

Structural Design and Analysis Considerations

Michelle Tillotson Rudd NASA Marshall Space Flight Center

> Delft University of Technology Delft, The Netherlands November 15, 2021

Outline

Part One

- Mechanical Design Considerations
- Structural Assessment: Analysis and Test

Break

Part Two

- Shell buckling research at NASA
 - Background
 - Test-article design example
 - Large-scale testing

Mechanical Design Considerations

Typical Launch Vehicle

Structural Design Considerations

- Primary Function
- Loads and Environments
- Material Selection
- Structural Configuration
- Fabrication and Assembly
- Geometric Constraints and Interfaces
- Structural Integrity

Structural Design Considerations: Primary Function

Determine primary function

Primary structure

Secondary structure

Propellant tank

Mechanism

Aerodynamic surface

- Insulation
- Etc.

Structural Design Considerations: Loads and Environments

- **Aerodynamic loads**
- **Aeroheating**
- **Shock and vibration**
- **In-space environments**
- **Cryogenic storage**
- **Transportation and lifting**

Shuttle

Saturn V, Dynamic Test Stand

Structural Design Considerations: Material Selection

Metallic Propellant Tank

Cork Thermal Protection System

Composite Payload Adapter

3D Printed Plastic

Structural Design Considerations: Structural Configuration

- Monocoque/ solid laminate
- Truss
- Stiffened skin
- Skin stringer
- Sandwich

Payload fairing

Second stage

Metallic orthogrid

Hat stiffened stringer

Composite isogrid

Structural Design Considerations: Fabrication and Assembly

- Precision-machined pieces
- Post-machined assembly
- Joint design
 - Rivet/Bolt/Weld/Bond

Filament wound or composite layup

Launch Vehicle Stage Adapter

Structural Design Considerations: Fabrication and Assembly

Fabrication was performed at Marshall Space Flight Center (MSFC)

Structural Design Considerations: Fabrication and Assembly

Fiber place inner facesheet

Autoclave cure

Fabrication was performed at MSFC

Structural Design Considerations: Geometric Constraints and Interfaces

NASA Shuttle, Intertank/SRB Attachment

Structural Design Considerations: Geometric Constraints and Interfaces

Apollo Era Lunar Rover

Lunar Rover Stowed

Lunar Rover Deployed

Structural Design Considerations: Geometric Constraints and Interfaces

NASA/DLR Deployable Composite Booms (DCB)

2,000-m²-class solar sail

54.5-ft (16.6-m) boom partially coiled on a 7-in. (18-cm) diameter spool.

Four 54.5-ft (16.6-m) booms co-wrapped inside the DLR-developed deployment mechanism (top plate removed).

Structural Design Considerations: Structural Integrity

Structural Design Considerations: Structural Integrity

- Strength
- Stability
- Frequency
- Fracture and fatigue
- Damage Tolerance

Each material and structural system has different failure modes

NASA Space Launch System (SLS) Hydrogen Tank after test to failure at MSFC

Structural Design Considerations: Structural Integrity

Local buckling

Material failure

Global Buckling

Structural Design Considerations: Structural Integrity

Local buckling (facesheet dimpling)

Global buckling

Delamination

Core damage

Core damage

Material failures

Structural Assessment

Structural Assessment

Analysis

- Classical analytical methods
 - Hand calculations
 - Closed-form solutions
- Numerical methods
 - Finite element analyses (FEA)
- Testing
 - Building block

Some Common Simplifications in Structural Analysis

- Continuum assumption
- Boundary conditions
- Uniformity/lack of design details
- Perfect or nominal
- "Smeared" shell or plate
- Linear material properties
- Geometrically linear response
- Assumed form of displacements, stresses, strains, etc.
- Transverse shear response: nondeformable, first- or second-order, etc.

Honeycomb-Core Sandwich Composite

Centea, et al., 2018

Honeycomb-Core Sandwich Composite: Ply Drop

Integrally Stiffened Metallic Shell

Structural Analysis

"All models are wrong, but some are useful." - George E. P. Box

Short Break

Outline

Part One

- Mechanical Design Considerations
- Structural Assessment: Analysis and Test

Break

Part Two

- Shell buckling research at NASA
 - Background
 - Test-article design example
 - Large-scale testing

Shell Buckling Research at NASA

Background

NASA Launch-Vehicle Shell Structures

- Traditionally, metals have been used for most launch-vehicle primary shell structure
 - Tanks
 - Integrally stiffened orthogrid or isogrid, etc.
 - Dry structure
 - Fastened hat stiffeners, etc.
- More recently, composites have been gaining wider acceptance for primary structure
 - Potential gains (mass, thermal, cost, etc.)
 - Most commonly have sandwich construction
 - Most often considered for dry structures

Launch-Vehicle Shell Structures

Cylindrical shells

 Significant portion of launch-vehicle structure

Buckling

- Often a controlling failure mode during design
- Empirical buckling loads are often significantly less than theoretical predictions

Empirical Shell Buckling Design Approach

- Standard practice is to predict the buckling load of an idealized perfect cylinder and apply an empirical buckling knockdown factor (KDF) to account for differences between test and analysis
- Differences between test and analysis primarily attributed to initial geometric imperfections in the shell wall (i.e., out-of-roundness)

End Shortening, δ

NASA SP-8007: Buckling of Thin-Walled Circular Cylinders

- Most commonly used source of empirical buckling knockdown factors for cylindrical shells
- Pedigree of test articles and test data (1920s-1960s) used to develop the knockdown factors is difficult to assess
- Most test-article designs not relevant to modern launch-vehicle constructions and material systems
 - Limited data for stiffened cylinders
 - No data for composite cylinders
- Generally thought to be overly conservative—this can lead to a large weight penalty

Shell Buckling Knockdown Factor Project: Composite Structures

 Objective: Develop new analysis-based buckling knockdown factors (KDFs) for composite launch-vehicle structures

Scope

- Sandwich-composite cylinders
- Acreage designs
- Axial compression

Approach

- Analysis-based knockdown factor development and validation
 - Develop and assess various knockdown factor prediction methodologies
- Targeted validation testing at coupon, panel, and cylinder levels
 - Relevant subscale test-article designs that span the launch-vehicle design space
 - State-of-the-art manufacturing, testing, and measurement techniques
- Implementation of new knockdown factors
 - Engage the user community to review and refine a technology development and implementation plan
 - Domestic and International collaborations

Validation Testing Levels

Coupon

- Shell property testing
- Transverse shear stiffness

Panel

- Out-of-plane deformations
- Effects of joints
- Effects of damage
- Scaling

Subscale cylinders

- 2.4-m diameter
- Validate analysis approach

MSFC Purpose-Built Test Facility

For subscale cylinder testing

Test articles

- 2.4-m diameter
- Lengths up to 3 m

Loading

- Uniform compression up to 7000 kN
- Combined compression and bending

Shell Buckling Research at NASA

Test-Article Design Example

Test-Article Design Example: Design Requirements

- Test-article first failure mode under axial compression should be global buckling
 - Desire to have factor of 1.4 (Failure Index* below 0.71) between global buckling and all other failure modes
 - Buckling should occur within facility load limits (1.5x10⁶ lbf)
- Test-article shell design should be in desired design space ("thin," axially stiff, etc.)
- Design should follow best practices for aerospace composite design and fabrication
- Test article to be fabricated at MSFC using automated fiber placement

Test-Article Design Example: Analyses

- Closed-form "hand" calculations
- Finite element analysis: shell models
- Finite element analysis: axisymmetric models
- Finite element analysis: global-local models

Test Article Design

Closed-Form Calculations

Closed-Form Calculations for Preliminary Design

• Global buckling load, P_{cr}

$$P_{cr} = 4\pi R t_f \phi \sigma_{cr}^{rc} \left(1 - \frac{1}{2} \frac{\phi \sigma_{cr}^{rc} t_f t_c}{G_{xz} h^2} \right)$$

• Axial strain at buckling, ε_{cr}

$$\varepsilon_{cr} = \frac{P_{cr}}{4\pi R t_f \, \overline{E}_x}$$

- Sandwich failures
 - Facesheet wrinkling, P_{FW}

- Facesheet dimpling, P_{FD}

- Core shear instability, P_{CS}

$$P_{FW} = 4\pi R t_f \sqrt{\frac{\frac{2}{3} \frac{t_f}{t_c} \frac{E_C \sqrt{\bar{E}_x \bar{E}_y}}{1 - \bar{v}_{xy} \bar{v}_{yx}}}$$

$$P_{FD} = 4\pi R t_f \frac{2\sqrt{\bar{E}_{x}\bar{E}_{y}}}{1-\bar{v}_{xy}\bar{v}_{yx}} \left(\frac{t_f}{d}\right)^2$$

$$P_{CS} = 4\pi R t_f \frac{G_{XZ} t_C}{2t_f}$$

Subscale Cylinder Testing (2.4-m diameter)

Challenge is to design buckling-critical subscale test articles in relevant areas of the design space

Calculate design-space parameters for launch-vehicle components

Subscale Cylinder Testing (2.4-m diameter)

Challenge is to design buckling-critical subscale test articles in relevant areas of the design space

- Calculate design-space parameters for launch-vehicle components
- Generate possible 2.4-m-diameter subscale designs
 - Variables: number of plies, ply angle, core thickness

Subscale Cylinder Testing (2.4-m diameter)

Challenge is to design buckling-critical subscale test articles in relevant areas of the design space

- Calculate design-space parameters for launch-vehicle components
- Select subscale designs
 - Criteria: buckling critical, failure load, design space, etc.
 - Five test-article designs selected as minimum number to validate analysis methods

Selected Design

Faces

- 5-ply axially stiff facesheets: [±30/90]_s
- Padups: four interleaved
 ±45 plies/face dropped
 at 35 cm, 40 cm, 46 cm, and
 51 cm

Core

- Acreage: 50 kg/m³ aluminum honeycomb
- End 25 cm: 130 kg/m³
 aluminum honeycomb
- Thickness: 5 mm
- To be tested in axial compression to failure

Test Article Design

Finite Element Analysis: Shell Model

Finite Element Shell Model

Model

- Approximately 154,000 shell elements (S4R)
- Element size: 13 mm in the axial direction by 0.5-degree (approximately 10 mm) in the circumferential direction
- Problem size: approximately 932,000 degrees-of-freedom

Analyses

- Linear buckling
- Nonlinear transient buckling (perfect and imperfect geometries)

Characteristic Loads and Linear Buckling

Load versus end shortening

Radial displacement, fundamental mode, 2467 kN

Nonlinear Analysis at 2397 kN Perfect Geometry

FEM θ , deg.

Nonlinear Analysis at 2356 kN Geometry with Radial Imperfections

Additional Sandwich Composite Failure Modes

Core tensile failure

Test Article Design

Finite Element Analysis: Axisymmetric Model

Axisymmetric FEA Analysis: Model

Half-cylinder-height model

- Applied displacement at midlength
- Midlength constrained from rotating

Abaqus CAX4 elements

- Fully integrated
- Axisymmetric continuum formulation

Individual plies modeled

- Ply drops modeled as wedges
- Wedges have same properties as terminating ply

Model metrics

- 220,000 elements
- 685,000 DOFs

Static solver

- Geometrically nonlinear
- Linear-elastic material

Comparison with perfect-geometry shell model

Axisymmetric FEA Analysis: Core-to-Facesheet Interface Stresses

Test Article Design

Finite Element Analysis: Global-Local Model

Finite Element Analysis: Global-Local Analysis

Solid elements in core, continuum shell

Radial imperfection mesh model

Finite Element Analysis Results: Global-Local Analysis

With radial imperfection, 2135 kN

Analysis	Failures interrogated	Advantages	Limitations
Closed-form (hand calculations)	 Linear global buckling (for initial down select) Facesheet wrinkling Facesheet dimpling Shear crimping 	Quickly assess many designsCalculate otherwise difficult-to-predict failure loads	Linear onlyPerfect geometry onlySimple, uniform shell only
FEA shell	Global bucklingFacesheet strength failures	 Linear/nonlinear analyses Can easily include measured radial and thickness imperfections Pretest buckling predictions 	 Cannot capture core crush or shear failures Cannot capture end conditions in great detail
FEA axisymmetric	 Global buckling Smeared-core strength failures (crush, shear) Core-to-facesheet interface stresses Facesheet strength failures 	 Linear or nonlinear analyses Interrogate facesheet and core response in detail (high mesh density) for low computational cost Investigate effects of various end conditions Captures closed-cylinder response 	 May not capture minimum buckling mode Cannot include realistic geometric imperfections Composite layup approximated Smeared-core assumption
FEA global- local	 Global buckling Smeared-core strength failures (crush, shear) Core-to-facesheet interface stresses Facesheet strength failures 	 Interrogate the effects of nonaxisymmetric deformations on core stresses/strength failures Can properly model composite layup Computationally efficient Can include nonaxisymmetric imperfections 	 Difficult to model end conditions in detail Smeared-core assumption Results may not be accurate near edges of local model Difficult to capture thickness imperfections

Shell Buckling Research at NASA

Test and Analysis Correlation

First Large-Scale Test Article

Construction

- 2.4-m-dia. honeycomb-core sandwich composite cylinder
- Single piece (unsegmented)
 - Core: 6.4-mm Korex honeycomb
 - Facesheets: 7-ply $[\pm 45/0/\overline{90}]_s$

Fabrication

- Built by Northrop Grumman under collaborative agreement
- Manufacturing development unit
- Out-of-autoclave
 - Material properties not well known

Structured Light Scanning Geometry Measurement

- Photogrammetric technique to measure 3-D shapes
 - Inside and outside
- Radial variation

Thickness variation

Testing and Instrumentation

Test conditions

- Subcritical axial compression and combined loading cases
- Axial compression to failure

Instrumentation

- 300 electrical strain and displacement sensors
- Digital image correlation (DIC)
 - Low speed and high speed
- 16,000 fiber-optic strain sensors

Test Setup

Analysis Approach

- Test article and testing hardware
 - Abaqus shell and beam elements
 - 156,960 elements
- Geometrically nonlinear transient analysis
 - Radial and thickness variations included

Subcritical Compression

- Significant difference in axial stiffness
 - Measured at end rings
 - Manufacturing demo—uncertain material properties
 - Ply extensional stiffnesses increased by 8.7%

Test and Analysis Correlation: End Shortening

Test and Analysis Correlation: End Shortening

Test and Analysis Correlation: Test-Section End Shortening

Material Testing

Material nonlinearity

 Though often ignored in analysis, it is known that fiber-reinforced composites can show material nonlinearity

Measured stiffness

- Sectioned barrel and performed edgewise compression testing
- Ply thickness 9.2% greater than assumed
- Nonlinear ply stiffnesses calculated

Photo: NIAR

Test and Analysis Correlation: Test-Section End Shortening

Test and Analysis Correlation: Radial Deformation, 2038 kN

Test and Analysis Correlation: Radial Deformation, at Failure

Test and Analysis Correlation: Radial Displacement

Failure Event: Standard-Rate Video

Failure Event: High-Speed Video (~10,000 fps)

Failure Event: High-Speed Digital Image Correlation

Radial deformation (~10,000 fps)

Concluding Remarks

- Structural design considerations
 - Numerous and potentially conflicting
 - Need to work with other groups, i.e., loads, aerodynamics, guidance and navigation, etc.
- Structural assessment
 - Analysis
 - Test
- Design
 - May require different analysis methods at different stages of design or to interrogate different potential failure modes
- Test and analysis correlation
 - High-fidelity models can represent physical response very well, but need good understanding of test article and test conditions

Acknowledgements

- Dr. Marc Shultz, MSFC
- Dr. Mark Hilburger, LaRC
- Tiffany Lockett, MSFC
- Rob Wingate, MSFC
- Mark Balzer, JPL
- Jeff Norris, MSFC
- Clint Cragg, NESC
- Shell Buckling Knockdown Factor Project Team

Questions?

Backup

- Finite element models are idealizations and assumptions
- Majority of analyses are not designed to predict failure, but to ensure the part will not fail

Test article in test stand

FEM of test article in test stand

- Shell Buckling Knockdown Factor test article, TA07
 - 2.4-m diameter
 - 2-m length
- 3-panel construction
 - Axial friction stir welds

2.4-ft-Diameter Cylinder Buckling Test Facility

Mechanical Design Considerations: Finite Element Modeling

- Modeled using Abaqus finite-element software
 - Shell and beam elements
 - Nominal geometry and material properties
 - Measured shell-wall geometric imperfections included
- Buckling response predicted using geometrically nonlinear transient analysis

Measured Geometric Radial Imperfection

- Hand Calculations: 1483 kN
 - Smeared stiffness
 - Perfect geometry
 - SP-8007 knockdown factor (0.495)
- Pretest Predictions (FEM): 2424 kN
 - Stiffeners and weldlands
 - Geometric radial imperfections
- Test: 2869 kN
 - Unknown unknowns

48% difference between hand calculations and test 15% difference between pretest predictions (FEM) and test

- Post test model refinement predicted buckling load to within 1% of measured
- Effects of individual refinements
 - Material stiffnesses (1.3%)
 - Skin and stiffener dimensions (7.8%)
 - Stiffener fillet representation (4.2%)
 - Geometric imperfection (4.5%)
 - Attachment ring modeling (< 1%)
 - Loading imperfection (-1.8%)

- Cracks in the STS-133 Intertank stringers of the External Tank
- Crack suspected to occur during filling the tank with cryogenic propellant

Transverse Load Application

- Simulates cryogenically-induced displacement

Finite Element Model

- Boundary conditions lead to difference in test and analysis
- Large test fixtures were not as rigid as they appeared

PLANES

OR WHAT
CAN HAPPEN
IF ONE OF
THE TEAM
GETS ALL
THEIR OWN

Design Considerations

4	Eunotionality	4.4	Noise
1.	Functionality	14.	Noise
2.	Strength/stress	15.	Styling
3.	Distortion/deflection/stiffness	16.	Shape
4.	Wear	17.	Size
5 .	Corrosion	18.	Control
6.	Safety	19.	Thermal properties
7.	Reliability	20.	Surface
8.	Manufacturability	21.	Lubrication
9.	Utility	22.	Marketability
10.	Cost	23.	Maintenance
11.	Friction	24.	Volume
12.	Weight	25.	Liability
13.	Life	26.	Remanufacturing/resource recovery

Mechanical Design Considerations

Functionality

- Designing for ease of assembly, testing, and installation
 - Assembly, what will you need access to prior to launch, does a welded joint need to be a bolted one?
 - Cutout sizes determined by Human Factors

NASA's SLS LH2 Buckling Test

Program Considerations

- Capability vs. "requirement" negotiations
 - Trades among all subsystems to get best/cheapest system
 - Risk/cost/performance trades with customer
- Margin management of design resources
 - Packaging volume, Dynamic/static clearances, structural strength, mass, mechanism force/torque, motor and pyro control circuit quantities
- Larger structure margin vs. more structural test; subsystem vs. system testing
 - Risk/cost/schedule/mass trade offs
- Trade offs of simplicity vs. performance
 - Manufacturing and assembly

Mechanical Design Considerations

Mechanisms

- Electric vs. Spring Motors, Linear vs. Rotating Action, Articulation Geometry
- Latches, Pyro Devices, Wet vs. Dry Lube,
 Rolling vs. Sliding Interfaces

Planetary Systems Separation System

Closed-Form Failure Predictions

FEA buckling load from shell analysis for perfect cylinder, $P_{cr}^{FEA\ Perfect} = 2467\ kN$

Critical closed-form calculated loads

	Facesheet Wrinkling	Facesheet Dimpling	Shear Crimping
Load (kN)	4849	21,396	12,055
Failure Index	0.51	0.12	0.20

Failure Index =
$$\frac{P_{cr}^{FEA\,Perfect}}{P_{fail}}$$

Shell FEA Analysis: Facesheet Measures

	Perfect, 2397 kN (before plateau)			Radial Imperfection, 2356 kN		
Measure	Axial Strain (με)	Hoop Strain (με)	Tsai- Hill Index	Axial Strain (με)	Hoop Strain (με)	Tsai- Hill Index
Value	-4503	2652	0.379	-4782	2825	0.405
Failure Index	0.57‡	0.15^	0.53**	0.60‡	0.16^	0.57**

Observation

 Reasonable axial strains and Tsai-Hill index that satisfy design requirements

Axisymmetric FEA Analysis: Core-Splice Detail

Axisymmetric FEA Analysis: Core-to-Facesheet Interface Stresses

Finite Element Analysis Results: Global-Local Analysis

With radial imperfection, 2358 kN*

