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Why Does NASA Need to Trust 
Machine Learning (ML) and  Artificial Intelligence (AI)?

Technology Drives Exploration 2

Problem:
“...entrusting important decisions to a system that cannot explain itself presents
obvious dangers.” – A. Adadi and M. Berrada

“[Black-box ML] is problematic because it can adversely affect the understanding, 
trust, and management of ML algorithms” – A. Seeliger, M. Pfaff, and H. Krcmar

Mission Need:
• Autonomy (STIP 5 - Trusted Autonomy, ARMD Thrust 6 - assured autonomy)
• Certifiability (STIP 1 - certification, ARMD Thrust Ultra-Efficient Commercial Vehicles)

• Low risk tolerance -> need to trust models!

• Goal:
• Investigate recent developments in explainable ML/AI and learn how to start the process of

trust building.
• Infuse this knowledge into NASA.
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Approach: Background

• Explanations vs. Experience
• Asking “Why?”

• Faster trust building

• Interpretable Machine Learning (IML)

“Why Are We Using Black Box Models in AI when We Don’t

Need To?” - Rudin and Radin. 2019

• Uncertainty Quantification (UQ)
“Treat[] confidence as complementary to explanation…” 

- Bhatt et al. 2020

Motivation for Explanations

Justification Control

Improvement Discovery

Accuracy-interpretability Tradeoff
Common Misconception of 
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Approach: Fusing Interpretable ML and UQ

Symbolic Regression with Automatic Uncertainty Quantification (UQ)

black-box ML with UQInterpretable ML

e.g. 

Gaussian Processes

Bayesian Neural Nets

e.g. 

Symbolic Regression

Decision Trees
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Approach: Fusing Interpretable ML and UQ

𝒂
𝒃

black-box ML with UQInterpretable ML

e.g. 

Gaussian Processes

Bayesian Neural Nets

e.g. 
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Interpretable ML + UQ
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Approach: Fusing Interpretable ML and UQ

• Interpretable ML: Symbolic Regression (SR)
• Finds an equation to best fit data 

• Tests many arbitrarily complex equations

• Auto UQ: Sequential Monte Carlo (SMC)
• Estimates uncertainty in model parameters and noise level

• Estimates model evidence

• Does this through numerous model evaluations

𝒇 𝒙 = 𝒂𝐬𝐢𝐧 𝒃𝒙 + 𝒂𝒃… 𝒂 𝒃SMC

…

Model Evidence

𝒇 𝒙 = 𝒂𝐬𝐢𝐧 𝒃𝒙 + 𝒂𝒃

𝒇 𝒙 = 𝒂

𝒇 𝒙 = 𝒂𝒙 + 𝒃𝒙𝟐 +
𝒄

𝒄𝒐𝒔(𝒅𝒙)…
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Approach: FY21 Focus

• Interpretable ML: Symbolic Regression (SR)
• Finds an equation to best fit data 

• Tests many arbitrarily complex equations

• Auto UQ: Sequential Monte Carlo (SMC)
• Estimates uncertainty in model parameters and noise level

• Estimates model evidence

• Does this through numerous model evaluations

Project Goals (FY21)

1. Increase the robustness of automated SMC

2. Increase the computational efficiency of SR with integrated SMC
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Results: Robustness of Automated SMC

Hurdles

• No knowledge of parameter values

• Multi-modal fits

• Hand tuned hyperparameters

• Noisy estimates

Solutions

Fractional Bayes Factor

Multi-start parameter proposals

Automation, heuristic optimization

Model re-evaluation  

𝒇 𝒙 = 𝒂𝐬𝐢𝐧 𝒃𝒙 + 𝒂𝒃… 𝒂 𝒃SMC
…

Model Evidence

Robustness on test set 46%        99%
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Results: Computational Efficiency

Hurdles

• Large number of evaluations for each equation

• Many equations

Solutions

• Leverage independent nature of evaluations 
(vectorization, parallelization)

• GPU implementation                                             
(Intern, NASA-NVidia GPU Hackathon)

𝒇 𝒙 = 𝒂𝐬𝐢𝐧 𝒃𝒙

23x performance speedup

# data   x # particles   x   # steps   =   evaluations per equation

~100 ~1,000 ~100 ~10,000,000
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Accomplishments and Issues

• Overguide project awarded mid-FY  → Rescoped
• 0.3 FTE → 0 FTE

• 12 Mo  → 6 Mo

• Milestones
• Software development: SMC embedded in SR

• Reach an acceptable level of robustness in automated SMC (99%)

• Initial GPU implementation (23x performance increase)



Technology Drives Exploration 11

Highlights

• Participation in NASA/NVidia GPU hackathon

• Partnership with University of Utah

• Conference presentation
• Garbrecht et al. (2021) “Bayesian Genetic Programming Based Symbolic 

Regression with Preferential Search”. 16th U.S. National Congress on 
Computational Mechanics (USNCCM)

• Invited presentation at AFRL
• Bomarito (2021) “Symbolic Regression with Genetic Programming”
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Future Work

• FY22 IRAD
• Complete proof-of-concept                                                                                      

(journal paper planned)

• Application to linking material properties to microstructural information 
(conference presentation/paper planned)

• LTC/OCT Support and engagement 
• Agency-wide AI/ML Collaboration
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Funding

Procurement funds available 68.4k

External Collaborator (University of Utah) 45.3k

Summer Intern 13.0k

Fall Intern (partial) 8.4k

Total 66.7k

0 FTE
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Building trust in artificial intelligence: fusing interpretable 

machine learning and uncertainty quantification

Annual Funding: $68.4K

Key 
Milestones/Deliverables

Problem and Impact to NASA

• Autonomy and certification are both areas of 
interest to NASA that can benefit significantly 
from artificial intelligence (AI) and machine 
learning (ML).

• However, they are both high-risk applications 
that require trust in the models being 
developed, and “trust through experience” is 
often not acceptable

• Interpretable machine learning (IML) could 
provide a solution to this problem by providing 
“trust through understanding”

• IML is an active area of research, but the most 
promising areas still lack robust methods for 
quantifying uncertainty in the presence of 
noisy data, as will typically be the case in real-
world scenarios of interest to NASA

Innovation
• Augment a symbolic regression (SR) code

that learns interpretable models in the form of

analytical equations with the ability to

quantify uncertainty in model parameters (i.e.,

constants in the learned equations)

• Equation fitness (a measure of how well the

model fits the data) will be based on

marginal log likelihood (MLL) a Bayesian

measure that considers uncertainty in the

model and data

• MLL will be estimated using sequential

Monte Carlo (SMC)

Goal/Objective

• Pursue the building of trust though better 
understanding of our AI/ML models

• Develop an interpretable AI/ML solution that 
can convey

• How it makes predictions

• How uncertain those predictions may be

Technical Approach
• Combine existing SR and SMC NASA codes to 

rapidly develop proof-of-concept

• Study SR+SMC to determine pros/cons and 
evaluate potential for NASA benefit

New Project

Start TRL/End TRL: 2/2

LSTIP G.C.: 3) Revolutionary Airspace Solution 
for Future Dense, Heterogeneous Operations

Partners: University of Utah

Primary TX: 10) Autonomous Systems

Fuse IML with UQ to produce models that are 

interpretable and make predictions that are 

robust to uncertainty

1. Software development: SMC embedded in SR

2. Reach an acceptable level of robustness in 

automated SMC (99%)

3. Initial GPU implementation (23x performance 

increase)

𝑦 = 0.12(𝑥 − 4.1)2 + 3.01

SR:

SR+SMC:

𝐴 𝐵 𝐶

𝑦 = 𝐴(𝑥 − 𝐵)2 + 𝐶
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Risk: Incorporation of computationally intensive 

uncertainty quantification (UQ) methods may 

cause intractable learning*

*Preliminary results suggest this is not the case

Mitigation: Existing NASA codes benefit from

development even if proposal deemed

infeasible.
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Questions?


