces); (b) 5-min averages of the electron intensities observed by ACE/EPAM/DE and 30-min averages of the electron intensities (multiplied by a factor 10^3) measured by SOHO/COSTEP/EPHIN; proton solar wind (c) speed, (d) density, and (e) temperature obtained from ACE/SWEPAM measurements; and magnetic field (f) magnitude, (g) elevation angle, and (h) azimuth angle in RTN coordinates as measured by ACE/MAG. The solid vertical lines identify the passages of shocks and the shaded gray bands the passages of ICMEs. The red arrows in (a) and (b) indicate the onset of the X5.7 solar flare temporally associated with the origin of the SEP event. The large solid blue symbols in panels (c)-(e) were obtained from the search mode of ACE/SWEPAM. The gray portions of the ACE/EPAM/LEMS120 ion traces in panel (a) indicate periods with possible electron contamination.

As for the SEP event at PSP, the onset of the Bastille Day SEP event occurred shortly before the passage of shock S1, where there is a slight distortion of the particle intensity-time profiles. Within ICME-1, the intensities of ≤ 30 MeV protons and ≤ 300 keV electrons kept increasing until the arrival of S2, whereas the higher energy proton and electron intensities remained flat or decreased throughout ICME-1. The rising intensity profiles observed throughout ICME-1 suggest that particles accelerated by S2 were able to gain entry into ICME-1 from early in the event, even when S2 was still close to the Sun. The access of particles accelerated by S2 into ICME-1 may have occurred by processes of cross-field diffusion or by a portion of the shock S2 propagating into ICME-1.

A significant difference between the Bastille Day event and the PSP event is the low-energy particle signatures observed at the entry into and exit from ICME-1. Whereas in the PSP event, the entry into and exit from ICME-1 were associated with interruptions in the evolution of the low-energy particle intensities and energy spectra (Figure 2),

the Bastille Day event did not show such discontinuities. Two factors may play a role in these observed differences: 346 First, PSP observations shown in Figure 2 were derived from the triple coincidence system of EPI-Lo that cleanly 347 excludes higher-energy particle counts, whereas the ACE/EPAM/LEMS120 intensities shown in Figure 4 include 348 contributions from electrons and high-energy particles (Marhavilas et al. 2015) that form an intensity background 349 that precludes the observation of complete particle intensity depressions. Second, the difference at the exit of ICME-1 350 between the Bastille Day event and the PSP event may be due to the fact that, at its arrival at ACE, the shock S2 for 351 the Bastille Day event was already within ICME-1 and able to fill ICME-1 with shock-accelerated particles, whereas 352 at PSP the separation between ICME-1 and S2 did not allow the low-energy particles to penetrate into ICME-1. We 353 should also note that since ICMEs and IP shocks are large scale structures, the single-point observations from either 354 ACE (Figure 4) or PSP (Figure 1) may not reflect the configuration of ICME-1 and S2 as a whole. 355

356

357

358

359

360

361

362

363

364

365

366

With the purpose of finding additional cases of IP shocks with elevated particle intensities preceded by the passage of an ICME, we have combined the list of ICMEs in the Near-Earth ICME catalog posted on www.srl.caltech.edu/ACE/ ASC/DATA/level3/icmetable2.html (Richardson & Cane 2010a) with observations of SEP events with intense ESP components. SEP events associated with the passage of IP shocks with intense ESP components are usually associated with fast CMEs generated from longitudes close to central meridian (Smart & Shea 1996; Mäkelä et al. 2011). CMEs are then likely to interact with or overtake any preceding slower ICMEs that are present. Therefore, cases similar to that observed by PSP at 0.8 au, with some delay between the passage of the trailing edge of the preceding ICME-1 and the shock S2, are rare, especially at larger heliocentric distances when the probability of ICME–ICME interaction increases (Lugaz et al. 2017). However, Figure 5 shows two such events observed at 1 au (following the same format as Figure 4) where an IP shock associated with an intense ESP event was preceded by an ICME (ICME-1) with the trailing edge arriving just a few hours before the shock.

The SEP event on the left column of Figure 5 was generated by a fast CME (CDAW plane-of-sky speed 1333 km 367 s^{-1}) temporally associated with an M2.2 flare with onset at 13:37 UT on 2004 July 25 (day of year 207) from AR 368 10652 at N04W30 (red arrow in the left panels of Figures 5a and 5b). ICME signatures such as the magnetic field 369 rotation and solar wind proton temperature depression observed late on day 207 and throughout most of day 208 were 370 used to identify the passage of the ICME-1 that preceded the passage of an IP shock (S2) by ACE at 22:27 UT on 371 2004 July 26 (day of year 208). The existence of a gap of ~ 5.4 hours between the trailing edge of ICME-1 and shock 372 S2 was also established by examining solar wind ion charge state observations from ACE/SWICS (not shown here), 373 which show a change from the high charge states associated with the ICME to more normal solar wind charge states 374 consistent with the ICME-1 trailing edge indicated in the left column of Figure 5. 375

Some features of the SEP event on day 207 of 2004 resemble those of the PSP event. Low-energy ≤ 200 keV ion 376 intensities were reduced throughout the passage of ICME-1 as shown by the 47–68 keV ion intensity time profile (red 377 trace in Figure 5a). Low-energy ion counts within ICME-1 do not go to discrete singular counts as in the PSP case be-378 cause, in contrast to the triple coincidence system that excludes higher-energy particle counts, ACE/EPAM/LEMS120 379 intensities have a background owing to high-energy particle contributions. Particle depressions during ICME passages 380 are more easily noticeable when there is an enhanced low-energy ion population outside of the ICME emphasizing the 381 contrast between internal and external intensities. Similarly to the PSP event, the ≤ 200 keV proton intensities in the 382 event on day 207 of 2004 increased at the exit from ICME-1. The event on day 207 of 2004 differs from the PSP event 383 in that, throughout the passage of ICME-1, the $\gtrsim 300$ keV proton intensities increased continuously up to the arrival 384 of S2, and that the ≥ 9 MeV ion intensities showed abrupt increases in the rate of change with time at the trailing edge 385 of ICME-1, leading up to a clear intensity peak at shock S2 which is also evident for >40 MeV protons and ~ 1 MeV 386 electrons. The gaps and time resolution of the EPI-Hi/HET data preclude us from determining whether a localized 387 high-energy particle peak was also present near S2 at PSP (cf. Figure 1). 388

Another case with a delay between the passage of an IP shock and a preceding ICME was observed in March 2001. 389 though the situation in this event also differs from that of the 2020 November 29 event at PSP. The SEP event shown 390 in the right column of Figure 5 was generated by a fast CME (CDAW plane-of-sky speed 942 km s⁻¹) temporally 391 associated with a X1.7 flare at 09:57 UT on 2001 March 29 (day of year 88) from AR 9393 at N14W12. In contrast to 392 the PSP event and other events considered here, the onset of the SEP event occurred during the passage of an ICME 393 (ICME-1 in the right column of Figure 5). A delay of ~ 6.3 hours was observed between the trailing edge of ICME-1 394 and the passage of the shock at 00:23 UT on day 90 (identified by S in Figure 5). The exit from ICME-1 is marked 395 only by small increases in the slopes of the ≤ 10 MeV proton and ≤ 300 keV electron intensity-time profiles that keep 396 increasing until the arrival of the shock (unfortunately a data gap in the SOHO/COSTEP/EPHIN data does not allow 397

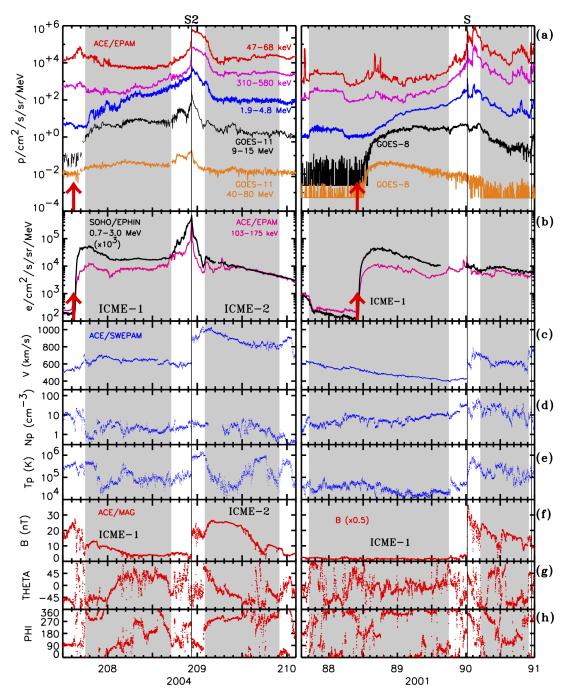


Figure 5. The same as Figure 4 for the SEP events on (left) day 207 of 2004 and (right) day 88 of 2001.

us to determine the evolution of the high-energy electron intensity between ICME-1 and the arrival of the shock).
 Therefore the evolution of the particle intensities across the trailing edge of this preceding ICME is more continuous
 than that observed in the PSP event.

The events in Figure 5 suggest that there is no consistent behavior in the particle intensities at the trailing edge of the preceding ICME (ICME-1). In one case, the trailing edge is apparently transparent, and no intensity change is observed, whereas in the other case, a clear discontinuity is present, in particular for low-energy ions and near-relativistic electrons. The events in Figure 5 also highlight the need for measurements that are clean of high-energy particle contributions (such as those shown in Figure 2) in order to reveal whether low energy particles are excluded from ICMEs.

4. PARTICLE PRESSURE EFFECT ON SHEATH PROPERTIES

The other interesting feature of the event at PSP is the low magnetic field magnitude observed in the sheath of 408 ICME-2 (cf. Figure 1f). The partial pressure exerted by energetic particles P_{EP} measured at PSP showed values 409 similar to $P_{\rm B}$ throughout the sheath region, whereas the sparse plasma data seem to indicate that $P_{\rm EP} < P_{\rm TH}$ (cf. 410 Figure 3c). In order to determine whether energetic particles might have played a dominant role in the depletion of 411 magnetic field strength in the sheath region, we analyze here several intense ESP events with similar magnetic field 412 profiles in the sheath regions and for which more complete plasma observations are available that may provide an 413 analog for the PSP event. 414

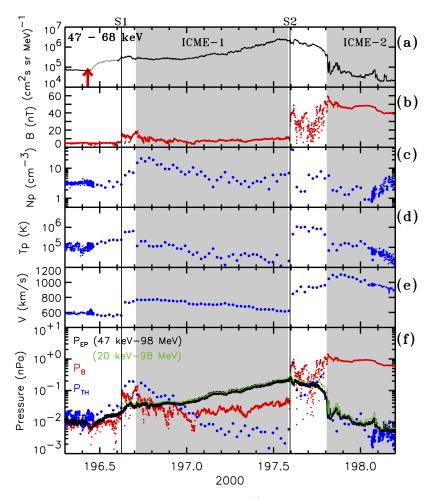


Figure 6. ACE observations during the Bastille Day 2000 event. (a) One-minute averages of 47–68 keV ion spin-averaged intensities measured by ACE/EPAM/LEMS120; (b) 64-second averages of the magnetic field magnitude observed by ACE/MAG; (c) solar wind proton density, (d) temperature, and (e) speed measured by ACE/SWEPAM in its normal mode (64-sec averages) or in its search mode (discrete blue symbols); (f) magnetic field pressure $P_{\rm B}$ (red), solar wind thermal pressure $P_{\rm TH}$ (blue), and energetic particle partial pressure P_{EP} computed combining ACE/EPAM/LEMS120 and GOES-8/EPS data over the energy interval 47 keV–98 MeV (black) or extrapolating the energy spectrum down to 20 keV (green). The solid vertical lines indicate the passage of IP shocks labeled S1 and S2 and the shadowed gray bars the passage of ICMEs.

420

421

415

Similarly to the PSP event, magnetic fields in the sheath region of ICME-2 in the Bastille Day event were weak compared to those measured just behind the shock S2 and within ICME-2 (Figure 4f). Figure 6 shows, from top to bottom, (a) spin-averaged 47–68 keV ion intensities measured by ACE/EPAM/LEMS120, (b) magnetic field magnitude B, (c) solar wind proton density N_p , (d) temperature T_p , and (e) speed V as measured by ACE during the Bastille Day event. Figure 6f shows the magnetic field pressure P_B (red symbols), the thermal pressure P_{TH} (blue symbols), and the partial pressure exerted by energetic particles P_{EP} (black and green traces). In order to compute P_{EP} , we have combined ACE/EPAM/LEMS120 and GOES data and followed the same procedure as described in the explanation of

Figure 3 using the expression $E^{-\xi} \exp(-E/E_0)$ over the energy interval 47 keV–98 MeV (black trace). We have also extrapolated these energy spectra down to 20 keV to extend the lower energy limit in our estimation of P_{EP} (green trace). Similarly to the PSP event (cf. Figure 3c), the only significant difference in P_{EP} using the two different energy intervals is observed in the second half of the sheath region. During the sheath region of the Bastille Day event, we see that P_{EP}~P_{TH} but P_B \gtrsim P_{EP}. By contrast, upstream of S2 and during the second half of ICME-1, P_{EP} was well above P_{TH} and P_B. This suggests that the effects of energetic particles on the magnetic field properties in the sheath during the Bastille Day event did not play a dominant role.

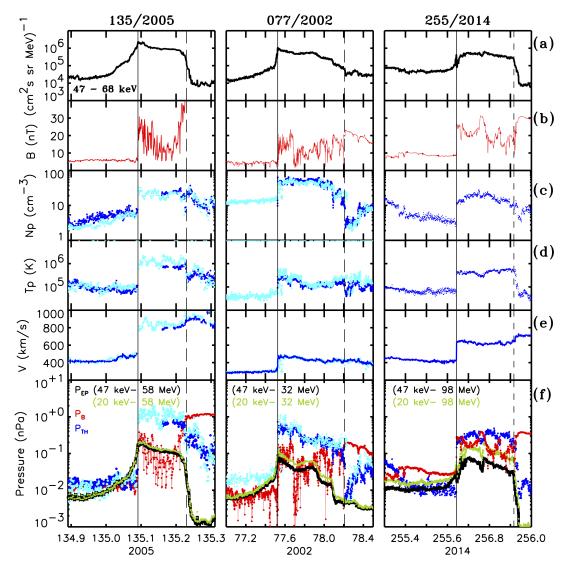


Figure 7. The same format as Figure 6 but for the ESP events on, from left to right, day 135 of 2005, 77 of 2002, and 255 of 2014. Dark blue symbols in panels (c) through (f) use measurements from ACE/SWEPAM, whereas cyan symbols use measurements from Wind/SWE shifted to the time of the shock passage (solid vertical line) at ACE. The dashed vertical lines indicate the leading edge of the ICMEs.

433

434

Figure 7 shows three other examples of intense ESP events (using the same format as Figure 6, except that the plasma parameters in (c) to (f) are from both ACE/SWEPAM (dark blue symbols) and from the Solar Wind Experiment (SWE; Ogilvie et al. 1995) on board the Wind spacecraft (cyan symbols) shifted to the time of the shock passage at ACE). In these three cases, the magnetic field in the sheath downstream of the IP shock (indicated by the vertical solid lines) and prior to the arrival of the following ICME (indicated by the vertical dashed lines) shows periods with depressed magnitude. In each case, the low energy ion intensity is elevated in the sheath and falls abruptly on entry

to the ICME, as in the PSP event. In these events, $P_{EP} < P_{TH}$ throughout the sheath regions. During the event on 435 day 135 of 2005 (left column in Figure 7) $P_{\rm EP}$ exceeded $P_{\rm B}$ only in the portion of the sheath with depressed magnetic 436 field. In the sheath region of the event on day 77 of 2002 (middle column in Figure 7), P_{EP} remained mostly below P_B . 437 Finally in the event on day 255 of 2014 (right column in Figure 7), B was most strongly depressed in the trailing half of 438 the sheath but $P_{\rm EP}$ reached values similar to $P_{\rm B}$ only when the spectrum extrapolation to low energies is considered. 439 In these three events with relatively weak magnetic fields but enhanced energetic particle intensities in the sheath 440 similar to the PSP event, we see that P_{EP} in the sheath region remained well below P_{TH} , and that variations of the 441 energetic particle pressure did not correlate with variations of the magnetic field magnitude. On the other hand, with 442 the exception of the events on day 255 of 2014 (right column in Figure 7) and on day 090 of 2001 (right column in 443 Figure 5), all the intense SEP events shown here had $P_{EP} > P_B$ immediately upstream of the shock. A similar pattern 444 in which the energetic particle pressure in an intense SEP event dominates over the magnetic field pressure just before 445 arrival of a shock but not downstream of the shock has been observed in past studies (e.g., Lario et al. 2015a,b, and 446 references therein). 447

5. DISCUSSION

Two of the distinctive features of the 2020 November 29 SEP event at PSP were the inverted energy spectra observed during the passage of ICME-1 (cf. Figure 2) and the low magnetic field magnitude observed in the sheath of ICME-2 where high particle intensities were present (cf. Figure 1). Here we discuss, in the light of observations of previous SEP events observed near Earth, possible reasons for these two peculiarities and the role that ICME-1 played in these singular observations.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

5.1. Exclusion of low-energy ions from ICME-1

The discontinuity in the energetic particle spectra coincident with the passage of the ICME-1 at PSP (Figure 2) as well as the depression of low-energy (≤ 220 keV) proton intensities suggest that the low-energy ions were effectively excluded from ICME-1. One of the energetic particle signatures associated with the passage of ICMEs (e.g., Richardson 1997) is a depression in the energetic particle intensities observed upon the entry of the spacecraft into the ICME with respect to those measured prior to the passage of the ICME. The relative sizes of the energetic particle depressions in ICMEs, which can occur from galactic cosmic ray energies in Forbush decreases to tens of keVs, display a rigidity dependence (Cane et al. 1995; Belov et al. 2021). The small Larmor radius of low-energy protons (for example, a 220 keV proton with a 90° pitch-angle in a 10 nT magnetic field has a Larmor radius of only ~ 4.5×10^{-5} au) forces these particles to sample the fine structure of the interplanetary disturbances as they propagate through IP space, and precludes them from penetrating into an ICME via their gyromotion from remote distances. By contrast, the larger the Larmor radius and the speed of the particles, the more efficiently the particles can penetrate across the boundaries of the ICMEs into the closed structures assumed for ICMEs (e.g., Laitinen & Dalla 2021).

The fact that ICME-1 and ICME-2 started propagating from different regions (ICME-1 from AR 12787 at N32E89 and ICME-2 from AR 12790 at S23E99), and that, at the time of the M4.4 flare, the leading edge of ICME-1 was already at ~0.7 au from the Sun (assuming that it propagated at a speed of 572 km s⁻¹ as inferred from coronagraph observations), implies that the shock S2 did not establish direct magnetic connection with the interior of ICME-1 when it formed close to the Sun. However, the fact that the intensity-time profiles of high-energy (\geq 20 MeV) protons did not show clear discontinuities across the leading edge of ICME-1 (cf. Figure 3a) and that the intensities of protons with energies between 220 keV and ~15 MeV increased close to the entry of the spacecraft into ICME-1 (Figures 2 and 3a) suggests that, at some point during its propagation, particles accelerated by the shock S2 penetrated into ICME-1. The peculiarity is that \leq 200 keV protons were excluded from ICME-1, showing a clear intensity depression (increase) at the passage of the leading (trailing) edge of ICME-1 (cf. Figure 2a).

The study of particle intensity variations across the edges of ICMEs requires a precise identification of the ICME 477 boundaries. This identification is usually based on the discontinuous evolution of different signatures commonly used to 478 determine the passage of ICMEs (e.g., Zurbuchen & Richardson 2006). Whereas the front boundary of ICMEs usually 479 shows clear discontinuities in these signatures, the rear boundaries are more difficult to identify and sometimes their 480 determination is rather subjective and depends on the specific ICME signatures considered (Neugebauer & Goldstein 481 1997). In this particular case, the leading edge of ICME-1 was identified with a discontinuity of the magnetic field 482 orientation that coincided with a relative decrease of solar wind density and temperature. The trailing edge of ICME-483 1 was identified with an increase of T_p and change in the magnetic field direction that coincided with (1) a small 484

485

486

487

488

489

490

491

492

493

494

495

496

497

LARIO ET AL.

depression of the magnetic field strength, (2) a low-energy proton intensity exponential increase upstream of S2, and (3) a discontinuity in the evolution of the energy spectrum.

Exponentially-rising low-energy particle intensity enhancements upstream of IP shocks followed by approximately constant intensity downstream, as observed by PSP for the shock S2, are qualitatively consistent with DSA predictions, where waves amplified by the shock-accelerated particles contribute to confine the shock-accelerated particles in the foreshock region (e.g., Lee 2005). Whereas an exponential particle increase is usually observed at strong IP shocks (e.g., Giacalone 2012), the onset of this increase is not usually accompanied by large-scale discontinuities in the magnetic field (see e.g., Figures 2, 3 and 4 in Giacalone 2012). An exception occurs in especially intense ESP events (cf. Figures 1 and 4 in Lario et al. 2015a) where magnetic field depletions may be observed immediately before the shock, exactly at the time when low-energy particle intensities show a pronounced increase before the arrival of the shock. It is at these times when $P_{EP}>P_B$ might be observed (Lario et al. 2015a), suggesting that energetic particles may also contribute to intensify the observed upstream field depressions (Sibeck et al. 2001). PSP observations upstream of the shock S2 are consistent with such a scenario.

The access of high-energy protons into ICME-1 from early in the event (Figure 1a) may result from either a portion 498 of the shock S2 being able to interact with ICME-1 and accelerate particles within this structure or from cross-field 499 diffusion and drift transport processes undergone by the particles near the boundaries of ICME-1. In either case, the 500 observed intensity-time profiles at PSP are a consequence of the evolving efficiency of shock acceleration for particles 501 of different energies, the magnetic connection established between the spacecraft and the shock, and the processes 502 that transported SEPs before they reached the spacecraft. The possibility that the shock S2 at PSP propagated 503 within ICME-1 would imply that low-energy ($\leq 220 \text{ keV}$) protons remained confined just upstream of the shock S2, 504 whereas higher-energy protons propagated throughout ICME-1. Such a confinement of low-energy protons near the 505 shock may be caused by either waves amplified by the shock-accelerated particles or by an intervening structure 506 formed just in front of the shock S2. The amplification of waves by shock-accelerated particles requires a pre-existing 507 level of turbulence (Lee 2006), but the smooth magnetic field usually observed within ICMEs (allowing the scatter-508 free transport of energetic particles; e.g., Torsti et al. 2004) is not consistent with the presence of this pre-existent 509 turbulence level. The presence of an intervening structure within ICME-1 with depressed magnetic field intensified by 510 the effect of energetic particles cannot be discarded. However, the discontinuities in the field magnitude and orientation 511 as well as in the solar wind temperature used to identify the trailing edge of ICME-1 in Figure 1 are signatures usually 512 adopted to distinguish ICMEs structures from the regular solar wind. Therefore, we argue that at its arrival at PSP 513 the portion of the shock S2 observed by PSP did not intercept ICME-1 and that there was an actual delay between 514 the passage of the trailing edge of ICME-1 and the shock S2. 515

In contrast, the shock S2 in the Bastille Day event was observed, when it arrived at 1 au, to be at or within the trailing edge of ICME-1. This is consistent with the fact that energetic particle intensities increased throughout ICME-1 peaking with the arrival of the shock S2. Although P_{EP} exceeded P_B in a large portion of ICME-1 (cf. Figure 6f), no abrupt discontinuity was observed in the particle intensities or energy spectra within ICME-1. Therefore, we believe that the distinction between the Bastille Day event and the PSP event was whether S2 interacted with ICME-1, being able to fill with energetic particles ICME-1 in the Bastille Day event where even the lowest energy ions propagated within ICME-1, but not in the PSP case.

Whereas the shock S2 in the Bastille Day event was observed at the trailing edge of a preceding ICME, the presence 523 of IP shocks propagating within ICMEs is not an uncommon phenomenon (e.g., Lugaz et al. 2015). However, the 524 observations of particle intensity enhancements associated with these intra-ICME shocks are infrequent. For example, 525 Xu et al. (2019) searched for proton intensity enhancement between $\sim 200 \text{ keV}$ and $\sim 7 \text{ MeV}$ using Wind/3DP (Lin 526 et al. 1995) data inside 487 ICMEs between 1995 and 2017, and found only a total of 12 ICMEs with energetic particle 527 enhancements with respect to the proton intensity measured upstream and downstream of the ICME, nine of which 528 included shocks propagating into the ICMEs. Other notable cases are those reported by Shen et al. (2008), Richardson 529 & Cane (2010b), and Bruno et al. (2019). Cases where an intra-ICME particle enhancement was due to a new SEP 530 event (such as the event in the right column of Figure 5) were excluded in these statistics. 531

Usually the particle intensity enhancements produced by shocks propagating inside an ICME fill the whole ICME; with low-energy particle intensities increasing on entry of the spacecraft into the ICME (cf. Figures 3 and 4 in Li & Lugaz 2020). An analytical model of time-dependent DSA inside magnetic clouds has been developed by Li & Lugaz (2020). This suggests that, in order to generate large particle enhancements, the shock has to propagate within the ICME for an extended time period before its arrival at the observer. Particle acceleration by a shock inside an ICME is also favored if there is a pre-existing seed particle population present in the ICME. These particles may result from
previous SEPs that were directly injected into the ICME as it propagated through IP space (such as the event in the
right column of Figure 5; see also Richardson & Cane 1996) or from the cross-field diffusion of particles into the ICME
(such as in the events of Figures 1, 4, and left column of Figure 5).

This study also illustrates that the trailing edges of ICMEs may have different effects on the particle populations. 541 At the trailing edges of ICME-2 in the PSP event (Figure 1), the Bastille Day event (Figure 4) and the event on 207 of 542 2004 (left column in Figure 5) there was no change in the rate at which the particle intensities decayed. In order to see 543 the contrast between internal and external particle populations it is necessary to have a nearby source of particles such 544 as those provided by S2 for the preceding ICME-1. The energy dependence in the process of particle penetration into 545 ICMEs may depend not only on the properties of the boundaries of the ICMEs but also on the scattering conditions 546 of the particles around the ICMEs (e.g., Laitinen & Dalla 2021). The variability of intensity time profiles observed 547 across the edges of the ICMEs (cf. Figure 5) may result from these varying conditions. However, in order to clearly 548 see an inversion of the energy spectra within an ICME (such as that observed by PSP; Figure 2), measurements free 549 of high-energy particle contributions (such as the triple coincidence measurements provided by EPI-Lo) are required. 550 Existing background produced by high-energy particles in the ACE/EPAM/LEMS120 measurements does not allow 551 to see this inverted spectrum but just some intensity depression within ICMEs such as that seen in the 47-68 keV ion 552 intensities in the event on day 207 of 2004 (left column in Figure 5). 553

5.2. Magnetic field properties in the sheath region

The sheath region in front of an ICME is typically characterized by dense and disturbed solar wind. Fast ICMEs, exceeding the magnetosonic speed in the solar wind, may drive shock waves that compress the upstream ambient solar wind material, resulting in sheath regions with much more enhanced density and temperature as well as larger magnetic field fluctuations than those observed in sheaths not preceded by shocks (e.g., Salman et al. 2020). It has been suggested that the material found in the sheath region of ICMEs may be composed of coronal or heliospheric compressed material (Howard & Vourlidas 2018). By comparing the geometry of CMEs inferred from coronagraph images with the in-situ properties of ICMEs, Temmer et al. (2021) showed that the sheath region does not consist of coronal CME plasma but pile-up material coming from the preceding solar wind plasma. Whereas the magnetic ejecta region depends on the CME properties at the Sun, the sheath structures have a strong dependence on the conditions ahead of the disturbance. The amount of piled-up mass (and hence the density measured in the sheath) depends on the pre-event ambient material (denser when the ICME propagates in slow solar wind than when propagates in fast wind), and on the size of the ICME (wider CMEs may pile up more material, whereas in narrow CMEs the upstream solar wind may more easily flow around). Temmer et al. (2021) argued that the ICME interplanetary propagation speed is not related to the sheath density, and that the size of the ICME may play some role in how much material could be piled up. In fact, statistical studies have found that the magnetic field strength in the sheath is only moderately correlated with the average magnetic field strength and speed of the ICME (Chi et al. 2016; Salman et al. 2020).

Therefore, the signatures and properties of the sheath regions depend strongly on the ambient solar wind properties, as well as how far from the apex of the ICME the spacecraft crosses the sheath region (Janvier et al. 2015). Close to the shock, field fluctuations seem to be associated with the shock compression process and with the alignment of preceding ambient fluctuations, whereas far from the shock field fluctuations are more evolved, and near the leading edge of the ICME the field line wrapping might intensify the field again (e.g., Kilpua et al. 2021, and references therein). Therefore, the oscillating character of the magnetic field in the sheath regions observed in the events seems to be more a consequence of the medium where the IP shock propagates rather than the effect of the shock-accelerated particles. Indeed, the events showed in Figure 7 showed that P_{EP} does not correlate with the oscillating values of P_B , indicating that variations in *B* are not driven by changes in the energetic particle pressure. The fact that we can find sheaths with oscillating low magnetic fields but with $P_{EP} < P_B$ suggests that P_{EP} is not the dominant factor determining the field properties within the sheath region. The caveat is that our evaluation of P_{EP} is an estimate of the actual pressure exerted by energetic particles because of the approximations made in its computation.

For the SEP events described in Sections 2 and 3, the shock S2 propagated in the wake of a preceding ICME, that is usually characterized by rarefaction regions and weakened magnetic field (e.g. Liu et al. 2014). Therefore, we argue that the upstream medium found ahead of ICME-2 played a more important role in the properties of the sheath region than the effect of the energetic particles.

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

LARIO ET AL.

The two interesting features of the SEP event observed by PSP from 2020 November 29 to December 2 analyzed in this work can be summarized as follows:

1. The shock S2 associated with the CME on 2020 November 29 that generated the SEP event commencing on this day, was preceded when it arrived at PSP by an intervening ICME (ICME-1) that modified the low-energy ion intensity time profile and energy spectra. PSP observations from EPI-Lo showed that low-energy (≲220 keV) protons accelerated by S2 were excluded from ICME-1, resulting in the observation of inverted energy spectra during the passage of ICME-1. Comparison with other similar events shows that the properties of the ICME-1 trailing edge and the possible penetration of the shock S2 into the ICME-1 are the main factors that determine the influence of the preceding ICMEs on the transport of shock-accelerated particles toward the spacecraft. The inverted spectra are shown particularly well in the triple-coincidence EPI-Lo observations, which are not contaminated by heavy ions or high energy particles. This event clearly demonstrates that the influence of unrelated solar wind structures should be considered when studying SEP event intensity-time profiles.

2. The sheath region behind the shock S2 was characterized by weak but fluctuating magnetic fields. Whereas upstream of S2 the partial pressure exerted by energetic particles exceeded the magnetic field pressure, behind the shock both pressures were similar. Comparison with events observed by near-Earth spacecraft showing similar sheath magnetic fields reveals that variations in magnetic field pressure are not correlated with variations in the energetic particle pressure, and low magnetic field strengths are observed even when particle pressures are relatively low. Therefore, with the caveat that our estimates of the energetic particle pressure are approximations of the actual pressure exerted by energetic particles, we argue that P_{EP} did not play a dominant role in determining the field properties of the sheath region but instead, the weak sheath magnetic fields reflect conditions in the solar wind plasma upstream of the shock that is propagated into the sheath.

ACKNOWLEDGMENTS

D.L. and I.G.R. acknowledge support from NASA Living With a Star (LWS) programs NNH17ZDA001N-LWS and NNH19ZDA001N-LWS and the Goddard Space Flight Center Internal Scientist Funding Model (competitive work package) program. I.G.R. also acknowledges support from the ACE mission. E.P. acknowledges the NASA LWS Jack Eddy Postdoctoral Fellowship Program, administered by UCAR's Cooperative Programs for the Advancement of Earth System Science (CPAESS) under award no. NNX16AK22G. CMSC, JG, DGM, ERC, MEH, DJM, RLM, NAS, and MEW were supported as a part of the Integrated Science Investigations of the Sun on NASA's Parker Solar Probe mission, under contract NNN06AA01C. The ISOIS data and visualization tools are available to the community at: spacephysics.princeton.edu/missions-instruments/isois. We acknowledge the NASA Parker Solar Probe mission team and the SWEAP team led by J. C. Kasper, the ISOIS team led by D. J. McComas, and the FIELDS team led by S. D. Bale, for the use of PSP data. The data used in this paper can be downloaded from spdf.gsfc.nasa.gov, spp-isois.sr.unh.edu/data_public/EPIHi/level2/, and www.srl.caltech.edu/ACE/ASC/. Search mode data during the Bastille Day event were provided by R.M. Skoug (private communication). Parker Solar Probe was designed, built, and is now operated by The Johns Hopkins University Applied Physics Laboratory as part of NASA's LWS program (contract NNN06AA01C). Support from the LWS management and technical team has played a critical role in the success of the Parker Solar Probe mission. We acknowledge all of the science instrument teams for making their data used in this paper available.

REFERENCES

09	Andrews, M. D. 2001, SoPh, 204, 179,	613	Bavassano-Cattaneo, M. B., Tsurutani, B. T., Smith, E. J.,
10	doi: 10.1023/A:1014215923912	614	& Lin, R. P. 1986, JGR, 91, 11929,
		615	doi: 10.1029/JA091iA11p11929
11	Bale, S. D., Goetz, K., Harvey, P. R., et al. 2016, SSRv,	616	Belov, A., Papaioannou, A., Abunina, M., et al. 2021, ApJ,
12	204, 49, doi: 10.1007/s11214-016-0244-5	617	908, 5, doi: 10.3847/1538-4357/abd724

18

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

618	Brueckner, G. E., Howard, R. A., Koomen, M. J., et al.	667
619	1995, SoPh, 162, 357, doi: $10.1007/BF00733434$	668
620	Bruno, A., Christian, E. R., de Nolfo, G. A., Richardson,	669
621	I. G., & Ryan, J. M. 2019, Space Weather, 17, 419,	670
622	doi: 10.1029/2018SW002085	671
623	Bryant, D. A., Cline, T. L., Desai, U. D., & McDonald,	672
624	F. B. 1962, JGR, 67, 4983, doi: 10.1029/JZ067i013p0498	<mark>3</mark> 673
625	Cane, H. V., & Lario, D. 2006, SSRv, 123, 45,	674
626	doi: 10.1007/s11214-006-9011-3	675
627	Cane, H. V., Richardson, I. G., & von Rosenvinge, T. T.	676
628	1993, JGR, 98, 13295, doi: 10.1029/93JA00955	677
629	Cane, H. V., Richardson, I. G., & Wibberenz, G. 1995, in	678
630	International Cosmic Ray Conference, Vol. 4,	679
631	International Cosmic Ray Conference, 377	680
632	Case, A. W., Kasper, J. C., Stevens, M. L., et al. 2020,	681
633	ApJS, 246, 43, doi: 10.3847/1538-4365/ab5a7b	682 683
634	Chi, Y., Shen, C., Wang, Y., et al. 2016, SoPh, 291, 2419,	684
635	doi: 10.1007/s11207-016-0971-5	685
636	Chitta, L. P., Priest, E. R., & Cheng, X. 2021, arXiv	686
637	e-prints, arXiv:2103.02352.	687
638	https://arxiv.org/abs/2103.02352	688
639	Cohen, C. M. S., Christian, E. R., Cummings, A. C., et al.	689
640	2021, submitted to A&A	690
641	Desai, M., Dayeh, M., Smith, C., Mason, G., & Lee, M.	691
642	2012, in American Institute of Physics Conference Series	, 692
643	Vol. 1436, Physics of the Heliosphere: A 10 Year Retrospective, ed. J. Heerikhuisen, G. Li, N. Pogorelov,	693
644	& G. Zank, 110–115, doi: 10.1063/1.4723597	694
645 646	Domingo, V., Fleck, B., & Poland, A. I. 1995, SoPh, 162, 1	695
647	doi: 10.1007/BF00733425	696
648	Ellison, D. C., & Ramaty, R. 1985, ApJ, 298, 400,	697
649	doi: 10.1086/163623	698
650	Fox, N. J., Velli, M. C., Bale, S. D., et al. 2016, SSRv, 204	699
651	7, doi: 10.1007/s11214-015-0211-6	700
652	Giacalone, J. 2012, ApJ, 761, 28,	701
653	doi: 10.1088/0004-637X/761/1/28	702
654	2015, ApJ, 799, 80, doi: 10.1088/0004-637X/799/1/80	703
655	Giacalone, J., Burgess, D., Bale, S. D., et al. 2021,	704 705
656	submitted to A&A	705
657	Gold, R. E., Krimigis, S. M., Hawkins, S. E., I., et al. 1998	
658	SSRv, 86, 541, doi: 10.1023/A:1005088115759	708
659	Gordon, B. E., Lee, M. A., Möbius, E., & Trattner, K. J.	709
660	1999, Journal of Geophysical Research, 104, 28263,	710
661	doi: 10.1029/1999JA900356	711
662	Gosling, J. T., Baker, D. N., Bame, S. J., et al. 1987, JGR	,712
663	92, 8519, doi: 10.1029/JA092iA08p08519	713
664	Guo, Y., Thompson, P., Wirzburger, J., et al. 2021, Acta	714
665	Astronautica, 179, 425,	715

666 doi: 10.1016/j.actaastro.2020.11.007 716

- Hill, M. E., Mitchell, D. G., Andrews, G. B., et al. 2017, Journal of Geophysical Research (Space Physics), 122, 1513, doi: 10.1002/2016JA022614
- Howard, R. A., & Vourlidas, A. 2018, SoPh, 293, 55, doi: 10.1007/s11207-018-1274-9
- Hundhausen, A. J. 1972, Coronal Expansion and Solar Wind (Springer-Verlag Berlin Heidelberg)
- Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J. J., & Lugaz, N. 2015, Journal of Geophysical Research (Space Physics), 120, 3328, doi: 10.1002/2014JA020836
- Kahler, S. W., & Reames, D. V. 1991, JGR, 96, 9419, doi: 10.1029/91JA00659
- Kahler, S. W., Sheeley, N. R., J., Howard, R. A., et al. 1984, JGR, 89, 9683, doi: 10.1029/JA089iA11p09683
- Kasper, J. C., Abiad, R., Austin, G., et al. 2016, SSRv, 204, 131, doi: 10.1007/s11214-015-0206-3
- Kataoka, R., Watari, S., Shimada, N., Shimazu, H., & Marubashi, K. 2005, GeoRL, 32, L12103, doi: 10.1029/2005GL022777
- Kennel, C. F., Coroniti, F. V., Scarf, F. L., et al. 1986, JGR, 91, 11917, doi: 10.1029/JA091iA11p11917
- Kilpua, E., Koskinen, H. E. J., & Pulkkinen, T. I. 2017, Living Reviews in Solar Physics, 14, 5, doi: 10.1007/s41116-017-0009-6
- Kilpua, E. K. J., Good, S. W., Ala-Lahti, M., et al. 2021, Frontiers in Astronomy and Space Sciences, 7, 109, doi: 10.3389/fspas.2020.610278
- Kollhoff, A., Kouloumvakos, A., Lario, D., Dresing, N., & et al. 2021, A&A, doi: 10.1051/0004-6361/202140937
- Laitinen, T., & Dalla, S. 2021, ApJ, 906, 9, doi: 10.3847/1538-4357/abc622
- Lario, D., Berger, L., Decker, R. B., et al. 2019, AJ, 158, 12, doi: 10.3847/1538-3881/ab1e49
- Lario, D., & Decker, R. B. 2002, GeoRL, 29, 1393, doi: 10.1029/2001GL014017
- Lario, D., Decker, R. B., Ho, G. C., et al. 2005, in American Institute of Physics Conference Series, Vol. 781, The Physics of Collisionless Shocks: 4th Annual IGPP International Astrophysics Conference, ed. G. Li, G. P. Zank, & C. T. Russell, 180–184, doi: 10.1063/1.2032693
- Lario, D., Decker, R. B., Roelof, E. C., & Viñas, A. F. 2015a, ApJ, 813, 85, doi: 10.1088/0004-637X/813/2/85
- Lario, D., Decker, R. B., Roelof, E. C., & Viñas, A. F. 2015b, in Journal of Physics Conference Series, Vol. 642, Journal of Physics Conference Series, 012014, doi: 10.1088/1742-6596/642/1/012014
- Lario, D., Ho, G. C., Decker, R. B., et al. 2003, in American Institute of Physics Conference Series, Vol.
 679, Solar Wind Ten, ed. M. Velli, R. Bruno, F. Malara, & B. Bucci, 640–643, doi: 10.1063/1.1618676

LARIO ET AL.

717	Lee, M. 1983, Journal of Geophysical Research (Space	767
717	Physics), 88, 6109, doi: 10.1029/JA088iA08p06109	767 768
719	Lee, M. a. 2005, The Astrophysical Journal Supplement	769
720	Series, 158, 38, doi: 10.1086/428753	770
721	Lee, M. A. 2006, Washington DC American Geophysical	771
722	Union Geophysical Monograph Series, 165, 245,	772
723	doi: 10.1029/165GM23	773
724	Lepping, R. P., Berdichevsky, D. B., Burlaga, L. F., et al.	774
725	2001, SoPh, 204, 285, doi: 10.1023/A:1014264327855	775
726	Li, G., & Lugaz, N. 2020, ApJ, 905, 8,	776
727	doi: 10.3847/1538-4357/abc00c	777
728	Lin, R. P., Anderson, K. A., Ashford, S., et al. 1995, SSRv	,778
729	71, 125, doi: 10.1007/BF00751328	779
730	Liu, Y., Richardson, J. D., Belcher, J. W., Kasper, J. C., &	Z780
731	Skoug, R. M. 2006, Journal of Geophysical Research	781
732	(Space Physics), 111, A09108,	782
733	doi: 10.1029/2006JA011723	783
734	Liu, Y. D., Luhmann, J. G., Kajdič, P., et al. 2014, Nature	9 784
735	Communications, 5, 3481, doi: 10.1038/ncomms4481	785
736	Lugaz, N., Farrugia, C. J., Smith, C. W., & Paulson, K.	786
737	2015, Journal of Geophysical Research (Space Physics),	787
738	120, 2409, doi: 10.1002/2014JA020848	788
739	Lugaz, N., Farrugia, C. J., Winslow, R. M., et al. 2018,	789
740	ApJL, 864, L7, doi: 10.3847/2041-8213/aad9f4	790
741	Lugaz, N., Temmer, M., Wang, Y., & Farrugia, C. J. 2017,	791
742	SoPh, 292, 64, doi: 10.1007/s11207-017-1091-6	792
743	Mäkelä, P., Gopalswamy, N., Akiyama, S., Xie, H., &	793
744	Yashiro, S. 2011, Journal of Geophysical Research (Spac	e 794
745	Physics), 116, A08101, doi: 10.1029/2011JA016683	795
746	Marhavilas, P. K., Malandraki, O. E., & Anagnostopoulos,	796
747	G. C. 2015, Planet. Space Sci., 117, 192,	797
748	doi: 10.1016/j.pss.2015.06.010	798
749	McComas, D. J., Bame, S. J., Barker, P., et al. 1998, SSRv	7,799
750	86, 563, doi: 10.1023/A:1005040232597	800
751	McComas, D. J., Alexander, N., Angold, N., et al. 2016,	801
752	SSRv, 204, 187, doi: 10.1007/s11214-014-0059-1	802
753	Moissard, C., Fontaine, D., & Savoini, P. 2019, Journal of	803
754	Geophysical Research (Space Physics), 124, 8208,	804
755	doi: 10.1029/2019JA026952	805
756	Moncuquet, M., Meyer-Vernet, N., Issautier, K., et al. 2020), ₈₀₆
757	ApJS, 246, 44, doi: $10.3847/1538-4365/ab5a84$	807
758	Müller-Mellin, R., Kunow, H., Fleißner, V., et al. 1995,	808
759	SoPh, 162, 483, doi: 10.1007/BF00733437	809
760	Neugebauer, M., & Goldstein, R. 1997, Washington DC	810
761	American Geophysical Union Geophysical Monograph	811
762	Series, 99, 245, doi: $10.1029/GM099p0245$	812
763	Nieves-Chinchilla, T., Szabo, A., & et al. 2021, in	813
764	preparation	814
765	Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., et al.	815
766	1995, SSRv, 71, 55, doi: 10.1007/BF00751326	816

Palmerio, E., Kilpua, E. K. J., & Savani, N. P. 2016,
Annales Geophysicae, 34, 313,
doi: 10.5194/angeo-34-313-2016
Palmerio, E., Lee, C. O., Mays, M. L., & et al. 2021, in
preparation
Richardson, I. G. 1997, Washington DC American
Geophysical Union Geophysical Monograph Series, 99,
189, doi: 10.1029/GM099p0189
Richardson, I. G., & Cane, H. V. 1996, JGR, 101, 27521,
doi: 10.1029/96JA02643
—. 2010a, SoPh, 264, 189, doi: 10.1007/s11207-010-9568-6
—. 2010b, Journal of Geophysical Research (Space
Physics), 115, A07103, doi: 10.1029/2009JA015039
—. 2011, SoPh, 270, 609, doi: 10.1007/s11207-011-9774-x
Roelof, E. C., Krimigis, S. M., Mitchell, D. G., et al. 2010,
in American Institute of Physics Conference Series, Vol.
1302, Pickup Ions Throughout the Heliosphere and
Beyond, ed. J. Le Roux, G. P. Zank, A. J. Coates, &
V. Florinski, 133–141, doi: 10.1063/1.3529960
Russell, C. T., Mewaldt, R. A., Luhmann, J. G., et al.
2013, ApJ, 770, 38, doi: 10.1088/0004-637X/770/1/38
Salman, T. M., Lugaz, N., Farrugia, C. J., et al. 2020, ApJ,
904, 177, doi: 10.3847/1538-4357/abbdf5
Sanderson, T. R., Beeck, J., Marsden, R. G., et al. 1990,
Washington DC American Geophysical Union
Geophysical Monograph Series, 58, 385.
Geophysical Monograph Series, 58, 385, doi: 10.1029/GM058p0385
doi: 10.1029/GM058p0385
doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., &
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., &
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference, Vol. 3, 23rd International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539 Siscoe, G., & Odstrcil, D. 2008, Journal of Geophysical
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539 Siscoe, G., & Odstrcil, D. 2008, Journal of Geophysical Research (Space Physics), 113, A00B07,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539 Siscoe, G., & Odstrcil, D. 2008, Journal of Geophysical Research (Space Physics), 113, A00B07, doi: 10.1029/2008JA013142
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539 Siscoe, G., & Odstrcil, D. 2008, Journal of Geophysical Research (Space Physics), 113, A00B07, doi: 10.1029/2008JA013142 Skoug, R. M., Gosling, J. T., Steinberg, J. T., et al. 2004,
 doi: 10.1029/GM058p0385 Sanderson, T. R., Erdös, G., Balogh, A., et al. 2000, JGR, 105, 18275, doi: 10.1029/1999JA000115 Sanderson, T. R., Reinhard, R., van Nes, P., & Wenzel, K. P. 1985, JGR, 90, 19, doi: 10.1029/JA090iA01p00019 Sauer, H. H. 1993, in International Cosmic Ray Conference (ICRC23), Volume 3, 250 Shaikh, Z. I., Raghav, A. N., Vichare, G., Bhaskar, A., & Mishra, W. 2018, ApJ, 866, 118, doi: 10.3847/1538-4357/aae1b1 Shen, C., Wang, Y., Ye, P., & Wang, S. 2008, SoPh, 252, 409, doi: 10.1007/s11207-008-9268-7 Sibeck, D. G., Decker, R. B., Mitchell, D. G., et al. 2001, JGR, 106, 21675, doi: 10.1029/2000JA000417 Sibeck, D. G., Phan, T. D., Lin, R., Lepping, R. P., & Szabo, A. 2002, Journal of Geophysical Research (Space Physics), 107, 1271, doi: 10.1029/2001JA007539 Siscoe, G., & Odstrcil, D. 2008, Journal of Geophysical Research (Space Physics), 113, A00B07, doi: 10.1029/2008JA013142

- Smart, D. F., & Shea, M. A. 1996, Advances in Space
 Research, 17, 113, doi: 10.1016/0273-1177(95)00520-O
- Smith, C. W., L'Heureux, J., Ness, N. F., et al. 1998, SSRv, 86, 613, doi: 10.1023/A:1005092216668
- Smith, C. W., Ness, N. F., Burlaga, L. F., et al. 2001,
 SoPh, 204, 227, doi: 10.1023/A:1014265108171
- 823
 Temmer, M., Holzknecht, L., Dumbović, M., et al. 2021,
 841

 824
 Journal of Geophysical Research (Space Physics), 126,
 842

 825
 e2020JA028380, doi: 10.1029/2020JA028380
 843
- Torsti, J., Riihonen, E., & Kocharov, L. 2004, ApJL, 600, 844
 L83, doi: 10.1086/381575
- van Nes, P., Reinhard, R., Sanderson, T. R., Wenzel, K. P.,
 & Zwickl, R. D. 1984, JGR, 89, 2122,
 doi: 10.1029/JA089iA04p02122
- Wiedenbeck, M. E., Angold, N. G., Birdwell, B., et al. 2017,⁸⁴⁸
 in International Cosmic Ray Conference, Vol. 301, 35th ⁸⁴⁹
- International Cosmic Ray Conference (ICRC2017), 16 850
- Wilson, Lynn B., I., Chen, L.-J., Wang, S., et al. 2019a, ApJS, 243, 8, doi: 10.3847/1538-4365/ab22bd

- --. 2019b, ApJS, 245, 24, doi: 10.3847/1538-4365/ab5445
- ---. 2020, ApJ, 893, 22, doi: 10.3847/1538-4357/ab7d39
- Wuelser, J.-P., Lemen, J. R., Tarbell, T. D., et al. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5171, Telescopes and Instrumentation for Solar Astrophysics, ed. S. Fineschi & M. A. Gummin, 111–122, doi: 10.1117/12.506877
- Xu, M., Shen, C., Chi, Y., et al. 2019, ApJ, 885, 54, doi: 10.3847/1538-4357/ab4596
- Yashiro, S., Gopalswamy, N., Michalek, G., et al. 2004, Journal of Geophysical Research (Space Physics), 109, A07105, doi: 10.1029/2003JA010282
- Zhao, L. L., Zank, G. P., Khabarova, O., et al. 2018, ApJL, 864, L34, doi: 10.3847/2041-8213/aaddf6
- Zurbuchen, T. H., & Richardson, I. G. 2006, SSRv, 123, 31, doi: 10.1007/s11214-006-9010-4