

ASTM INTERNATIONAL Helping our world work better

Validation and application of crystal plasticity simulations to study effect of process-specific defects in additively manufactured polycrystalline materials

Saikumar R. Yeratapally¹, Edward H. Glaessgen²

¹Research Engineer II, National Institute of Aerospace, Hampton, VA ²Senior Technologist for Computational Materials, NASA Langley Research Center, Hampton, VA

www.amcoe.org

Presenter biography

Saikumar "Sai" Yeratapally

Work Experience:

Research engineer at National Institute of Aerospace (NIA) (10/2017- current) Post-doctoral Research Associate at NIA (3/2016 – 10/2017)

Education:

Ph.D. in Aeronautics and Astronautics Engineering from Purdue University (12/2015)

M.S. in Mechanical Engineering from Carnegie Mellon University (12/2010)

B.E. (Honors) in Mechanical Engineering from Birla Institute of Technology and Science (Goa, India) (8/2009)

ICAV\2021

Research Interests:

Microstructure-performance linkage using crystal plasticity models Effect-of-defects in additively manufactured polycrystalline materials

Motivation

 Fatigue crack initiation (FCI) in polycrystalline materials is primarily dependent on microstructure, inclusion and defect attributes, in addition to other factors

ICAV\2021

- Linking defect/microstructure attributes to failure mechanisms and hence performance is essential for rapid qualification

- Crystal plasticity (CP) simulations provide a platform to quantitatively link defect/microstructure attributes to performance
- Validation of CP models is important to be able to quantitatively understand the underpinning mechanisms of crack initiation

- Additive manufacturing (AM) modeling challenge
 - Comparing crystal plasticity finite element (CPFE) predictions with high-energy Xray measurements
- CP-based investigation of process-specific defects Ti-6AI-4V alloy

AM modeling challenge: Build configuration

<u>Material / AM Process</u>: Inconel 625 (IN625) produced through Laser powder-bed fusion (L-PBF)
<u>Machine</u>: EOS M280
<u>Powder</u>: Commercially available IN625 gas atomized powder
<u>Processing parameters</u>: Nominal processing parameters
<u>Machining</u>: The sample was fully machined by wire electrical discharge machining (EDM)
<u>Post processing</u>: Stress relieved (SR)+ heat treated (HT)+ hot isostatic pressing (HIP), no surface treatment

Source: ARFL's AM Challenge Series

ICA/\2021

AM modeling challenge: High energy X-ray diffraction CAV 2021

Variants of high-energy X-ray diffraction (HEDM) technique:

1) near-field HEDM (nf-HEDM): provides data to reconstruct individual grain morphologies

2) far-field HEDM (ff-HEDM): provides grain average orientations, elastic strains and centroids

AM modeling challenge: Problem statement

<u>Challenge problem</u>: Given the stress strain curve, serial-sectioned and reconstructed 3D microstructure, predict grain-average elastic strain tensor for 28 "challenge" grains at six different macroscopic load states, S1 through S6

Source: ARFL's AM Challenge Series

ICA/\2021

• Additive manufacturing (AM) modeling challenge

- Comparing crystal plasticity finite element (CPFE) predictions with high-energy Xray measurements
- CP-based investigation of process-specific defects Ti-6AI-4V alloy

Crystal plasticity (CP) for structure-property linkage

ScIFEN: Scalable Implementation of Finite Elements by NASA

ε_{γγ} 3% 2% 1% ScIFEN¹ is built on PETSc²

- Leverages a suite of data structures and routines to achieve scalability.
- Utilizes open-source libraries like MOAB³ and HDF5⁴ for parallel I/O operations.
- Scales well over thousands of processers, compared to commercial packages
- Includes phenomenological CP models
- ➢ Interfaces with DREAM.3D⁵, Gmsh⁶ and SPPARKS⁷
- 3D microstructure* of IN625 obtained from serial-sectioning has 29,662 grains
- Finite element mesh has ~85 million degrees of freedom
- Global strain applied in YY direction: 1%
- <u>CP model</u>: Strain-gradient based⁸
- <u>Simulation time</u>: ~44 hours on 640 Intel Xeon E5-2670 processors
- 1. https://software.nasa.gov/software/LAR-18720-1
- 2. Scalable solutions for PDEs, <u>www.mcs.anl.gov/petsc/</u>
- 3. Mesh-Oriented dataBAse, http://sigma.mcs.anl.gov/moab-library/
- 4. Parallel file I/O, www.hdfgroup.com

- 5. DREAM.3D http://dream3d.bluequartz.net/
- 6. Gmsh, https://gmsh.info/
- 7. SPPARKS, https://spparks.github.io/
- 8. Acharya et al. (2000), J. Mech. Phys. Solids, 48(10), pp:2213-2230

Boundary conditions:

- Fully fixed bottom (-Y) face
- Free X and Z faces
- Applied Y-displacement on top (+Y) face

ICAV2021

9 © ASTM International

*Source of 3D microstructure: AFRL AM challenge series https://materials-data-facility.github.io/MID3AS-AM-Challenge/

CP predictions vs. ff-HEDM measurements

ICAV\2021

- > There is a good agreement between CP predictions and ff-HEDM measurements in the elastic regime (S1-S3)
- Deviations start to develop in plastic regime (S4-S6)

Discrepancy 1: Boundary conditions

Boundary conditions:

- Fully fixed bottom (-Y) face
- Free X and Z faces
- Applied Y-displacement on top (+Y) face

Discrepancy 1: Boundary conditions

Strain maps of total strain in YY direction, generated at global strain of 1%

Non-cumulative L2 norm calculated at each macroscopic load state, S_k

ICAV2021

S_k is macroscopic stress state;

 g_n is grain ID

Discrepancy 2: Stress relaxation in grains

ff-HEDM measurement of evolution of YY component of grain-average elastic strain in each of the 28 grains

CPFE prediction of evolution of YY component of grain-average elastic strain in each of the 28 grains

ICAV2021

Observation: Phenomenological CP model used is unable to predict stress relaxation

Discrepancy 2: Stress relaxation in grains

- Heatmap showing strain drop in grains
- Heatmap created using ff-HEDM data.

Observation: Stress relaxation is predominant in the plastic regime and is non-existent in the elastic regime

ICA/\2021

Illustration: Grain-level stress relaxation in Ti-7AI

Setup of creep experiment at advanced photon source (APS)

Stress relaxation during creep loading at 85% of the yield stress

ICAV\2021

> Corresponding slip band developed at the location of the grain

Source: Beaudoin et al. Physical Review B. 96, 174116 (2017)

ASTM International Conference on Additive Manufacturing

ICAV 2021

Saikumar R. Yeratapally, Albert R. Cerrone, Edward H. Glaessgen, "*Discrepancy between crystal plasticity simulations and far-field high energy X-Ray diffraction microscopy measurements*" Integrating Materials and Manufacturing Innovation 2021; 10(2):196-217. DOI: 10.1007/s40192-021-00216-5

Journal: Integrating Materials and Manufacturing Innovation (IMMI)

Special Issue: Metal Additive Manufacturing Modeling Challenge Series 2020

- Additive manufacturing (AM) modeling challenge
 - Comparing crystal plasticity finite element (CPFE) predictions with high-energy Xray measurements
- CP-based investigation of process-specific defects Ti-6AI-4V alloy

Fatigue crack initiation at pores

AlSi10Mg, L-PBF Ti6AI4V, EBM Ti6AI4V, WAAM Ø 288 µm Ø 328 um Diameter [mm] (a) (a) crack detection (k) 0.3781 0.3152 0.2523 Cycles since o 0.1894 0.1265 0.0636 1 mm mm mm Biswal et al. (2019) Additive Manufacturing 28:517–52 Williams et al. (2017) Scientific Report | 7: 7308 12 mm .

Du Plessis et al. (2020) Materials and Design 187 (2020) 108385.

ICAV\2021

EBM: electron beam melting WAAM: wire arc additive manufacturing L-PBF: Laser powder-bed fusion

x Oo Οσ ⊙ σ 🗳 0 cycles 73,000 cvcles 71,000 cycles 70,000 cycles A357-T6, Cast 69,000 cvcles 66,000 cycles 64,000 cvcles 53,000 cycles 40,000 cvcles 0 cycles $500 \ \mu m$ 200 µm $200 \ \mu m$ Pore 1 (b) Pore : Munoz et al. (2016) Scientific Reports | 7:45239 Free Surface

Influence of pore neighborhood

Equivalent plastic strain map (at 1% global strain)

L-PBF process-specific pores in as-built Ti-6AI-4V alloy, obtained from backscatter electron images of metallographic sections

Strain map in local neighborhood of *pore 1*

Strain map when there is no pore

ICAV2021

Pore 1 is embedded in a "hard" grain

Strain map in local neighborhood of *pore 2*

Strain map when there is no pore

Pore 2 is embedded in a "soft" grain

Influence of pore neighborhood

Strain map in local neighborhood of *pore 1*

Strain map in local neighborhood of *pore 2*

Strain map when there is no pore

Strain map when there is no pore

ICAV\2021

Observation: Pore fully embedded in "soft" grain accumulates significant plastic strain in its vicinity compared to a similar sized pore located within a "hard" grain

- Grain-average elastic strain measurements from crystal plasticity finite element (CPFE) are compared with far-field high energy X-ray diffraction (ff-HEDM) measurements.
 ScIFEN's CPFE solver predictions (in the elastic regime) agree with ff-HEDM measurements
 - The results qualitatively agree in the elastic regime, but increased level of discrepancy is observed in the plastic regime

ICAV2021

- ➢Sources of discrepancy between CPFE and ff-HEDM are discussed
- CP simulations are used to understand the influence of local microstructure on the accumulation of plastic strain.
 - Pore fully embedded in "soft" grain accumulates significant plastic strain compared to a similar sized pore located within a "hard" grain
- Ongoing work to validate and apply high-fidelity CP models will be used to develop certification by analysis

Acknowledgem<u>ents</u>

The work presented is supported by NASA Aeronautics Research Mission Directorate's (ARMD) Transformative Tools and Technologies (TTT) project

ASTM INTERNATIONAL Helping our world work better

Thank you.

Saikumar R. Yeratapally Saikumar.Yeratapally@nianet.org

www.amcoe.org