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Motivation

— Fatigue crack initiation (FCI) in polycrystalline materials is primarily dependent on microstructure, inclusion and defect attributes,
in addition to other factors

FCI at twin boundaries FCI at pore FCI at inclusion
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AL
Shamir et al. (2020)
— Linking defect/microstructure attributes to failure mechanisms and hence performance is essential for rapid qualification

— Crystal plasticity (CP) simulations provide a platform to quantitatively link defect/microstructure attributes to performance
— Validation of CP models is important to be able to quantitatively understand the underpinning mechanisms of crack initiation
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Presentation outline |CC

« Additive manufacturing (AM) modeling challenge

» Comparing crystal plasticity finite element (CPFE) predictions with high-energy X-
ray measurements

» CP-based investigation of process-specific defects Ti-6Al-4V alloy

4 © ASTM International ASTM International Conference on Additive Manufacturing



AM modeling challenge: Build configuration |C 2021

Final build Fully machined tensile coupon

A

35 mm

\4

AN

Material / AM Process: Inconel 625 (IN625) produced through Laser powder-bed fusion (L-PBF)

Machine: EOS M280

Powder: Commercially available IN625 gas atomized powder

Processing parameters: Nominal processing parameters

Machining: The sample was fully machined by wire electrical discharge machining (EDM)

Post processing: Stress relieved (SR)+ heat treated (HT)+ hot isostatic pressing (HIP), no surface treatment

Source: ARFL’s AM Challenge Series https://materials-data-facility.github.io/MID3AS-AM-Challenge/
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AM modeling challenge: High energy X-ray diffraction]C 2021

Diffracted beam from Far Field «
Individual Grain l e,

X-ray CT

Near Field

nf-HEDM  ~
reconstruction 0

L, ; e
Direct beam — L, R o
used for u-CT )

Adapted from: Poulsen HF. 2012. J. Appl. Crystallogr. 45:1084-1097

Variants of high-energy X-ray diffraction (HEDM) technique:
1) near-field HEDM (nf-HEDM): provides data to reconstruct individual grain morphologies
2) far-field HEDM (ff-HEDM): provides grain average orientations, elastic strains and centroids

6 © ASTM International ASTM International Conference on Additive Manufacturing




AM modeling challenge: Problem statement |CC

28 “challenge” grains

Serial sectioned microstructure
at gage section

Stress-strain
curve

56

(700 pum

)

Loading Axis
and

| Build Direction

Challenge problem: Given the stress strain curve, serial-sectioned and reconstructed 3D microstructure, predict
grain-average elastic strain tensor for 28 “challenge” grains at six different macroscopic load states, S1 through S6

https://materials-data-facility.github.io/MID3AS-AM-Challenge/

Source: ARFL’s AM Challenge Series
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Presentation outline |CC

» Comparing crystal plasticity finite element (CPFE) predictions with high-energy X-
ray measurements

» CP-based investigation of process-specific defects Ti-6Al-4V alloy

8 © ASTM International ASTM International Conference on Additive Manufacturing



Crystal plasticity (CP) for structure-property linkage |C

ScIFEN: Scalable Implementation of Finite Elements by NASA

= » ScIFEN! is built on PETSc?

» Leverages a suite of data structures and routines to
achieve scalability.

» Utilizes open-source libraries like MOAB3 and HDF54
for parallel I/O operations.

Scales well over thousands of processers, compared
to commercial packages

» Includes phenomenological CP models

0% > Interfaces with DREAM.3D5, Gmsh® and SPPARKSY

M

<
w
S

N
S

MIIMIIHIIIIM
&
N
A\

Boundary conditions:

* Fully fixed bottom (-Y) face

* Free X and Z faces

* Applied Y-displacement on top (+Y)
face

- 3D microstructure* of IN625 obtained from serial-sectioning has 29,662 grains
. Finite element mesh has ~85 million degrees of freedom

. Global strain applied in YY direction: 1%

. CP model: Strain-gradient based?

. Simulation time: ~44 hours on 640 Intel Xeon E5-2670 processors

1. https://software.nasa.gov/software/LAR-18720-1 5. DREAM.3D http://dream3d.bluequartz.net/
2. Scalable solutions for PDEs, www.mcs.anl.gov/petsc/ 6. Gmsh, https://gmsh.info/
3. Mesh-Oriented dataBAse, http://sigma.mcs.anl.qov/moab-library/ 7. SPPARKS, https://spparks.qgithub.io/

4. Parallel file 1/0, www.hdfgroup.com 8. Acharya et al. (2000), J. Mech. Phys. Solids, 48(10), pp:2213-2230
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CP predictions vs. f=tHEDM measurements
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» There is a good agreement between CP predictions and ff-HEDM measurements in the elastic regime (S1-S3)
» Deviations start to develop in plastic regime (S4-S6)
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Discrepancy 1: Boundary. conditions

IC

Boundary conditions:
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Fully fixed bottom (-Y) face
Free X and Z faces
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Discrepancy 1: Boundary. conditions

ICAAM\2021

Strain maps of total strain in YY direction,
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BC1: Fully constrained bottom face = BC2: Relaxed boundary conditions
(Only one corner node on -Y face fully fixed

and one edage fixed in X and Y directions
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Non-cumulative L2 norm, L25s,

Non-cumulative L2 norm calculated
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Discrepancy 2: Stress relaxation in grains |C 2021

ff-HEDM measurement of evolution of YY component CPFE prediction of evolution of YY component of
of grain-average elastic strain in each of the 28 grains grain-average elastic strain in each of the 28 grains
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Observation: Phenomenological CP model used is unable to predict stress relaxation
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Discrepancy 2: Stress relaxation in grains
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Observation: Stress relaxation is predominant in the plastic regime and is non-existent in the elastic regime
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lllustration: Grain-level stress relaxation in Ti-7Al |C 2021

0 5 10 15 20 25 30 35 40
Setup of creep experiment at scan #

advanced photon source (APS) > Stress relaxation during creep loading at 85% of the yield stress

» Corresponding slip band developed at the location of the grain

Source: Beaudoin et al. Physical Review B. 96, 174116 (2017
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For more detailed discussion |C

Saikumar R. Yeratapally, Albert R. Cerrone, Edward H. Glaessgen, “Discrepancy between
crystal plasticity simulations and far-field high energy X-Ray diffraction microscopy
measurements” Integrating Materials and Manufacturing Innovation 2021; 10(2):196-217.
DOI: 10.1007/s40192-021-00216-5

Journal: Integrating Materials and Manufacturing Innovation (IMMI)

Special Issue: Metal Additive Manufacturing Modeling Challenge Series 2020
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Presentation outline |CC

* CP-based investigation of process-specific defects Ti-6Al-4V alloy
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Fatigue crack initiation at pores |CN\/\2021

Ti6AI4V, EBM TiGAI4V, WAAM AlISi10Mg, L-PBF
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Influence of pore neighborhood |C 2021

Equivalent plastic strain map .
(at 1% global strain) Strain map in local Strain map when

neighborhood of pore 1 thereis no pore

Pore 1 is
embedded in a
“hard” grain

ing

L-PBF process-specific
pores in as-built Ti-6Al-4V
alloy, obtained from
backscatter electron images
of metallographic sections

Load

Strain map in local Strain map when
neighborhood of pore 2 there is no pore

Pore 2 is
embedded in a
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Influence of pore neighborhood |CC

- i Strain map when : , .
Strain map in local el ng s Comparing strain accumulation
neighborhood of pore 1 in vicinity of two pores
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Observation: Pore fully embedded in “soft” grain accumulates significant plastic
strain in its vicinity compared to a similar sized pore located within a “hard” grain
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— Grain-average elastic strain measurements from crystal plasticity finite element (CPFE) are
compared with far-field high energy X-ray diffraction (ffF-HEDM) measurements.

»SclFEN’s CPFE solver predictions (in the elastic regime) agree with f-tHEDM measurements

»The results qualitatively agree in the elastic regime, but increased level of discrepancy is observed in the
plastic regime

» Sources of discrepancy between CPFE and ff-HEDM are discussed

— CP simulations are used to understand the influence of local microstructure on the accumulation

of plastic strain.

»Pore fully embedded in “soft” grain accumulates significant plastic strain compared to a similar sized
pore located within a “hard” grain

—Ongoing work to validate and apply high-fidelity CP models will be used to develop certification
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