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interpolate the file to standard altitude ( zstd )
2.4 Add mass stream function ( msf ) to  atmos_average_pstd .
2.5 Use  MarsFiles  to time-shift the diurn file, then pressure-interpolate the file.
2.6 Apply a low-pass filter ( -lpf ) to the surface pressure ( ps ) and temperature ( ts )
in the  atmos_daily  with a 10 sols cut-off frequency (set  sol_max  > 10) to isolate
synoptic-scale feature.
2.7 Estimate the magnitude of the wind shear using CAP. Add dU/dZ and dV/dZ to
 07180.atmos_average_zstd.nc .
2.8 Display the minimum, mean, and maximum near-surface temperature .
Remember to repeat this post-processing on the  ACTIVECLDS/  simulation as well!

Break!
3. Plotting Routines

3.1 Plot a global map of surface albedo ( alb ) with topography ( zsurf ) contoured on
top.
3.2 Next, plot a cross-section of the zonal mean zonal wind at Ls=270° using altitude as
the vertical coordinate.
3.3 Create the same plot for the radiatively active cloud case, and put both zonal mean
zonal wind plots on their own page.
3.4 Add temperature as solid contours overtop of the zonal wind plot.
3.5 Plot the following four global maps ( lon x lat ) on a new page:
3.6 Plot the following two cross-sections ( lat x lev ) on the same page:
3.7 Plot the zonal mean temperature at Ls=270 from the average file for the inert cloud
case and the active cloud case. Also create a difference plot for them.



3.8 Generate a 1D temperature profile ( temp ) at  50°N, 150°E  at Ls=270 at both 3
AM and 3 PM from the radiatively inert case. Plot these on the same plot.
3.9 Plot the filtered and un-filtered surface pressure over a 20 sol period.

That's a Wrap!

Practical: Using the Community Analysis
Pipeline (CAP)
Recap: CAP is a Python toolkit designed to simplify post-processing and plotting MGCM output.
Specifically, CAP consists of five Python executibles indended to perform the following functions:

1.  MarsPull.py  Accessing MGCM output
2.  MarsFiles.py  Reducing the files
3.  MarsVars.py  Performing variable operations
4.  MarsInterp.py  Interpolating the vertical grid
5.  MarsPlot.py  Visualizing the MGCM output

When learning to use CAP, it is useful to divide its functions into three categories and explore them in
order:

1. Retrieving Data
2. File Manipulations
3. Plotting Routines

We will practice using CAP for all three parts. You already have experience using CAP for Retrieving
Data, which was covered at the end of the CAP installation instructions (the install asked you to use
 MarsPull  to retrieve several  fort.11  files before the tutorial). Here, you will have a chance to
practice using all five Python routines in CAP.

Activate CAP

As always with CAP, you must activate the  amesGCM3  virtual environment to access the executibles
(you can revisit the installation instructions as a refresher).

(local)>$ source ~/amesGCM3/bin/activate      # bash

(local)>$ source ~/amesGCM3/bin/activate.csh  # csh/tcsh


https://github.com/alex-kling/amesgcm/blob/master/tutorial/CAP_install.md


As a reminder, each Mars executable has a  --help  argument ( -h  for short) that can show you
information about an executible, for example:

(amesGCM3)>$ MarsPull.py -h


1. Retrieving Data

Using  MarsPull.py  to download MGCM output
 MarsPull  is a utility for accessing MGCM output files hosted on the MCMC Data portal. During the
installation, you were asked to use  MarsPull  to download several  fort.11  files into your
 INERTCLDS/  and  ACTIVECLDS/  directories. You should have already downloaded the necessary
 fort.11  files for this tutorial. If you haven't, you can do so now by following along with the
instructions below.

We asked that you create a  CAP_Tutorial  directory containing two subdirectories,  INERTCLDS/  and
 ACTIVECLDS/ , in  amesGCM3/ :

(amesGCM3)>$ cd ~/amesGCM3

(amesGCM3)>$ mkdir CAP_Tutorial

(amesGCM3)>$ cd CAP_Tutorial

(amesGCM3)>$ mkdir ACTIVECLDS INERTCLDS


Navigate to  INERTCLDS/  and use  MarsPull  to retrieve the files. Specify the simulation identifier
( INERTCLDS/ ) and the range of Solar Longitudes (255 285) corresponding to the desired file(s):

(amesGCM3)>$ MarsPull.py -id INERTCLDS -ls 255 285


Then, do the same for the  ACTIVECLDS/  case.

There should now be 5  fort.11  files in each directory,  INERTCLDS/  and  ACTIVECLDS/ :

> fort.11_0719 fort.11_0720 fort.11_0721 fort.11_0722 fort.11_0723


If you have any  fort.11  files other than the ones listed above in either directory, please delete
them. It will be make it easier to follow the tutorial if you work with the specific subset of files
listed above.

https://data.nas.nasa.gov/legacygcm/data_legacygcm.php


2. File Manipulations
After retrieving output from the data portal or using output from a simulation you ran yourself, you will
likely need to process the data to create the files you need for your analysis. Post-processing
includes interpolating and regridding data to different vertical coordinate systems, adding derived
variables to the files, and converting between filetypes, just to name a few examples.

The following exercises are designed to demonstrate how CAP can be used for post-processing
MGCM output. You should follow along in the directories you created containing the  fort.11  files
you downloaded during the installation process. After post-processing these files, we will use them
to make plots with MarsPlot. Don't delete anything!

Start with the radiatively inert clouds simulation (RIC),  INERTCLDS/ , and complete exercises 2.1-2.8
below. Then we will give you specific instructions regarding which exercises to repeat for the
radiatively active clouds (RAC) simulation  ACTIVECLDS/ . We access files from both simulations to
make plots in Section 3.

2.1 Convert the  fort.11  files into  netCDF  files for compatibility with CAP.

To do this, go to your  INERTCLDS/  directory, and type:

(amesGCM3)>$ MarsFiles.py fort.11_* -fv3 fixed average daily diurn


This created several  netCDF  files:

Note the five-digit sol numbers at the begining of each netcdf file, which corresponds to the time
at the begining of each fort.11 output. Because the simulation is issued from a 10 year run (10 x
~668 sols/year), this particular series of outputs start at 06690, not 00000.

The  netCDF  filetypes are:

Type Description

 *atmos_fixed.nc  static variables that do not change over time

(amesGCM3)>$ ls

> 07180.atmos_average.nc  07190.atmos_average.nc  07200.atmos_average.nc  07210.atmos_av
> 07180.atmos_daily.nc    07190.atmos_daily.nc    07200.atmos_daily.nc    07210.atmos_da
> 07180.atmos_diurn.nc    07190.atmos_diurn.nc    07200.atmos_diurn.nc    07210.atmos_di
> 07180.fixed.nc          07190.fixed.nc          07200.fixed.nc          07210.fixed.nc



Type Description

 *atmos_average.nc  5-day averages of MGCM output

 *atmos_diurn.nc  files contain hourly MGCM output averaged over 5 days

 *atmos_daily.nc  continuous time series of the MGCM output

For easier post-processing and plotting, we can combine like files along the time axis. This creates
one of each filetype:

(amesGCM3)>$ MarsFiles.py *fixed.nc -c
(amesGCM3)>$ MarsFiles.py *average.nc -c

(amesGCM3)>$ MarsFiles.py *diurn.nc -c
(amesGCM3)>$ MarsFiles.py *daily.nc -c

This merge created the following four files:

2.2 Interpolate  atmos_average  to standard pressure coordinates.

This requires using  MarsInterp . As a reminder, you can display documentation for MarsInterp using:

(amesGCM3)>$ MarsInterp.py -h


Convert to standard pressure coordinates by entering the following:

(amesGCM3)>$ MarsInterp.py 07180.atmos_average.nc -t pstd


which creates:

> 07180.atmos_average_pstd.nc


2.3 Add density ( rho ) and mid-point altitude ( zfull ) to  atmos_average ,
then interpolate the file to standard altitude ( zstd )

Adding or removing variables from files can be done with  MarsVars :

> 07180.atmos_fixed.nc 07180.atmos_average.nc 07180.atmos_diurn.nc 07180.atmos_daily.nc




(amesGCM3)>$ MarsVars.py -h # display documentation

(amesGCM3)>$ MarsVars.py 07180.atmos_average.nc -add rho zfull


This updates the original file to include the new variables. In this case, the density  rho  was derived
from the pressure and temperature (which are already present in the file) and the mid-point altitude
 zfull  was obtained through hydrostatic integration.

NOTE: if you want  rho  in an interpolated file, you need to add it before performing the
interpolation because. In this case, we want  rho  in an altitude-interpolated file so we've
added  rho  to the original file ( atmos_average.nc ) and we will perform the interpolation
next .

(amesGCM3)>$ MarsInterp.py 07180.atmos_average.nc -t zstd   # standard altitude


Now our directory contains three  atmos_average  files:

> 07180.atmos_average.nc 07180.atmos_average_pstd.nc 07180.atmos_average_zstd.nc


To see the variables in each file, use the  --inspect  function from  MarsPlot :

2.4 Add mass stream function ( msf ) to  atmos_average_pstd .

In this case, we add the variable after the interpolation because the mass stream function needs to
be computed on a standard pressure grid.

(amesGCM3)>$ MarsVars.py 07180.atmos_average_pstd.nc -add msf


2.5 Use  MarsFiles  to time-shift the diurn file, then pressure-interpolate the
file.

The variables in  07180.atmos_diurn.nc  are organized by time-of-day in universal time at the prime
martian meridian, but you can time-shift the fields to uniform local time using  MarsFiles . You might

(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average.nc          # the original file, note th
(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average_zstd.nc     # the pressure interpolated 
(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average_pstd.nc     # the altitude interpolated 



use this function to allow plotting global variables at 3 AM and 3 PM, for example. We will only retain
the surface pressure  ps , surface temperature  ts  and atmospheric temperature  temp  using
 --include  to minimize the size of the file and processing time.

(amesGCM3)>$ MarsFiles.py 07180.atmos_diurn.nc -t --include ts ps temp


This function can only be performed on  diurn  files, since only  diurn  files contain hourly output.
This function creates a new, time-shifted file,  07180.atmos_diurn_T.nc . Next, pressure interpolate
the file using  MarsInterp  (like we did for  atmos_average ).

(amesGCM3)>$ MarsInterp.py 07180.atmos_diurn_T.nc -t pstd


This should take just over a minute. Note that pressure interpolating large files can take a long time
which is why we only included  ps ,  ts , and  temp  in this file. We now have three diurn filetypes:

> 07180.atmos_diurn.nc 07180.atmos_diurn_T.nc 07180.atmos_diurn_T_pstd.nc


Note: We will not do this here, but you can specify a vertical grid to interpolate to with CAP. See
the documentation for  MarsInterp.py  to learn how.

2.6 Apply a low-pass filter ( -lpf ) to the surface pressure ( ps ) and
temperature ( ts ) in the  atmos_daily  with a 10 sols cut-off frequency (set
 sol_max  > 10) to isolate synoptic-scale feature.

This will filter-out the pressure and save the variable in a new file:

(amesGCM3)>$ MarsFiles.py 07180.atmos_daily.nc -lpf 10 -include ps ts         


2.7 Estimate the magnitude of the wind shear using CAP. Add dU/dZ and
dV/dZ to  07180.atmos_average_zstd.nc .

In addition of adding new variables,  MarsVars  can apply certain operations such as column
integration or vertical differentiation to existing variables. Vertical differentiation can be done as
follows:

(amesGCM3)>$ MarsVars.py 07180.atmos_average_zstd.nc -zdiff ucomp vcomp


You can use  --inspect  ( -i ) to find the names of the derived variables dU/dZ and dV/dZ:



The  --inspect  function works on any netCDF file, not just the ones created here!

2.8 Display the minimum, mean, and maximum near-surface temperature .

We can display values in an array by calling  --dump  with  MarsPlot -i  (analogue of the NCL
command  ncdump ). For example, the content for the reference pressure ( pfull  variable in the file)
is:

(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average.nc -dump pfull

> pfull=

> [8.7662227e-02 2.5499690e-01 5.4266089e-01 1.0518962e+00 1.9545468e+00

> 3.5580616e+00 6.2466631e+00 1.0509957e+01 1.7400265e+01 2.8756382e+01

> 4.7480076e+01 7.8348366e+01 1.2924281e+02 2.0770235e+02 3.0938846e+02

> 4.1609518e+02 5.1308148e+02 5.9254102e+02 6.4705731e+02 6.7754218e+02

> 6.9152936e+02 6.9731799e+02 6.9994830e+02 7.0082477e+02]

> ______________________________________________________________________


We can also index specific values using quotes and square brackets  '[ ]' . For example, we can
display the reference pressure in the first layer above the surface ( we use  -1  to refer to the last
array element per Python convention):

(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average.nc -dump 'pfull[-1]'

> pfull[-1]=

> 700.8247680664062

> ______________________________________________________________________


 -stat  display the min, mean, and max values of a variable, which is better suited to display
statistics over a large array or for specific data-slices. For example, to display the min, mean, and
max air temperature for all timesteps, all latitudes, all longitudes, and near the surface
( [time,pfull,lat,lon]=[:,-1,:,:] ), we use:

(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average_zstd.nc

> ===================DIMENSIONS==========================

> ['lat', 'lon', 'phalf', 'time', 'zstd']

> (etc)

> ====================CONTENT==========================

> (etc)

> d_dz_ucomp     : ('time', 'zstd', 'lat', 'lon')= (10, 45, 36, 60), vertical gradient o
> d_dz_vcomp     : ('time', 'zstd', 'lat', 'lon')= (10, 45, 36, 60), vertical gradient o
> (etc)

>

> Ls ranging from 255.42 to 284.19: 45.00 days

>                (MY 01)   (MY 01)

> =====================================================




(amesGCM3)>$ MarsPlot.py -i 07180.atmos_average.nc -stat 'temp[:,-1,:,:]'

__________________________________________________________________________

           VAR            |      MIN      |      MEAN     |      MAX      |

__________________________|_______________|_______________|_______________|

            temp[:,-1,:,:]|        149.016|        202.508|         251.05|

__________________________|_______________|_______________|_______________|


Note: quotes '' are necessary when browsing dimensions.

Remember to repeat this post-processing on the  ACTIVECLDS/ 
simulation as well!

Break!
Let's take a 15 minute break from the tutorial. You can use this time to catch up if you haven't
completed parts 1 and 2 already, but we highly encourage you to step away from your machine for
these 15 minutes.

3. Plotting Routines
The last part of this tutorial covers the plotting capabilities within CAP. CAP can create several kinds
of plots:

Type of plot MarsPlot designation

Longitude v Latitude Plot 2D lon X lat

Longitude v Time Plot 2D lon X time

Longitude v Level Plot 2D lon X lev

Latitude v Level Plot 2D lat X lev

Time v Latitude Plot 2D time X lat

Time v level Plot 2D time X lev

Any 1-dimensional line plot Plot 1D



and CAP can display each plot on its own page or place multiple plots on the same page.

Plotting with CAP requires passing a template to  MarsPlot . A blank template is created in the
directory in which the following command is executed, so change to the  INERTCLDS/  directory and
type:

(amesGCM3)>$ MarsPlot.py -template


The blank template is called  Custom.in . Pass  Custom.in  back to  MarsPlot  using the following
command:

(amesGCM3)>$ MarsPlot.py Custom.in


This will have created  Diagnostics.pdf , a single-page PDF with a topographical plot and a cross-
section of the zonal mean wind. Open the pdf to see the plots.

You can rename  Custom.in  and still pass it to  MarsPlot  successfully:

(amesGCM3)>$ mv Custom.in myplots.in

(amesGCM3)>$ MarsPlot.py myplots.in


If the template is named anything other than  Custom.in ,  MarsPlot  will produce a PDF named after
the renamed template, i.e.  myplots.pdf .

Those are the basics of plotting with CAP. We'll try creating several plot types in exercises 3.8--3.8
below.

3.1 Plot a global map of surface albedo ( alb ) with topography ( zsurf )
contoured on top.

For this first plot, we'll edit  Custom.in  together. Open the template in your preferred text editor and
make the following changes:

Change the second default template  Plot 2D lat X lev  to  False  so that  MarsPlot  does not
draw it (we will use it later)
Set the  Title  of the first default template  Plot 2D lon X lat  to reflect the variable being
plotted.
Set  Main Variable  to albedo ( alb , located in the  fixed  file), this will be plotted as shaded
contours



Set  2nd Variable  to topography ( zsurf , located in the  fixed  file), this will be plotted as solid
contours

Here is what your template should look like:

Save the template in your text editor and pass it back to  MarsPlot :

(amesGCM3)>$ MarsPlot.py Custom.in


Open  Diagnostics.pdf  and check to make sure it contains a global map of surface albedo and
topography.

Depending on the settings for your specific pdf viewer, you may have to close and open the file.

3.2 Next, plot a cross-section of the zonal mean zonal wind at Ls=270° using
altitude as the vertical coordinate.

No need to create a new template, just add this plot to  Custom.in . Use the zonal wind stored in the
 atmos_average_zstd  file. Remember to set the plot template to  True . Edit the title accordingly.

Save  Custom.in  and pass it to  MarsPlot .

3.3 Create the same plot for the radiatively active cloud case, and put both
zonal mean zonal wind plots on their own page.

Tip: Add to your existing template. Copy and paste the  lat x lev  plot three times. Set the
plots to  True  so that  MarsPlot  recognizes them as input.

Edit the  <<<<<<< Simulations <<<<<<<  section so that

 2>  points to the  /ACTIVECLDS  directory:

<<<<<<<<<<<<<<| Plot 2D lon X lat = True |>>>>>>>>>>>>>

Title          = 3.1: Albedo w/Topography Overplotted

Main Variable  = fixed.alb

Cmin, Cmax     = None

Ls 0-360       = None

Level [Pa/m]   = None

2nd Variable   = fixed.zsurf

Contours Var 2 = None

Axis Options  : lon = [None,None] | lat = [None,None] | cmap = binary | scale = lin | pr



<<<<<<<<<<<<<<<<<<<<<< Simulations >>>>>>>>>>>>>>>>>>>>>

ref> None

2> ../ACTIVECLDS


Then, copy and paste the plot created in 3.2 and edit  Main Variable  to point to the correct
directory using the  @N  syntax:

Main Variable  = atmos_average@2.ucomp

Tip: Make use of  HOLD ON  and  HOLD OFF  for these, and Copy/Paste plot types to create
multiple of the same plot.

Save  Custom.in  and pass it to  MarsPlot .

3.4 Add temperature as solid contours overtop of the zonal wind plot.

Add  temp  as a second variable on the plots you created in 3.2 and 3.3:

> 2nd Variable     = atmos_average_zstd.temp


Save  Custom.in  and pass it to  MarsPlot .

3.5 Plot the following four global maps ( lon x lat ) on a new page:

Tip: Use  HOLD ON  and  HOLD OFF . You can use this syntax multiple times in the same template.

All of the following variables come from  07180.atmos_daily.nc  and should be plotted at Ls=270.

Surface CO2 ice content ( snow ) north of 50 latitude
Surface temperature ( ts ) For this plot, set the colorscale ( Cmin, Cmax ) to range from 150 K to
300 K.
Surface Wind Speed ( (u^2 + v^2)/2 ) (this requires the use of square brackets and two
variables)
Diabatic Heating Rate ( dheat ) at 50 Pa (index dimension  lev =50).

The general format will be:



HOLD ON



<<<<<<| Plot 2D lon X lat = True |>>>>>>

Title    = Surface CO2 Ice (g/m2)

(etc)



<<<<<<| Plot 2D lon X lat = True |>>>>>>

Title    = Surface Temperature (K)

(etc)



<<<<<<| Plot 2D lon X lat = True |>>>>>>

Title    = Surface Wind Speed (m/s)

(etc)



<<<<<<| Plot 2D lon X lat = True |>>>>>>

Title    = Diabatic Heating Rate (K/sol)

(etc)



HOLD OFF


Note: convert kg -> g using square brackets:

Main Variable  = [atmos_daily.snow]*1000


and multiply two variables together like so:

Main Variable  = ([atmos_daily.ucomp]**2+[atmos_daily.vcomp]**2)**0.5


Name the plots accordingly. Save  Custom.in  and pass it to  MarsPlot .

3.6 Plot the following two cross-sections ( lat x lev ) on the same page:

Mass Streamfunction ( msf ) at Ls=270. Change the colormap from  jet  to  bwr  and force
symmetrical contouring by setting the colorbar's minimum and maximum values to -50 and 50.
Adjust the y axis limits to 1,000 Pa and 1 Pa. Finally, add solid contours for  msf =-10 and
 msf =10 on top. Hint: set both  Main Variable  and  2nd Variable  to  msf 
Zonal mean temperature ( temp ) at Ls=270 from the same (pressure-interpolated) file. Overplot
the zonal wind ( ucomp ).

Don't forget to use  HOLD ON  and  HOLD OFF  and to name your plots accordingly. Save  Custom.in 
and pass it to  MarsPlot .



3.7 Plot the zonal mean temperature at Ls=270 from the average file for the
inert cloud case and the active cloud case. Also create a difference plot for
them.

Use  HOLD ON  and  HOLD OFF . Copy and paste a  lat x lev  plot three times. For the difference plot,
you'll need to use  @N  to point to the  ACTIVECLDS/  directory and square brackets to subtract one
variable from the other:

Main Variable  = [atmos_average_pstd.temp]-[atmos_average_pstd@2.temp]

Set the colormap to  RdBu  for the difference plot and set the vertical range to 1,000-1 Pa.

Save  Custom.in  and pass it to  MarsPlot .

3.8 Generate a 1D temperature profile ( temp ) at  50°N, 150°E  at Ls=270 at
both 3 AM and 3 PM from the radiatively inert case. Plot these on the same
plot.

CAP can overplot 1D data on the same graph by concatenating two 1D templates together with
 ADD LINE :

<<<<<<| Plot 1D = True |>>>>>>

Main Variable    = var1

(etc)



ADD LINE



<<<<<<| Plot 1D = True |>>>>>>

Main Variable    = var2

(etc)


You do not need to use  HOLD ON  or  HOLD OFF  with 1D plots.

You'll need to call  temp  from the  diurn_T_pstd  file, which is the time-shifted and pressure-
interpolated version of the hourly file. 3 AM is index=3, 3 PM is index=15. You will have to specify
 Level [Pa/m]  as the y axis:

Level [Pa/m]   = AXIS


Save  Custom.in  and pass it to  MarsPlot .



3.9 Plot the filtered and un-filtered surface pressure over a 20 sol period.

Some hints:

Both are 1D plots. Use  ADD LINE  to plot on the same axes
Use  ps  from the  07180.atmos_daily.nc  and  07180.atmos_daily_lpf.nc  files
Index noon  {tod=12} 
Set  Latitude = 50  and  Lon +/-180 = 150 
Under  Axis Options , set the x axis range (time) to 260--280 ( sols = [260, 280] )
Under  Axis Options , set the y axis range (pressure) to 850Pa--1000Pa( var = [850, 1000] )

Save  Custom.in  and pass it to  MarsPlot .

That's a Wrap!
This concludes the practical exercise portion of the CAP tutorial. Please keep these exercises as a
reference for the future!

This document was completed in October 2021. Written by Alex Kling, Courtney Batterson, and
Victoria Hartwick

Please submit feedback to Alex Kling: alexandre.m.kling@nasa.gov

mailto:alexandre.m.kling@nasa.gov


Installing the Community Analysis Pipeline (CAP)

Welcome!

This document contains the instructions for installing the NASA Ames MCMC's Community Analysis Pipeline (CAP). We ask
that you come to the MGCM Tutorial on November 2-4 with CAP installed on your machine so that we can jump right into
using it! On the second day of the tutorial (November 3rd), we will be using CAP to analyze MGCM output.

Installing CAP is fairly straightforward. We will create a Python virtual environment, download CAP, and then install CAP in the
virtual environment. That's it!

A quick overview of what is covered in this installation document:

1. Creating the Virtual Environment
2. Installing CAP
3. Testing & Using CAP
4. Practical Tips
5. Do This Before Attending the Tutorial

1. Creating the Virtual Environment

We begin by creating a virtual environment in which to install CAP. The virtual environment is an isolated Python environment
cloned from an existing Python distribution. The virtual environment consists of the same directory trees as the original
environment, but it includes activation and deactivation scripts that are used to move in and out of the virtual environment.
Here's an illustration of how the two Python environments might differ:

     anaconda3                    virtual_env3/ 
     ├── bin                      ├── bin 
     │   ├── pip       (copy)     │    ├── pip 
     │   └── python3    >>>>      │    ├── python3 
     └── lib                      │    ├── activate 
                                  │    ├── activate.csh 
                                  │    └── deactivate 
                                  └── lib              
 
  ORIGINAL ENVIRONMENT           VIRTUAL ENVIRONMENT 
      (untouched)            (vanishes when deactivated)

We can install and upgrade packages in the virtual environment without breaking the main Python environment. In fact, it is safe
to change or even completely delete the virtual environment without breaking the main distribution. This allows us to experiment
freely in the virtual environment, making it the perfect location for installing and testing CAP.

Step 1: Identify Your Preferred Python Distribution



If you are already comfortable with Python's package management system, you are welcome to install the pipeline on top any
python3 distribution already present on your computer. Jump to Step #2 and resolve any missing package dependency.

For all other users, we highly recommend using the latest version of the Anaconda Python distribution. It ships with pre-
compiled math and plotting packages such as  numpy  and  matplotlib  as well as pre-compiled libraries like  hdf5  headers for
reading  netCDF  files (the preferred filetype for analysing MGCM output).

You can install the Anaconda Python distribution via the command-line or using a graphical interface (scroll to the very bottom
of the page for all download options). You can install Anaconda at either the  System/  level or the  User/  level (the later does
not require admin-priviledges). The instructions below are for the command-line installation and installs Anaconda in your
home directory, which is the recommended location. Open a terminal and type the following:

Which will return:

> Welcome to Anaconda3 2021.05 
> 
> In order to continue the installation process, please review the license agreement. 
> Please, press ENTER to continue 
> >>>

Read ( ENTER ) and accept ( yes ) the terms, choose your installation location, and initialize Anaconda3:

(local)>$ [ENTER] 
> Do you accept the license terms? [yes|no] 
> >>> 
(local)>$ yes 
> Anaconda3 will now be installed into this location: 
> /Users/username/anaconda3 
> 
>  - Press ENTER to confirm the location 
>  - Press CTRL-C to abort the installation 
>  - Or specify a different location below 
> 
> [/Users/username/anaconda3] >>> 
(local)>$ [ENTER] 
> PREFIX=/Users/username/anaconda3 
> Unpacking payload ... 
> Collecting package metadata (current_repodata.json): 
>   done                                                        
> Solving environment: done 
> 
> ## Package Plan ## 
> ... 
> Preparing transaction: done 
> Executing transaction: - 
> done 
> installation finished. 
> Do you wish the installer to initialize Anaconda3 by running conda init? [yes|no] 
> [yes] >>> 
(local)>$ yes

For Windows users, we recommend installing the pipeline in a Linux-type environment using Cygwin. This will enable the
use of CAP command line tools. Simply download the Windows version of Anaconda on the Anaconda website and
follow the instructions from the installation GUI. When asked about the installation location, make sure you install Python
under your emulated-Linux home directory ( /home/username ) and not in the default location
( /cygdrive/c/Users/username/anaconda3 ). From the installation GUI, the path you want to select is something like:

(local)>$ chmod +x Anaconda3-2021.05-MacOSX-x86_64.sh   # make the .sh file executable (actual name may diffe
(local)>$ ./Anaconda3-2021.05MacOSX-x86_64.sh           # runs the executable

https://www.anaconda.com/distribution/#download-section
https://www.cygwin.com/
https://www.anaconda.com/distribution/#download-section


 C:/Program Files/cygwin64/home/username/anaconda3 . Also be sure to check YES when prompted to "Add
Anaconda to my  PATH  environment variable."

Confirm that your path to the Anaconda Python distribution is fully actualized by closing out of the current terminal, opening a
new terminal, and typing:

(local)>$ python[TAB]

If this returns multiple options (e.g.  python ,  python2 ,  python 3.7 ,  python.exe ), then you have more than one version of
Python sitting on your system (an old  python2  executable located in  /usr/local/bin/python , for example). You can see
what these versions are by typing:

(local)>$ python3 --version     # Linux/MacOS 
(local)>$ python.exe --version  # Cygwin/Windows

Check your version of  pip  the same way, then find and set your  $PATH  environment variable to point to the Anaconda Python
and Anaconda pip distributions. If you are planning to use Python for other projects, you can update these paths like so:

# with bash: 
(local)>$ echo 'export PATH=/Users/username/anaconda3/bin:$PATH' >> ~/.bash_profile 
# with csh/tsch: 
(local)>$ echo 'setenv PATH $PATH\:/Users/username/anaconda3/bin\:$HOME/bin\:.'  >> ~/.cshrc

Confirm these settings using the  which  command:

(local)>$ which python3         # Linux/MacOS 
(local)>$ which python.exe      # Cygwin/Windows

which hopefully returns a Python executable that looks like it was installed with Anaconda, such as:

> /username/anaconda3/bin/python3     # Linux/MacOS 
> /username/anaconda3/python.exe      # Cygwin/Windows

If  which  points to either of those locations, you are good to go and you can proceed from here using the shorthand path to
your Anaconda Python distribution:

(local)>$ python3     # Linux/MacOS 
(local)>$ python.exe  # Cygwin/Windows

If, however,  which  points to some other location, such as  /usr/local/bin/python , or more than one location, proceed from
here using the full path to the Anaconda Python distribution:

(local)>$ /username/anaconda3/bin/python3 # Linux/MacOS 
(local)>$ /username/anaconda3/python.exe  # Cygwin/Windows

Step 2: Set Up the Virtual Environment:



Python virtual environments are created from the command line. Create an environment called  amesGCM3  by typing:

First, find out if your terminal is using bash or a variation of C-shell (.csh, .tsch…) by typing:

(local)>$ echo $0 
> -bash

Depending on the answer, you can now activate the virtual environment with one of the options below:

(local)>$ source amesGCM3/bin/activate          # bash 
(local)>$ source amesGCM3/bin/activate.csh      # csh/tcsh 
(local)>$ source amesGCM3/Scripts/activate.csh  # Cygwin/Windows

In Cygwin/Windows, the  /bin  directory may be named  /Scripts .

You will notice that after sourcing  amesGCM3 , your prompt changed indicate that you are now inside the virtual environment (i.e.
 (local)>$  changed to  (amesGCM3)>$ ).

We can verify that  which python  and  which pip  unambiguously point to  amesGCM3/bin/python3  and  amesGCM3/bin/pip ,
respectively, by calling  which  within the virtual environment:

(amesGCM3)>$ which python3         # in bash, csh 
> amesGCM3/bin/python3 
(amesGCM3)>$ which pip 
> amesGCM3/bin/pip 
 
(amesGCM3)>$ which python.exe      # in Cygwin/Windows 
> amesGCM3/Scripts/python.exe 
(amesGCM3)>$ which pip 
> amesGCM3/Scripts/pip            

There is therefore no need to reference the full paths while inside the virtual environment.

2. Installing CAP

Now we can download and install CAP in  amesGCM3 . CAP was provided to you in the tarfile  amesgcm-master.zip  that was
sent along with these instructions. Download  amesgcm-master.zip  and leave it in  Downloads/ .

Using  pip 

Open a terminal window, activate the virtual environment, and untar the file:

(local)>$ source ~/amesGCM3/bin/activate          # bash 
(local)>$ source ~/amesGCM3/bin/activate.csh      # cshr/tsch 
(local)>$ source ~/amesGCM3/Scripts/activate.csh  #  Cygwin/Windows 
(amesGCM3)>$ 
(amesGCM3)>$ tar -xf amesgcm-master.zip 
(amesGCM3)>$ cd amesgcm-master 
(amesGCM3)>$ pip install .

(local)>$ python3 -m venv --system-site-packages amesGCM3    # Linux/MacOS Use FULL PATH to python if needed 
(local)>$ python.exe -m venv –-system-site-packages amesGCM3  # Cygwin/Windows Use FULL PATH to python if nee



Please follow the instructions to upgrade pip if recommended during that steps.

That's it! CAP is installed in  amesGCM3  and you can see the  MarsXXXX.py  executables stored in  ~/amesGCM3/bin/ :

(local)>$ ls ~/amesGCM3/bin/ 
> Activate.ps1     MarsPull.py      activate.csh              nc4tonc3         pip3 
> MarsFiles.py     MarsVars.py      activate.fish             ncinfo           pip3.8 
> MarsInterp.py    MarsViewer.py    easy_install              normalizer       python 
> MarsPlot.py      activate         easy_install-3.8          pip              python3

Shall you need to modify any code, note that when you access the  Mars  tools above, those are not executed from the
 amesgcm-master/  folder in your  /Downloads  directory, but instead from the  amesGCM3  virtual environment where they
were installed by pip. You can safely move amesgcm-master.zip and the amesgcm-master directory to a different
location on your system.

Double check that the paths to the executables are correctly set in your terminal by exiting the virtual environment:

(amesGCM3)>$ deactivate

then reactivating the virtual environment:

(local)>$ source ~/amesGCM3/bin/activate     # bash 
(local)>$ source ~/amesGCM3/bin/activate.csh # csh/tsch 
(local)>$ source ~/amesGCM3/Scripts/activate.csh

and checking the documentation for any CAP executable using the  --help  option:

(amesGCM3)>$ MarsPlot.py --help 
(amesGCM3)>$ MarsPlot.py -h

or using full paths:

(amesGCM3)>$ ~/amesGCM3/bin/MarsPlot.py -h     # Linux/MacOS 
(amesGCM3)>$ ~/amesGCM3/Scripts/MarsPlot.py -h # Cygwin/Windows

If the pipeline is installed correctly,  --help  will display documentation and command-line arguments for  MarsPlot  in the
terminal.

This completes the one-time installation of CAP in your virtual environment,  amesGCM3 , which now looks like:

amesGCM3/ 
├── bin 
│   ├── MarsFiles.py 
│   ├── MarsInterp.py 
│   ├── MarsPlot.py 
│   ├── MarsPull.py 
│   ├── MarsVars.py 
│   ├── activate 
│   ├── activate.csh 
│   ├── deactivate 
│   ├── pip 



│   └── python3 
├── lib 
│   └── python3.7 
│       └── site-packages 
│           ├── netCDF4 
│           └── amesgcm 
│               ├── FV3_utils.py 
│               ├── Ncdf_wrapper.py 
│               └── Script_utils.py 
├── mars_data 
│   └── Legacy.fixed.nc 
└── mars_templates 
    ├──amesgcm_profile 
    └── legacy.in

Using  conda 

If you prefer using the  conda  package manager for setting up your virtual environment instead of  pip , you may use the
following commands to install CAP.

First, verify (using  conda info  or  which conda ) that you are using the intented  conda  executable (two or more versions of
 conda  might be present if both Python2 and Python3 are installed on your system). Then, create the virtual environment with:

(local)>$ conda create -n amesGCM3

Activate the virtual environment, then install CAP:

(local)>$ conda activate amesGCM3 
(amesGCM3)>$ conda install pip 
(amesGCM3)>$ cd ~/Downloads 
(amesGCM3)>$ tar -xf CAP_tarball.zip 
(amesGCM3)>$ cd amesgcm-master 
(amesGCM3)>$ pip install .

The source code will be installed in:

/path/to/anaconda3/envs/amesGCM3/

and the virtual environment may be activated and deactivated with  conda :

(local)>$ conda activate amesGCM3 
(amesGCM3)>$ conda deactivate 
(local)>$

Note: CAP requires the following Python packages, which were automatically installed with CAP:

matplotlib        # the MatPlotLib plotting library 
numpy             # math library 
scipy             # math library and input/output for fortran binaries 
netCDF4 Python    # handling netCDF files 
requests          # downloading GCM output from the MCMC Data Portal



Removing CAP

To permanently remove CAP, activate the virtual environment and run the  uninstall  command:

(local)>$ source amesGCM3/bin/activate          # bash 
(local)>$ source amesGCM3/bin/activate.csh      # csh/tcsh 
(local)>$ source amesGCM3/Scripts/activate.csh  # Cygwin/Windows 
(amesGCM3)>$ pip uninstall amesgcm

You may also delete the  amesGCM3  virtual environment directory at any time. This will uninstall CAP, remove the virtual
environment from your machine, and will not affect your main Python distribution.

3. Testing & Using CAP

Whenever you want to use CAP, simply activate the virtual environment and all of CAP's executables will be accessible from the
command line:

(local)>$ source amesGCM3/bin/activate          #   bash 
(local)>$ source amesGCM3/bin/activate.csh      #   csh/tcsh 
(local)>$ source amesGCM3/Scripts/activate.csh  #   Cygwin/Windows

You can check that the tools are installed properly by typing  Mars  and then pressing the TAB key. No matter where you are on
your system, you should see the following pop up:

(amesGCM3)>$ Mars[TAB] 
> MarsFiles.py   MarsInterp.py  MarsPlot.py    MarsPull.py    MarsVars.py

If no executables show up then the paths have not been properly set in the virtual environment. You can either use the full paths
to the executables:

(amesGCM3)>$ ~/amesGCM3/bin/MarsPlot.py

Or set up aliases in your  ./bashrc  or  .cshrc :

# with bash: 
(local)>$ echo alias MarsPlot='/Users/username/amesGCM3/bin/MarsPlot.py' >> ~/.bashrc 
(local)>$ source ~/.bashrc 
 
# with csh/tsch 
(local)>$ echo alias MarsPlot /username/amesGCM3/bin/MarsPlot >> ~/.cshrc 
(local)>$ source ~/.cshrc

4. Practical Tips for Later Use During the Tutorial

Install  ghostscript  to Create Multiple-Page PDFs When Using  MarsPlot 



Installing  ghostscript  on your local machine allows CAP to generate a multiple-page PDF file instead of several individual
PNGs when creating several plots. Without  ghostcript , CAP defaults to generating multiple  .png  files instead of a single
PDF file, and we therefore strongly recommend installing  ghostscript  to streamline the plotting process.

First, check whether you already have  ghostscript  on your machine. Open a terminal and type:

(local)>$ gs -version 
> GPL Ghostscript 9.54.0 (2021-03-30) 
> Copyright (C) 2021 Artifex Software, Inc.  All rights reserved.

If  ghostscript  is not installed, follow the directions on the  ghostscript  website to install it.

Enable Syntax Highlighting for the Plot Template

The  MarsPlot  executable requires an input template with the  .in  file extension. We recommend using a text editor that
provides language-specific (Python) syntax highlighting to make keywords more readable. A few options include: Atom and vim
(compatible with MacOS, Windows, Linux), notepad++ (compatible with Windows), or gedit (compatible with Linux).

The most commonly used text editor is vim. Enabling proper syntax-highlighting for Python in vim can be done by adding the
following lines to  ~/.vimrc :

syntax on 
colorscheme default 
au BufReadPost *.in  set syntax=python

5. Do This Before Attending the Tutorial

In order to follow along with the practical part of the MGCM Tutorial, we ask that you download several MGCM output files
beforehand. You should save these on the machine you'll be using during the tutorial.

We'll use CAP to retrieve these files from the MGCM Data Portal. To begin, activate the virtual environment:

(local)>$ source amesGCM3/bin/activate      # bash 
(local)>$ source amesGCM3/bin/activate.csh  # csh/tcsh

Choose a directory in which to store these MGCM output files on your machine. We will also create two sub- directories, one for
an MGCM simulation with radiatively inert clouds (RIC) and one for an MGCM simulation with radiatively active clouds (RAC):

(amesGCM3)>$ mkdir CAP_tutorial 
(amesGCM3)>$ cd CAP_tutorial 
(amesGCM3)>$ mkdir INERTCLDS ACTIVECLDS

Then, download the corresponding data in each directory:

(amesGCM3)>$ cd INERTCLDS 
(amesGCM3)>$ MarsPull.py -id INERTCLDS -ls 255 285 
(amesGCM3)>$ cd ../ACTIVECLDS 
(amesGCM3)>$ MarsPull.py -id ACTIVECLDS -ls 255 285

https://www.ghostscript.com/download.html
https://atom.io/


That's it!  CAP_tutorial  now holds the necessary  fort.11  files from the radiatively active and inert MGCM simulations:

CAP_tutorial/ 
├── INERTCLDS/ 
│   └── fort.11_0719  fort.11_0720  fort.11_0721  fort.11_0722  fort.11_0723 
└── ACTIVECLDS/ 
    └── fort.11_0719  fort.11_0720  fort.11_0721  fort.11_0722  fort.11_0723

You can now deactivate the virtual environment:

(amesGCM3)>$ deactivate

If you encounter an issue during the download process, please verify the files availability on the MCMC Data Portal and
try again later. You may also download the 10 files listed above manually.

and we'll see you November 2, 2021 for the tutorial!

https://data.nas.nasa.gov/legacygcm/data_legacygcm.php


Introducing the Community Analysis
Pipeline (CAP)
CAP is a toolkit designed to simplify the post-processing of MGCM output. CAP is written in Python
and works with existing Python libraries, allowing any Python user to install and use CAP easily and
free of charge. Without CAP, plotting MGCM output requires that a user provide their own scripts for
post-processing, including code for interpolating the vertical grid, computing and adding derived
variables to files, converting between file types, and creating diagnostic plots. In other words, a user
would be responsible for the entire post-processing effort as illustrated in Figure 1.

Such a process requires that users be familiar with Fortran files and be able to write (or provide)
script(s) to perform file manipulations and create plots. At best, this effort is cumbersome. At worst, it
excludes users who lack access to (or knowledge of how to write) post-processing scripts and/or
Fortran code. CAP standardizes the post-processing effort by providing executibles that can perform
file manipulations and create diagnostic plots from the command line. This enables users of almost
any skill level to post-process and plot MGCM data (Figure 2).



Specifically, CAP consists of five executables:

1.  MarsPull.py  Access MGCM output
2.  MarsFiles.py  Reduce the files
3.  MarsVars.py  Perform variable operations
4.  MarsInterp.py  Interpolate the vertical grid
5.  MarsPlot.py  Visualize the MGCM output

and

These executables and their commonly-used functions are illustrated in the cheat sheet below in the
order in which they are most often used. You should feel free to reference during and after the tutorial.





CAP is designed to be modular. For example, a user could post-process and plot MGCM output
exclusively with CAP or a user could employ their own post-processing routine and then use CAP to
plot the data. Users are free to selectively integrate CAP into their own analysis routine to the extent
they see fit.

Table of Contents
Introducing the Community Analysis Pipeline (CAP)
The big question... How do I do this? > Ask for help!
1.  MarsPull.py  - Downloading Raw MGCM Output
2.  MarsFiles.py  - Reducing the Files
3.  MarsVars.py  - Performing Variable Operations
4.  MarsInterp.py  - Interpolating the Vertical Grid
5.  MarsPlot.py  - Plotting the Results

Overview
How to

Disable or add a new plot
Customize Plots
Make a 1D-plot
Access simulation in a different directory
Element-wise operations
Debugging

The big question... How do I do this? >
Ask for help!
Use the  --help  ( -h  for short) option on any executable to display documentation and examples.

(amesGCM3)>$ MarsPlot.py -h

> usage: MarsPlot.py [-h] [-i INSPECT_FILE] [-d DATE [DATE ...]] [--template]

>                   [-do DO] [-sy] [-o {pdf,eps,png}] [-vert] [-dir DIRECTORY]

>                   [--debug]

>                   [custom_file]




1.  MarsPull.py  - Downloading Raw
MGCM Output
 MarsPull  is a utility for accessing MGCM output files hosted on the MCMC Data portal. MGCM
data is archived in 1.5 hour intervals (16x/day, 'ntod') and packaged in files containing 10 sols ('time')
of data. The file naming convention is:

LegacyGCM_LsXXX_LsYYY.nc


Where XXX and YYY are three-digit Solar Longitude (Ls) values. The files can be retrieved from the
command line using CAP by providing  MarsPull  with either a range of Solar Longitudes from which
to pull data or a specific filename.

2.  MarsFiles.py  - Reducing the Files
 MarsFiles  provides several tools for file manipulations, including code designed to create binned,
averaged, and time-shifted files from MGCM output. These are the file formats that  MarsFiles  can
create from the fort.11 MGCM output files:

File name description

* fixed contains such as surface albedo and topography

* average contains 5-sol averages of all variables

* daily contains a continuous time series of data

* diurn contains 5-day averaged data binned by time of day

* _T contains time-shifted data (same time of day at all longitudes)

* _lpf,_hpf,_bpf low, high and band pass filtered

* _tidal tidally-decomposed files into harmonics

* _to_average _to_diurn custom re-binning of daily files

* _regrid 4N-dimensional interpolation (lon,lat,time,altitude) to a different grid

https://data.nas.nasa.gov/legacygcm/data_legacygcm.php


 MarsFiles  can concatenate like-files together on the time dimension.  MarsFiles  can also be used
to perform basic tidal analyses (temporal and spatial filtering, diurnal tides and their harmonics).

CAP is capable of applying high-, low-, and band-pass filters to netCDF files using the syntax:

(amesGCM3)>$ MarsFiles.py file.nc -hpf --high_pass_filter sol_min          

(amesGCM3)>$ MarsFiles.py file.nc -lpf --low_pass_filter  sol_max          

(amesGCM3)>$ MarsFiles.py file.nc -bpf --band_pass_filter sol_min sol max  


Where  sol_min  and  sol_max  are the minimum and maximum number of days in a filtering period,
respectively.

3.  MarsVars.py  - Performing Variable
Operations
 MarsVars  provides several tools relating to variable operations such as adding and removing
variables and performing column integrations. With no other arguments, passing a file to  MarsVars 
displays file content much like  ncdump :

This file contains several variables including  ps ,  temp , and  omega . Since this is a native file (i.e. the
vertical grid is  pfull  indicating the file has not been interpolated), we can calculate the vertical wind
( w ) using  ps ,  temp , and  omega  and add it to the file:

(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc

>

> ===================DIMENSIONS==========================

> ['bnds', 'time', 'lat', 'lon', 'pfull', 'scalar_axis', 'phalf']

> (etc)

> ====================CONTENT==========================

> pfull          : ('pfull',)= (30,), ref full pressure level  [Pa]

> ps             : ('time', 'lat', 'lon')= (4, 180, 360), surface pressure  [Pa]

> temp           : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), temperature  [K]

> omega          : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), omega  [Pa/s]

> (etc)




(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc -add w


We can see that  w  was added by calling  MarsVars  with no argument as before:



 MarsVars  can also remove variables from files which is particularly useful for reducing file sizes:

 MarsVars  is useful when performing column integrations because the function preserves the original
variable and creates a new variable ending in  _col  that contains the column integrated values:

(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc -col temp

> Performing colum integration: temp...

> temp: Done


You can see the added variable in the file:

(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc

>

> ===================DIMENSIONS==========================

> ['bnds', 'time', 'lat', 'lon', 'pfull', 'scalar_axis', 'phalf']

> (etc)

> ====================CONTENT==========================

> pfull          : ('pfull',)= (30,), ref full pressure level  [Pa]

> ps             : ('time', 'lat', 'lon')= (4, 180, 360), surface pressure  [Pa]

> temp           : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), temperature  [K]

> omega          : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), omega  [Pa/s]

> w              : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), vertical wind (ad
> (etc)


(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc

>

> ===================DIMENSIONS==========================

> ['bnds', 'time', 'lat', 'lon', 'pfull', 'scalar_axis', 'phalf']

> (etc)

> ====================CONTENT==========================

> pfull          : ('pfull',)= (30,), ref full pressure level  [Pa]

> temp           : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), temperature  [K]

> omega          : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), omega  [Pa/s]

> w              : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), vertical wind (ad
> (etc)




4.  MarsInterp.py  - Interpolating the
Vertical Grid
Native MGCM output files use pressure as the vertical coordinate ( pfull ), which means the
geometric height and pressure level of an atmospheric layer varies based on location. Climate data is
usually analyzed on a standardized grid, however, and it is often necessary to interpolate the files to
standard pressure coordinates. The  -type  ( -t ) argument in  MarsInterp  can interpolate files for
you:

(amesGCM3)>$ MarsInterp.py  00000.atmos_average.nc -t pstd


An inspection of the file shows that the pressure level axis which was  pfull  (30 layers) has been
replaced by a standard pressure coordinate  pstd  (36 layers), and all 3- and 4-dimensional variables
reflect the new shape:

(amesGCM3)>$ MarsVars.py 00000.atmos_average.nc

>

> ===================DIMENSIONS==========================

> ['bnds', 'time', 'lat', 'lon', 'pfull', 'scalar_axis', 'phalf']

> (etc)

> ====================CONTENT==========================

> pfull          : ('pfull',)= (30,), ref full pressure level  [Pa]

> temp           : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), temperature  [K]

> omega          : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), omega  [Pa/s]

> w              : ('time', 'pfull', 'lat', 'lon')= (4, 30, 180, 360), vertical wind (ad
> temp_col       : ('time', 'lat', 'lon')= (4, 180, 360), column integration of temp  [K

(amesGCM3)>$ MarsInterp.py  00000.atmos_average.nc -t pstd

(amesGCM3)>$ MarsVars.py 00000.atmos_average_pstd.nc

>

> ===================DIMENSIONS==========================

> ['bnds', 'time', 'lat', 'lon', 'scalar_axis', 'phalf', 'pstd']

> ====================CONTENT==========================

> pstd           : ('pstd',)= (36,), pressure  [Pa]

> temp           : ('time', 'pstd', 'lat', 'lon')= (4, 36, 180, 360), temperature  [K]
> omega          : ('time', 'pstd', 'lat', 'lon')= (4, 36, 180, 360), omega  [Pa/s]

> w              : ('time', 'pstd', 'lat', 'lon')= (4, 36, 180, 360), vertical wind (add
> temp_col       : ('time', 'lat', 'lon')= (4, 180, 360), column integration of temp  [K



You can also interpolate files to a standard height  zstd  or height above ground level  zagl . The
specific pressure and altitude definitions that  pstd ,  zstd , and  zagl  correspond to can be found in
 /amesGCM3/bin/MarsInterp.py .

Other grids you can interpolate to can be found in  /amesGCM3/mars_templates/amesgcm_profile .
You can use these by calling  MarsInterp  with the  -level  ( -l ) argument followed by the name of
the array you want to use in  amesgcm_profile .

You can even add your own vertical coordinate array to  amesgcm_profile  so that  MarsInterp  can
interpolate MGCM files to your preferred vertical coordinate system.

5.  MarsPlot.py  - Plotting the Results

Overview
The last component of CAP is the plotting routine,  MarsPlot , which accepts a modifiable template
( Custom.in ) containing a list of plots to create.  MarsPlot  is useful for creating plots from MGCM
output quickly, and it is designed specifically for use with the  netCDF  output files ( daily ,  diurn ,
 average ,  fixed ) generated by  MarsFiles .

The default template, Custom.in, can be created by passing the  -template  argument to  MarsPlot .
Custom.in is pre-populated to draw two plots on one page: a topographical plot from the fixed file
and a cross-section of the zonal wind from the average file. Creating the template and passing it into
 MarsPlot  creates a PDF containing the plots:

(amesGCM3)>$ MarsPlot.py -template

> /path/to/simulation/run_name/history/Custom.in was created

(amesGCM3)>$

(amesGCM3)>$ MarsPlot.py Custom.in

> Reading Custom.in

> [----------]  0 % (2D_lon_lat :fixed.zsurf)

> [#####-----] 50 % (2D_lat_lev :atmos_average.ucomp, Ls= (MY 2) 252.30, zonal avg)

> [##########]100 % (Done)

> Merging figures...

> /path/to/simulation/run_name/history/Diagnostics.pdf was generated


The following figure shows the three components of MarsPlot:

MarsPlot.py, opened in a terminal to inspect the netcdf files and ingest the Custom.in template

http://custom.in/
http://custom.in/
http://marsplot.py/
http://custom.in/


Custom.in , a template opened in a text editor
Diagnostics.pdf, refreshed in a pdf viewer

 Custom.in  can be modified using your preferred text editor and renamed to your liking. The above
plots are created from the first two blocks of code in  Custom.in  which are set to  = True . These
code blocks are named after the type of plots they create:

How to

Disable or add a new plot

<<<<<<<<<<<<<<| Plot 2D lon X lat = True |>>>>>>>>>>>>>

Title          = None

Main Variable  = fixed.zsurf

Cmin, Cmax     = None

Ls 0-360       = None

Level [Pa/m]   = None

2nd Variable   = None

Contours Var 2 = None

Axis Options  : lon = [None,None] | lat = [None,None] | cmap = jet | scale = lin | proj 



http://custom.in/


Code blocks is set to  = True  instruct  MarsPlot  to draw those plots. Other templates in
 Custom.in  are set to  = False  by default, which instructs  MarsPlot  to skip those plots. In total,
 MarsPlot  is equipped to create seven plot types:

<<<<<| Plot 2D lon X lat  = True |>>>>>

<<<<<| Plot 2D lon X time = True |>>>>>

<<<<<| Plot 2D lon X lev  = True |>>>>>

<<<<<| Plot 2D lat X lev  = True |>>>>>

<<<<<| Plot 2D time X lat = True |>>>>>

<<<<<| Plot 2D time X lev = True |>>>>>

<<<<<| Plot 1D            = True |>>>>> # Any 1D Plot Type (Dimension x Variable)


The settings for each plot may vary but every plot requires at least the following inputs:

Title          = Temperature            # Plot title

Main Variable  = atmos_average.temp     # filename.variable *REQUIRED

Cmin, Cmax     = 240,290                # Colorbar limits (minimum, maximum)

2nd Variable   = atmos_average.ucomp    # Overplot U winds

Contours Var 2 = 0,100,200              # List of contours for 2nd Variable


Some plots require these inputs:

# dimensions that might be required:

Ls 0-360       = 180      # The time at which to plot the variable

Level [Pa/m]   = 50       # The level at which to plot the variable

Lon +/-180     = -90      # The Longitude at which to plot the variable

Latitude       = 50       # The Latitude at which to plot the variable


Customize Plots
 Axis Options  specify the axes limits, colormap, linestyle and color for 1D-plots, projection for
certain plots :



Make a 1D-plot
The 1D plot template is different from the others in a few key ways:

Instead of  Title , the template requires a  Legend . When overploting several 1D variables on
top of one another, the legend option will label them insetad of changing the plot title.
There is an additional  linestyle  axis option for the 1D plot.
There is also a  Diurnal  option. The  Diurnal  input can only be  None  or  AXIS , since there is
syntax for selecting a specific time of day. The  AXIS  label tells  MarsPlot  which dimension
serves as the X axis.  Main Variable  will dictate the Y axis.

<<<<<<<<<<<<<<| Plot 1D = True |>>>>>>>>>>>>>

Legend         = None                   # Legend instead of Title

Main Variable  = atmos_average.temp

Ls 0-360       = AXIS                   #       Any of these can be selected

Latitude       = None                   #       as the X axis dimension, and

Lon +/-180     = None                   #       the free dimensions can accept

Level [Pa/m]   = None                   #       values as before. However,

Diurnal  [hr]  = None                   #   ** Diurnal can ONLY be AXIS or None **


There are several other plot customizations you can use:

When two or more blocks are sandwiched between a  HOLD ON  and  HOLD OFF ,  MarsPlot  will
draw the plots on the same page.

# Axis Options for 2D plots may include:

Lat         = [0,90]        # Latitude range for axes limits

Level[Pa/m] = [600,10]      # Level range for axes limits

sols        = [None,None]   # Sol range for axes limits

Lon +/-180  = [-180,180]    # Longitude range for axes limits

cmap        = jet           # Python colormap to use

scale       = lin           # Color map style ([lin]ear, [log]arithmic)

proj        = cart          # Projection ([cart]esian, [robin]son, [moll]weide, [Npole],
# Axis Options for 1D plots may include:



 lat,lon+/-180,[Pa/m],sols = [None,None] # range for X or Y axes limit
 var = [None,None]                       # range for displayed variables

 linestyle = -                           # Line style following matplotlib convention'-r
 axlabel = None                          # Change the default name for the axis




Plots are created on a standard page (8.5 x 11 inches) in landscape mode, but can be drawn in
portrait mode as well.
Plots can be saved as images instead of PDFs by specifying your preferred filetype (PNG, EPS,
etc.) when passing the  --output  ( -o ) argument to  MarsPlot .
When creating 1D plots of data spanning multiple years, you can overplot consecutive years by
calling  --stack_year  ( -sy ) when submitting the template to  MarsPlot .
Specify which MGCM output file to use when plotting by passing the  --date  ( -d ) argument to
 MarsPlot  followed by the 5-digit file prefix corresponding to the file you want to use.
Alternatively, add the prefix to the filename in the template (e.g.
 Main Variable = 00000.fixed.thin ).

Access simulation in a different directory
The final plot-related functionality in  MarsPlot  is the simulation list, which allows you to point
 MarsPlot  to different directories containing the MGCM output:

<<<<<<<<<<<<<<<<<<<<<< Simulations >>>>>>>>>>>>>>>>>>>>>

ref> None

2> /path/to/another/sim                            # another simulation

3>

=======================================================


To access a variable from a file in another directory, just point to the correct simulation when calling
 Main Variable :

Main Variable  = XXXXX.filename@N.variable`


Where  N  is the number in  <<< Simulations >>>  corresponding the the correct path.

Element-wise operations
The  Main Variable  input also accepts variable operations and time-of-day selections like so:

Main Variable  = [filename.variable]*1000  # multiply all values by 1000

Main Variable  = filename.variable{tod = 20}  # select the 20th hour of the day


At minimum,  Main Variable  requires  filename.variable  for input, but the above syntax can be
combined in several ways allowing for greater plot customization. For example, to plot dust mixing
ratio from the diurnal file in simulation #3 at 3 PM local time, the input is:



Main Variable  = [atmos_diurn_plevs_T@2.dst_mass_micro{tod = 15}]*1.e6 # dust ppm

#                [filename@N.variable{dimension = X}]*Y


Debugging
 MarsPlot  is designed to make plotting MGCM output easier and faster so it handles missing data
for you. For example, when dimensions are omitted with  None ,  MarsPlot  makes educated guesses
for data selection and will tell you exactly how the data is being processed both in the title for the
figures (if  Title = None ), and in the terminal output. Specifics about this behavior are detailed in the
instructions at the top of  Custom.in .

 MarsPlot  handles many errors by itself. It reports errors both in the terminal and in the
generated figures. To by-pass this behavior (when debugging), use the  --debug  option with
 MarsPlot  which will raise standard Python errors.



GCM Overview: Lecture

Introduction

Welcome to the overview portion of the Mars Climate Modeling Center (MCMC) Legacy Mars

Global Climate Model (GCM) tutorial. By the end of this section of the tutorial, you will have a

basic understanding of the main components and structure of the GCM.

The GCM presented here is extensively documented in:

Haberle et al. 2019. Documentation of the NASA/Ames Legacy Mars Global Climate

Model: Simulations of the present seasonal water cycle.

Outline: GCM Overview
1. What is a GCM?

2. Dynamical Core

3. Physical Processes

4. Grid Structure

5. Time Stepping

6. Code Architecture

https://www.sciencedirect.com/science/article/pii/S0019103518305761
file:///Users/mkahre/Downloads/GCMlecture-12.html#2.-Dynamical-Core
file:///Users/mkahre/Downloads/GCMlecture-12.html#3.-Physical-Processes
file:///Users/mkahre/Downloads/GCMlecture-12.html#5.-Time-Stepping


1. What is a GCM?
A GCM is a discretized numerical model of a planet's atmosphere that advances through

time by solving a set of equations to conserve momentum, mass, and energy. GCMs can

generally be divided into two parts based on Newton's second law:

1. The model geophysical fluid dynamics, which represent accelerations ( ).

Adiabatic processes, computed in the dynamical core

1. The model physics, which provide the forcing functions for the circulation ( ).

Diabatic processes, computed in the physics routines

For Mars, it is critical to realistically represent the radiative effects of atmospheric

dust and clouds

2. Dynamical Core (DYCORE)

Called every dynamical timestep (~2 min).

Overview:

The Legacy GCM utilizes the NASA GSFC ARIES/GEOS dynamical core

Tracer transport is based on the Van Leer I scheme

F = ma

ma

F



Purpose:

Computes pressure, wind, potential temperature, and tracer tendencies.

Methodology:

Solves the primitive equations of meteorology in spherical coordinates using finite

differences:

Momentum equations in U and V

Continuity equation

Hydrostatic equation

Thermodynamic energy equation

Tracer transport is based on the flux form of the continuity and advection equations

Estimate distribution of tracer mixing ratio in each grid-box with a slope

Allows for transport across more than one grid in one timestep in the zonal direction

only

Grid Structure

Horizontal: Arakawa C-Grid (Staggered U and V winds)

Vertical: Sigma (terrain-following) coordinate



Notes:

Designed to conserve energy and enstrophy

Second-order accuracy for all terms, except fourth-order accuracy for vorticity

advection

Dry dynamics only



References:

Suarez and Takacs, 1995

Hourdin and Armengaud, 1998

3. Physics: Summary of Processes

No Process Primary Subroutine(s)

1 Surface CO2, Surface and Sub-Surface Temperatures TEMPGR

2 Radiative Heating and Cooling OPTCV, OPTCI, SFLUXV, SFLUXI

3 Atmospheric CO2 Condensation COLDAIR

4 Planetary Boundary Layer NEWPBL

5 Atmospheric Dust Distribution FILLTAUCUM, MICROPHYS

6 Dust and Cloud Microphysics MICROPHYS

7 Convective Adjustment to Ensure Stability CONVECT

8 Rayleigh Friction computed in COMP3

Subroutines are called from COMP3

3.1 Physics: TEMPGR

Called every dynamical timestep (~2 min).

Purpose:

Solve surface energy balance equation to calculate surface temperature

Compute rate of CO2 condensation at the surface

Compute subsurface temperatures

https://gmao.gsfc.nasa.gov/gmaoftp/takacs/gcm/aries.geos.dycore.ver2.ps.Z
https://journals.ametsoc.org/view/journals/mwre/127/5/1520-0493_1999_127_0822_tuofvm_2.0.co_2.xml
file:///Users/mkahre/Downloads/GCMlecture-12.html#3.5-Physics:-Dust-Radiative-Effects
file:///Users/mkahre/Downloads/GCMlecture-12.html#3.7-Physics:-CONVECT
file:///Users/mkahre/Downloads/GCMlecture-12.html#3.8-Physics:-Rayleigh-Friction


Surface Temperature (Energy Balance):

Where:

Parameter Meaning Units

Ground Temperature K

Surface Emissivity None

Downward IR Flux at the Surface W m

Absorbed Solar Flux at the Surface W m

Upward Heat Exchange with the Atmosphere W m

Solved using the Newton-Raphson method

Surface CO2 Condensation:

Compute CO2 condensation temperature, :

ϵGσT 4
G − F

↓
IR − (1 − A) Fs + Fconv + Fcond = 0.

TG

ϵG

F
↓

IR
−2

(1 − A) Fs
−2

Fconv
−2

TCO2

3192.48



Hold  at , and use surface energy balance and latent heat of condensation of

CO2, , to compute rate of CO2 condensation/sublimation:

Where:

Parameter Meaning Units

CO2 Latent Heat of Condensation J kg

Subsurface Temperatures (Diffusion Equation):

Where:

Parameter Meaning Units

Soil Temperature K

Conductive Heat Flux W m

Soil/Ice Density kg m

Soil/Ice Specific Heat J kg  K

Soil Conductivity W m  K

Simple two-component soil model (soil over ice)

Solved explicitly

References

Haberle and Jakosky, 1991

Haberle et al. 1999

TCO2 =
3192.48

23.349 − ln (ps)

TG TCO2

L

=
∂MCO2

∂t

ϵGσT 4
CO2

− F
↓

IR − (1 − A) Fs + Fconv + Fcond

L

L −1

= ( ) = ( )∂Ts

∂t

∂
∂z

J

ρscs

∂2

∂z2

Tλs

ρscs

Ts

J −2

ρs −3

cs −1 −1

λs
−1 −1

https://www.sciencedirect.com/science/article/pii/0019103591901008
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1998JE900040


3.2 Physics: Radiation Code

Called every physical timestep (~16 min).

Purpose:

Compute solar and infrared heating rates (K per second)

From Wolff et al. 2017

Method:

Compute heating rates from flux divergences

Compute fluxes from 2-stream code (needs opacities and scattering properties)

Radiatively active species: CO2, H2O, aerosols (dust and ice)

Opacities:

Correlated k’s for gases (CO2/H2O)

Extinction efficiencies for dust and ice Scattering properties:

Rayleigh scattering for CO2

Aerosol scattering properties are functions of size and amount of ice.

We use a core/mantle Mie code to generate a lookup table.

Refractive indices from Wolff (2009)2169-9100.CRISM1) for dust and Warren (1984)

https://books.google.ca/books?hl=en&lr=&id=g74pDwAAQBAJ&oi=fnd&pg=PA106&dq=wolff,+m+mars&ots=ZKcrv6ckF2&sig=h8-X46HfeH7GfqQFXuaRmFIlwww#v=onepage&q=wolff%2C%20m%20mars&f=false
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JE003350@10.1002/(ISSN
https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-23-8-1206&id=27425


for ice.

Spectral resolution: 7 bands in visible (0.4-4.5 m), 5 bands in IR (4.5-1000 m)

No GCM Band Wavelength Interval ( m) Wavenumber Interval (cm )

1 Vis-7 0.24-0.40 41666.7 - 25000.0

2 Vis-6 0.40-0.80 25000.0 - 12500.0

3 Vis-5 0.80-1.31 12500.0 - 7633.59

4 Vis-4 1.31-1.86 7633.59 - 5376.34

5 Vis-3 1.86-2.48 5376.34 - 4032.26

6 Vis-2 2.48-3.24 4032.26 - 3086.42

7 Vis-1 3.24-4.50 3086.42 - 2222.22

8 IR-5 4.50-8.00 2222.22 - 1250.00

9 IR-4 8.00-12.0 1250.00 - 833.33

10 IR-3 12.0-24.0 833.33 - 416.67

11 IR-2 24.0-60.0 416.67 - 166.67

12 IR-1 60.0-1000 166.67 - 10.0

Main Routines Involved:

OPTCV(I): sets optical properties

SFLUXV(I): sums fluxes over spectral intervals

GFLUXV(I): gets fluxes by solving a tri-diagonal matrix

Other routines involved:

FILLPT: readies p,T fields for radiation routines

OPT_DST & OPT_CLD: integrate over size bins to get the scattering properties

References

Toon et al. 1989

Haberle et al. 2019

3.3 Physics: COLDAIR

Called every physical timestep (~16 min).

µ µ

µ −1

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD13p16287
https://www.sciencedirect.com/science/article/pii/S0019103518305761


Purpose:

Compute atmospheric CO2 condensation

Methodology:

Diagnose layers that have temperatures less than CO2 condensation temperature:

In these layers, compute amount of CO2, , that needs to condense to maintain 

:

Where:

Parameter Meaning Units

Pressure of Layer mbars

Specific Heat of Air J kg  K

Temperature of Layer K

Thickness of Layer  in  coordinates None

TCO2
=

3192.48
23.349 − ln (pl)

δMCO2

TCO2

δMCO2,l =
100 ∗ Cp (TCO2

− Tl) δσlπ

gL

pl l

Cp
−1 −1

Tl l

δσl l σ

= −



mbars

Surface Pressure mbars

Pressure at the Top of the Dynamical Domain (Tropopause Pressure) mbars

Gravity m s

CO2 Latent Heat of Condensation J kg

Sum  through the column and add to the surface CO2 budget

If , calculate the amount of CO2 that will remain on surface as  cools to 

Reference

Pollack et al. 1990

3.4 Physics: NEWPBL

Called every physical timestep (~16 min).

Purpose:

Compute the upward surface turbulent fluxes of heat, momentum, and mass (tracers)

Vertically mix these in the atmosphere

π = ps − pt

ps

pt

g −2

L −1

δMCO2

Tg > TCO2 Tg

TCO2

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB095iB02p01447


Basic Physics:

Surface fluxes calculated from Monin-Obukhov theory (drag laws)

For example, the heat flux ( ) is:

Where:

Parameter Meaning Units

Heat Flux W m

Near-Surface Air Density kg m

Air Specific Heat J kg  K

Heat Drag Coefficient None

Frictional Wind Speed m s

Near-Surface Air Temperature K

Fconv

Fconv = −ρcpchu∗ (Ta − Tg)

Fconv
−2

ρ −3

cp −1 −1

ch

u∗ −1

Ta



Ground Temperature K

Mixing coefficients are functions of the local Richardson number and are based the

Mellor and Yamada (1984) Level 2 scheme

The Richardson number,  is given by:

Where:

Parameter Meaning Units

Gravity m s

Potential Temperature K

Wind Speed m s

Altitude m

Methodology:

Solves a diffusion equation with an arbitrary vertical co-ordinate

Scheme can be implicit or explicit (we always run with the implicit option)

Notes:

Does not completely eliminate instabilities (i.e., it is not a convective adjustment

scheme)

Mixing effectively shuts off when   0.25

Mass is mixed using the heat coefficients

Tg

Ri

Ri =
g

θ

∂θ

∂z

( )2
∂V

∂z

g −2

θ

V −1

z

Ri >



References:

Haberle et al. 1993

Haberle et al. 1999

3.5 Physics: Atmospheric Dust Distribution

Computed every physical timestep (~16 min).

Purpose:

Provide multiple options for determining the atmospheric dust distribution

Hierarchy of dust treatments, from simple to complex

Important for including the radiative forcing from dust

Methods

Fully Prescribed:

Horizontal: Globally constant or based on an observation-based dust map

Vertical: Prescribed using Conrath profiles or similar (Conrath, 1975)

Lifting: NONE

Semi-Prescribed (Tracking):

Horizontal: Globally constant or based on a observation-based dust map

Vertical: Self-consistenly determined from transported dust tracers

Lifting: As needed to track desired horizontal distribution (usually a map)

https://journals.ametsoc.org/view/journals/atsc/50/11/1520-0469_1993_050_1544_ablmfm_2_0_co_2.xml
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1998JE900040
https://www.sciencedirect.com/science/article/pii/0019103575901566


Fully Interactive:

Horizontal: Self-consistently determined by predicted lifting and transport

Vertical: Self-consistenly determined from transported dust tracers

Lifting: Based on physical dust lifting parameterizations (usually wind stress and

dust devils)

References:

Haberle et al. 2019

Kahre et al. 2015

3.6 Physics: MICROPHYS

https://www.sciencedirect.com/science/article/pii/S0019103518305761
https://www.sciencedirect.com/science/article/pii/S0019103514003832


Called every physical timestep (~16 min).

Purpose:

Compute dust injection, aerosol sedimentation, and cloud nucleation and growth

Basic Physics:

Multiple dust injection methods, including dust tracking, dust devil lifting and wind

stress lifting

Cunningham-Stokes gravitational sedimentation

Cloud nucleation and growth as described in Haberle et al. (2019) and Montmessin et al.

(2002/2004)

Transported dust and clouds are optionally radiatively active

Methodology:

Moment Method

Assume particle size distribution is log-normal

n (r) = exp [ ( )]No

rσo√2π

1
2

ln(r/ro)2

σo



It follows that the total number of particles between  and  is:

Separately,  can be calculated from :

Solving for :

Thus, the distribution can be fully represented by , , and 

We assume  is a constant, so only  and  are carried as tracers.

Taking further advantage of the properties of log-normal distributions, many

representative particle radii can be calculated

Process Symbol Formula

Nucleation

Growth

Mass Sedimentation

Number Sedimentation

Opacity (total cross-section)

Scattering properties

We use the most appropriate representative radius for each physical process

Tracers

rmin rmax

N = ∫ rmax

rmin

n (r) dr = [erf ( ) − erf ( )]No

2
ln (rmax/ro)

√2πσo

ln (rmin/ro)

√2πσo

Mo ro

Mo = πρ ∫ r3n (r) = πρNor3
oexp ( σ2

o )4
3

4
3

9
2

ro

ro = [ ]
1/3

exp (− σ2
o )3Mo

4πρNo

3
2

Mo No σo

σo Mo No

ro ( )
1/3

exp (−1.5σ2
o )

3Mo
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The GCM carries an array ( QTRACE ) with 6 atmospheric tracers:

Tracer Units Array Index Index Name

Dust Mass kg/kg 1 ima_dt

Dust Number #/kg 2 inb_dt

Water Cloud Mass kg/kg 3 ima_cld

Water Cloud Number #/kg 4 inb_cld

Dust Core Mass kg/kg 5 ima_cor

Water Vapor Mass kg/kg 6 ima_vap

An array of 6 surface tracers ( QCOND ) is also carried, but some indices are empty:

Tracer Units Array Index Index Name

Dust Mass Deposited kg/m 1 ima_dt

EMPTY N/A 2 N/A

Water Cloud Mass Deposited kg/m 3 ima_cld

EMPTY N/A 4 N/A

Dust Core Mass Deposited kg/m 5 ima_cor

Water Mass Reservoir kg/m 6 ima_vap

Processes

Dust Injection: DUST_UPDATE

Computes flux of dust from the surface to the atmosphere

Assumes a log-normal distribution with  = 2.0 m

Adds to mass and number moments for dust

Sedimentation: SEDIM

Uses mass and number weighted mean radii of dust and cloud particles

Computes fall velocities for each type of particle

Update column tracer arrays for all tracers (except H2O vapor)

2

2

2

2

reff µ



Cloud Nucleation and Growth: NUCLEACOND

Nucleation:

Expands dust mass and number moments into bin

Computes nucleation rate for each bin

Sums over bins to compute total mass and number of nucleated dust particles

Growth:

Compute volume mean radius for cloud particles

Computes growth rate and converts to cloud mass exchange

Updates cloud mass (and cloud number if cloud particles sublimate completely)

References:

Haberle et al. 2019

Montmessin et al. 2004

Montmessin et al. 2002

3.7 Physical Processes: CONVECT

Called every physical timestep (~16 min).

Purpose:

Remove any remaining superadiabatic atmospheric layers after NEWPBL.

Determine the potential temperature within the convective layer ( ).

Determine the pressure of the top of the convective layer that exists above the surface

(i.e., pressure at the top of the boundary layer, ).

θc

pc

https://www.sciencedirect.com/science/article/pii/S0019103518305761
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JE002284
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JE001520


Method:

Stabilize regions where potential temperature decreases with height by conserving the

total heat energy.

-Where:

Parameter Meaning Units

Pressure mbars

Layer Thickness in  Coordinates None

Potential Temperature K

None

Gas Constant for CO J kg  K

Specific Heat J kg  K

Instantaneously mix all tracers in unstable regions.

θc =
(pk)κ

δσkθk + (pk+2)κ
δσk+2θk+2

(pk)κ
δσk + (pk+2)κ

δσk+2

p

δσ σ

θ

κ
Rgas

cp

Rgas 2
−1 −1

cp −1 −1



References:

Pollack et al. 1990

Pollack et al. 1981

3.8 Physical Processes: Rayleigh Friction

Applied every physical timestep (~16 min).

Purpose:

To damp waves as they approach the model top to minimize reflections from the top

boundary

Method:

Damp zonal ( ) and meridional ( ) winds with a rate of change that is proportional to

their magnitude

where  is a damping timescale

Convert lost kinetic energy into heat and update potential temperature of affected layers

Applied to the top 3 model layers

Negligible effect on the lower atmosphere

Reference:

Pollack et al. 1990

4. Grid Structure

Vertical: Sigma Coordinate (Terrain Following)

Simplifies the handling of the lower boundary in the presence of topography.

Defined by:

U V

= −

= −

(1)

(2)

∂U

∂t

U

τ
∂V

∂t

V

τ

τ

( − )

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB095iB02p01447
https://journals.ametsoc.org/view/journals/atsc/38/1/1520-0469_1981_038_0003_amgcew_2_0_co_2.xml
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB095iB02p01447


 is pressure;  is pressure at the top of the dynamical domain;  is surface pressure

Nominally 24 layers in the vertical

Vertical resolution ranging from:

~10 meters near the surface

~10 kilometers aloft

Horizontal: Latitude-Longitude Grid

Arakawa C-Grid Staggered Grid Structure

Pressure ( ), potential temperature ( ), tracers ( ) carried at grid mid-

points

Winds are carried at grid boundaries

Zonal winds ( ) staggered E/W

Meridional winds ( ) staggered N/S

Nominal horizontal resolution is 5o latitude by 6o longitude

σ =
(p − pt)
(ps − pt)

p pt ps

π = ps − pt θ q

U

V





5. Time Stepping (NEWSTEP)

Called every dynamical timestep (~2 min).

Purpose:

Update all atmospheric field ( , , U, V, QTRACE)

Update surface tracer field (QCOND)

Apply Robert time filter and Shapiro spatial filters (but not on QTRACE)

Method:

Use leap frog scheme in combination with a Robert time filter (  = 0.05) to suppress

computational mode.

Note that potential temperature ( ) and tracers ( ) are pressure-weighted, while the

other fields are not.

Field
Advance Fields to Future

Timestep (t+1) Filter Current Timestep (t)

Pressure

Potential
Temperature

Zonal Wind

Meridional Wind

Tracers

Surface Tracers

6. Code Architecture

π θ

α

θ q

πt−1 + 2dt
∂π

∂t
α + (1 − α) πt

πt−1 + πt+1

2

[πt−1θt−1 + 2dt]1
πt+1

∂πθ

∂t
[α + (1 − α) πtθt]1

πt

(πt−1θt−1 + πt+1θt+1)
2

ut−1 + 2dt
∂u

∂t
α + (1 − α) ut

(ut−1 + ut+1)
2

vt−1 + 2dt
∂v

∂t
α + (1 − α) vt

(vt−1 + vt+1)
2

[πt−1qt−1 + 2dt]1
πt+1

∂πq

∂t
[α + (1 − α) πtqt]1

πt

(πt−1qt−1 + πt+1qt+1)
2

qct−1 + 2dt
∂qc

∂t
α + (1 − α) qct

(qct−1 + qct+1)
2



6. Code Architecture

Full Code Architecture

Physics Code Architecture
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GCM Practical: Lecture and Exercises

Introduction

Welcome to the practical portion of the Mars Climate Modeling Center (MCMC) Legacy Mars

Global Climate Model (GCM) tutorial. By the end of this section of the tutorial, you will have

the practical skills necessary to run the GCM.

The GCM presented here is extensively documented in:

Haberle et al. 2019. Documentation of the NASA/Ames Legacy Mars Global Climate

Model: Simulations of the present seasonal water cycle.

Outline: GCM Practical
1. Install and Compile

2. Required Input Files

3. Cold Starts

4. Exercise: TASK 1

5. Warm Starts

6. History Files

7. Changing Model Resolution

8. Exercises: TASKS 2 and 3

https://www.sciencedirect.com/science/article/pii/S0019103518305761


1. Installation: Clone the Repository
(local)>$ git clone https://github.com/nasa/legacy-mars-global-
climate-model.git

This will produce a directory called legacy-mars-global-climate-model . Navigate

into that directory and list its contents:

(local)>$ cd legacy-mars-global-climate-model
(local)>$ ls -l

The following directories will be visible:

./documentation          # contains GCM documentation

./code                   # contains the GCM source code

./run                    # is where you will run the model

./run/data               # required input files 

./analysis               # simple analysis routine 

./analysis/validation    # sample plots 

./tutorial               # tutorial files



Compile the Code
From the main model directory ( legacy-mars-global-climate-model/ ), navigate to

the source code ( code/ ) directory:

<(local)>$ cd code
For gfortran, open the Makefile and uncomment the gfortran options and comment out the

ifort options. The original lines are:

F90_COMP  = ifort
F_OPTS    = -c -O2
#F90_COMP = gfortran
#F_OPTS   = -c -O3 -finit-local-zero -frecord-marker=4

and the lines modified for gfortran will instead be:

#F90_COMP = ifort
#F_OPTS   = -c -O2
F90_COMP  = gfortran
F_OPTS    = -c -O3 -finit-local-zero -frecord-marker=4

Once the Makefile is ready, you can proceed with compiling the model. First, remove all

object files ( *.o ), and module files ( *.mod ) to ensure a clean build by typing:

<(local)>$ make clean

Next, compile the code by typing:

<(local)>$ make

which creates an executable file called gcm2.3

NOTE: recompiling the code is required whenever there is a source code change.



2. Required Input Files

The GCM requires the following input files:

Description File Name Subroutine Data Type

Topography1 topog37x60.mola_intel input binary

Surface Albedo1 osu_albedo_5x6_2011 input binary

Thermal Inertia1 osu_ti_5x6_2011 input binary

Dust Map1 TES_my24_dustscenario_zvary_37x60_6ls_intel input binary

K-coefficients (V)2 CO2H2O_V_12_95_INTEL laginterp binary

K-coefficients (IR)2 CO2H2O_IR_12_95_INTEL laginterp binary

Cloud Properties (V)2 waterCoated_vis_JD_12bands.dat initcld ascii

Cloud Properties (IR)2 waterCoated_ir_JD_12bands.dat initcld ascii

Dust Properties (V)2 Dust_vis_wolff2010_JD_12bands.dat initcld ascii

Dust Properties (IR)2 Dust_vis_wolff2010_JD_12bands.dat initcld ascii

Notes:

1. Files are horizontal resolution-specific.

New files will be required for different horizontal resolutions (see below).

2. Files are RT wavelength resolution-specific.

Namelist
The namelist (called "mars" or "restart") contains runtime options for modifying the

simulation.

A sample "mars" file contains the following:

&inputnl
  runnumx = 2014.11
  dlat = 5.0     jm = 36    im = 60   nlay = 24
  psf  = 7.010   ptrop = 0.0008
  dtm  = 2.0     nc3  =  8
  tautot = 0.3  rptau = 6.1  conrnu = 0.03
  taue = 480.0  tauh = 1.5    tauid = 0.0  tauih = 0.0
  rsetsw = 1
  cloudon = .false.
  active_dust = .true.



  active_water = .false.
  microphysics = .true.
  co2scav = .true.
  timesplit = .false.
  albfeed = .false.
  latent_heat = .false.
  vdust = .true.
  icealb = 0.4  icethresh_depth = 5.0
  dtsplit = 30.0
  h2ocloudform = .false.
 /

Namelist Parameters

Key Parameters:

#### Full List of Parameters:

Parameter Type Description Units Notes

runnumx real run identifier

dlat real degrees between latitude grid points degrees

jm integer number of latitude grid points

im integer number of longitude grid points

nlay integer number of layers

psf real average surface pressure mbar

ptrop real pressure at the tropopause mbar

dtm real requested time step minutes

tautot real
visible dust optical depth at the
reference pressure level

rptau real
the reference pressure level tautot
uses mbar

taue real requested run time hours

tauh real history output frequency hours

tauid real starting time in days leave 0 for now

tauih real starting time of run hours 0 for cold starts; time of 1st

record of a warm start file

nc3 integer
a full pass through COMP3 is done
every NC3 time steps

rsetsw integer cold start / warm start flag
1 for cold starts; 0 for warm
starts

lday integer
day of a Mars year corresponding to
a given Ls.



conrnu real dust mixing ratio scale height not used in this version

Namelist Runtime Flags

Parameter Type Description Units Notes

cloudon logical radiatively active water ice clouds

active_dust logical radiatively active water vapor

microphysics logical call MICROPHYS always use true

co2scav logical
simple treatments of CO2 cloud
scavenging

timesplit logical timesplitting on dtsplit  1

albfeed logical surface water ice albedo feedback

latent_heat logical water latent heat effects
surface and
atmosphere

vdust logical read and use dust map

icealb real albedo value of surface ice when albfeed = .true.

icethresh_depth real depth of ice required to reset icealb microns when albfeed = .true.

dtsplit real requested timesplit DT seconds when timesplit = .true.

h2ocloudform logical h2o cloud formation

Day of Year (LDAY)

Ls Day of Year Ls Day of Year

0 173 200 578

10 193 210 594

20 213 220 610

30 234 230 626

40 256 240 641

50 277 250 657

60 300 257.4 668

70 322 257.8 0

80 344 260 3

90 366 270 19

100 388 280 34

110 410 290 50

120 431 300 66

≠



130 451 310 83

140 471 320 100

150 490 330 117

160 509 340 135

170 527 350 154

180 545 359.9 172

190 562 0 173

3. Cold Start
There are 2 types of runs: Cold Starts and Warm Starts

1. Cold Start: initialized with an isothermal atmosphere & no winds at time  0.

2. Warm Start: initialized from a previous run ("spun-up") at time  0.

We will start with learning how to do a Cold Start.

Steps for a Cold Start are:

1. Move executable to run directory and change to that directory

<(local)>$ cp gcm2.3 ../run/
<(local)>$ cd ../run/

1. Edit mars  file

2. Execute the code

<(local)>$ ./gcm2.3 <mars> m.out &

Standard history files are fortran binaries:

1. fort.11 , then fort.11_0002 , fort.11_0003 , etc: contain bulk of information

2. fort.45 , then fort.45_0002 , fort.45_0003 , etc: secondary information

3. fort.51 , then fort.51_0002 , fort.51_0003 , etc: used for warm starts

4. fort.91 , then fort.91_0002 , fort.91_0004 , etc: also used for warm starts

Each file nominally contains 10 sols of output (you can modify this)

NOTE: if these default settings are changed, changes will also be required in the

analysis pipeline.

4. GCM EXERCISE

=

≠



4. GCM EXERCISE
It's time to practice!

We have designed a few tasks that will require running the GCM on your

system. These exercises will help reinforce the concepts we're discussing.

TASK 1: Run from a Cold Start

The first exercise focuses on running the GCM from a cold start. The first

simulation we'll run is a 10 sol (240 hour) simulation that starts at Ls 90.

Otherwise, we'll use the default physics options in the tutorial namelist

( mars_tutorial  file).

Steps:

1. Create a new directory to execute the model in (run directory) and

populate it with gcm2.3 , mars_tutorial , htest , and the /data
directory (plus its contents). These files and directory are located inside

subdirectories within the legacy-mars-global-climate-model
directory that was created when you initially installed the GCM.

2. Rename the mars_tutorial  file to mars  with the command:

<(local)>$ mv mars_tutorial mars

>

1. In the mars  file, change the starting Ls ( lday ) to the value appropriate

for Ls 90 ( lday= 366  and the length of the simulation to 240 hours

( taue = 240.0 ).

2. Execute the simulation with the command:

<(local)>$ ./gcm2.3 < mars > m.out&

>

1. After the simulation finishes, run htest  ( <(local)>$ ./htest ) on

the first record of the last fort.11  file ( _0002 ) with J=18 , I=1 , and

L=24 . You should see something very similar to:

History file name:  fort.11_0002
Record number?  1
J, I, L (Which are: Lat, Lon, Layer)  18, 1, 24
 
 Run number: 2014.11



  History file name:  fort.11_0002
         Run number:  2014.11
      Record number:      1
               Grid:  J = 18    I =  1    L = 24

                Ls =       94.47
            RSDIST =      2.7285
            DECMAX =     25.2193
               TAU =      240.00
            TOFDAY =        0.00
Time at Grid Point =       12.00

            TAUTOT =      0.3000
             RPTAU =        6.10

        TOPOG(J,I) =   9688.4170  ----->  -2.6044 km
         ALSP(J,I) =      0.2795
      SURFALB(J,I) =      0.2795
        ZIN(J,I,1) =     69.3150
              GIDN =      0.0545       GIDS =      0.0805

               PSF =      7.0100
              GASP =      6.9672
GASP: Global Average Surface Pressure

             PTROP =  8.0000E-04
            P(J,I) =      8.1164
       TSTRAT(J,I) =    191.1051
          T(J,I,L) =    226.8797
          U(J,I,L) =     -3.9678
          V(J,I,L) =      3.9435

           GT(J,I) =    268.0048
      STEMP(J,I,1) =    210.7421        SDEPTH( 2) =    
0.0075 m
      STEMP(J,I,5) =    210.3161        SDEPTH(10) =    
0.0961 m

       CO2ICE(J,I) =  0.0000E+00
       ALICEN      =  0.6000            ALICES       =  
0.5000
       EGOCO2N     =  0.8000            EGOCO2S      =  
1.0000
      STRESSX(J,I) = -1.5937E-03        STRESSY(J,I) =  
2.3552E-03
      TAUSURF(J,I) =     0.43410

      fuptopv(J,I) =   113.12054        fuptopir(J,I)  =   



214.48886
      fdntopv(J,I) =   449.26962
     fupsurfv(J,I) =   115.78580        fupsurfir(J,I) =   
291.84625
     fdnsurfv(J,I) =   414.32309        fdnsurfir(J,I) =    
52.13027

       NPCFLAG =  F
   Water vapor =  4.4126E-10

You will notice that the Ls has advanced to  95 .

5. Warm Start
The second method for starting a simulation is through a warm start, which means we will

initialize a new simulation from a previous run.

Steps for a Warm Start are:

1. Move executable to run directory and change to that directory

<(local)>$ cp gcm2.3 ../run/
<(local)>$ cd ../run/

1. Rename mars  to restart

<(local)>$ mv mars restart

1. Identify fort.*_****  files required and copy them into run directory

2. As an example, assuming we want to warm start from fort.*_0002 , rename the 

fort.*  files without the extensions:

<(local)>$ mv fort.11_0002 fort.11
<(local)>$ mv fort.45_0002 fort.45
<(local)>$ mv fort.51_0002 fort.51
<(local)>$ mv fort.91_0002 fort.91

1. When warmstarting, the model will read the first record of the fort.11, fort.45, fort.51,

and fort.91 files and begin the simulation from that timestamp. This timestamp also

needs to be specified in the restart file as the tauih  value. To identify the starting

time, run htest  on the fort.11  file from which you will restart, and read the output

value of time TAU .

<(local)>$ ./htest
History file name: fort.11
Record number? 1

≈ ∘



J, I, L (Which are: Lat, Lon, Layer) 17, 1, 24

1. Edit restart  file

set rsetsw = 0
set tauih  to the value found in previous step

1. Execute the code

<(local)>$ ./gcm2.3 <restart> m.out &

History file sequencing will then be:

1. fort.11 , then fort.11_0003 , fort.11_0004 , etc

2. fort.45 , then fort.45_0003 , fort.11_0004 , etc

3. fort.51 , then fort.51_0003 , fort.11_0004 , etc

4. fort.91 , then fort.91_0003 , fort.11_0004 , etc

Note that this sequencing is based on our example of warm starting from 

fort.*_0002
Each file nominally contains 10 sols of output (you can modify this)

You may want to rename the fort.11 , fort.45 , fort.51 , and fort.91
files with the _0002  extension before processing them. For example:

<(local)>$ mv fort.11 fort.11_0002

6. History Files

Characteristics

Each file has two parts:

Header Record

Time-Dependent Records

Each history file ( fort.11 , fort.11_0002 , etc.) has 160 time-dependent records

In the nominal set-up, this covers 10 sols

Output every 1.5 hours; 16 outputs per sol

You can change this in the mars/restart file ( tauh )

We recommend...

Header Record

Written once at the beginning of each fort.11  file from mhisth.f
Code for reading header:



character(len=7) :: version
  integer  :: jm, im, layers, nl, ntracer
  real*4   :: runnum, dsig(layers), dxyp(jm), sdepth(nl)
  real*4   :: grav, rgas, cp, stbo, xlhtc, kapa, cmk, decmax, eccn
  real*4   :: orbinc, vinc, alicen, alices, egoco2n, egoco2s
  real*4   :: topog(jm,im), alsp(jm,im), zin(jm,im,nl)
  real*4   :: npcwik
  logical  :: npcflag(jm,im)

                       .

  read(20) runnum, jm, im, layers, nl, ntrace, version
  read(20) dsig, dxyp, grav, rgas, cp, stbo, xlhtc, kapa, 
 *          cmk, decmax, eccn, orbinc, vinc, sdepth, alicen,
 *          alices, egoco2n, egoco2s, npcwikg, gidn, gids
  read(20) topog, alsp, zin, npcflag

Variable Descriptions:

VARIABLE DESCRIPTION UNITS

runnum The run number

jm Number of latitude grid points

im Number of longitude grid points

layers Number of layers in the atmosphere below the stratosphere

nl Number of layers in the soil model

ntrace Number of tracers

version Version number

time Elapsed time from the start of the run hours

dsig(L)  - the layer thickness in  coordinates

sigma(K)  - values of  at the model levels

dxyp(J) The area of each grid point at latitude J m

ptrop Pressure of the tropopause mbar

psf Input global surface pressure mbar

tautot Input (global) dust optical depth at the reference pressure

rptau Reference pressure for dust optical depth (TAUTOT) mbar

nc3 Full COMP3 is done every nc3 time steps

cp Heat capacity of CO  gas J kg  K

grav Acceleration due to gravity m s

rgas Gas constant for Mars J kg^  K

dσ σ

σ σ

2

2
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stbo Stefan-Boltzmann constant J m  s  K

xlhtc Latent heat of CO J kg

decmax Obliquity (maximim solar declination)

eccn Orbital eccentricity

orbinc Inclination of the orbit to the ecliptic

vinc VINC - 90  is the true anomaly when L  = 0

sdepth(NL) Depth at the mid-point of each soil layer. (m)

alicen Albedo of CO  surface ice in the north polar cap

alices Albedo of CO  surface ice in the south polar cap

egoco2n Emissivity of CO  surface ice in the north polar cap

egoco2s Emissivity of CO  surface ice in the south polar cap

jequator J index of the equator

npcwikg Initial north polar cap water ice (kg)

topog(J,I) Surface topography (-geopotential) m  s

alsp(J,I) Surface albedo

zin(J,I,NL) Surface thermal inertia J m  K  s

npcflag(J,I) Logical flag, true if polar cap exists at this grid point

Time-Dependent Records

Written every tauh  hours from mhistv.f
Code for reading one record:

integer :: nc3, ncycle
 real*4  :: tau, ls, rsdist, tofday, psf, ptrop, tautot
 real*4  :: rptau, sind, gasp
 real*4  :: p(jm,im)
 real*4  :: t(jm,im,layers), u(jm,im,layers), v(jm,im,layers)
 real*4  :: gt(jm,im), co2ice(jm,im), tstrat(jm,im), tausurf(jm,im)
 real*4  :: ssun(jm,im), stemp(jm,im,nl)
 real*4  :: qtrace(jm,im,layers,ntrace), qcond(jm,im,ntrace)
 real*4  :: fuptopv(jm,im), fdntopv(jm,im)
 real*4  :: fupsurfv(jm,im),fdnsurfv(jm,im)
 real*4  :: fuptopir(jm,im), fupsurfir(jm,im), fdnsurfir(jm,im)
 real*4  :: surfalb(jm,im), dheat(jm,im,layers), geop(jm,im,layers)

                           .

 read(20) tau, ls, rsdist, tofday, psf, ptrop, tautot,
*         rptau, sind, gasp
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2
−1

∘
S

2

2

2

2

2 −2

−2 −1 −1/2



 read(20) nc3, ncycle

 read(20) p
 read(20) t
 read(20) u
 read(20) v
 read(20) gt
 read(20) co2ice
 read(20) stressx
 read(20) stressy
 read(20) tstrat
 read(20) tausurf
 read(20) ssun
 read(20) qtrace
 read(20) qcond
 read(20) stemp
 read(20) fuptopv, fdntopv, fupsurfv, fdnsurfv
 read(20) fuptopir, fupsurfir, fdnsurfir
 read(20) surfalb
 read(20) dheat
 read(20) geop

Variable Descriptions:

VARIABLE DESCRIPTION UNITS

time Elapsed time from the start of the run hours

tofday Time of day at  longitude hours

Ls Seasonal date degrees

rsdist Square of the Sun-Mars distance AU

psf Initial global surface pressure mbar

ptrop Pressure at the tropopause mbar

sind Sine of the sub-solar latitude

tautot Input (global) dust optical depth at the reference pressure

rptau Reference pressure for dust optical depth (TAUTOT) mbar

gasp Global average surface pressure mbar

nc3 Full COMP3 is done every nc3 time steps

p(j,i) PI (Surface pressure - ) mbar

t(j,i,l) Atmosphere temperature K

u(j,i,l) Zonal wind m s

v(j,i,l) Meridional wind m s

tstrat(j,i) Stratosphere temperature K

0∘

2

Ptrop

−1

−1



gt(j,i) Ground temperature K

co2ice(j,i) Amount of CO  ice on the ground kg m

stressx(j,i) Surface stress - zonal component (carried at PI points) N m

stressy(j,i) Surface stress - meridional component (carried at PI points) N m

tausurf(j,i) Dust optical depth (in visible) at the surface

ssun(j,i) Solar energy absorbed by the atmosphere W m

qtrace(j,i,l,n) Tracer mass mixing ratio kg kg

qcond(j,i,n) Amount of tracer (n) on the ground kg m

stemp(j,i,nl) Sub-surface soil temperature K

fuptopv(j,i) Upward visible flux at the top of the atmosphere W m

fdntopv(j,i) Downward visible flux at the top of the atmosphere W m

fupsurfv(j,i) Upward visible flux at the surface W m

fdnsurfv(j,i) Downward visible flux at the surface W m

fuptopir(j,i) Upward IR flux at the top of the atmosphere W m

fupsurfir(j,i) Upward IR flux at the surface W m

fdndurfir(j,i) Downward IR flux at the surface W m

surfalb(j,i) Surface albedo

dheat(j,i,l) Total diabatic heating rate K sol

geop(j,i,l) Geopotential m  s

2
−2

−2

−2

−2

−1

−2

−2

−2

−2

−2

−2

−2

−2

−1

2 −2



7. Changing Model Resolution

Horizontal Resolution

Cold Starts only

Steps to take:

1. In mars : change DLAT , JM , IM
2. In modules.f90 : change L_J , L_I
3. In input.f : change surface fields and dust map

You must have fields and a dust map at the proper resolution
4. In initpbl.f : change ZAVGTG  (initial ground temperatures) and soil/ice

locations

5. In init1.f : change initial locations of surface H2O ice

Vertical Resolution

Cold Starts only

Steps to take:

1. In mars : change NLAY  and maybe PTROP
2. In modules.f90 : change L_LAYERS  and DSIG  array

The sum of the DSIG  array always needs to be 1.0.

8. GCM EXERCISES
It's time to practice!

We have designed a few tasks that will require running the GCM on your

system. These exercises will help reinforce the concepts we've discussed.

TASK 2: Run from a Warm Start

The second exercise focuses on running the GCM from a warm start. The

simulation we will run now will be a continuation of our first simulation (from

TASK 1).

Steps:



1. Create a new run directory and populate it with gcm2.3 , mars , 

htest , and the /data  directory (plus its contents) from the TASK 1 run

directory, and rename the mars  file restart  ( <(local)>$ mv mars 
restart ).

2. Copy the fort.*_0002  files from the TASK 1 run directory into this new

run directory and rename them without the _0002  extension (change 

fort.11_0002  to fort.11 , fort.45_0002  to fort.45 , etc.).

3. Use htest  ( <(local)>$ ./htest ) to determine the hour ( tau )

from which you will start the new simulation.

4. In the restart  file, change the starting hour ( tauih ) to the value

found in Step 3 and and toggle the warmstart flag ( rsetsw ) from 1 to 0.

5. Execute the simulation with the command:

<(local)>$ ./gcm2.3 <restart> m.out&

>

1. After the simulation finishes, run htest  on the first record of the last 

fort.11  file ( _0003 ) with J=18 , I=1 , and L=24 . You should see

something very similar to:

History file name:  fort.11_0003
Record number?  1
J, I, L (Which are: Lat, Lon, Layer)  18, 1, 24

Run number: 2014.11

  History file name:  fort.11_0003
         Run number:  2014.11
      Record number:      1
               Grid:  J = 18    I =  1    L = 24

                Ls =       99.04
            RSDIST =      2.7092
            DECMAX =     25.2193
               TAU =      480.00
            TOFDAY =        0.00
Time at Grid Point =       12.00

            TAUTOT =      0.3000
             RPTAU =        6.10

        TOPOG(J,I) =   9688.4170  ----->  -2.6044 km
         ALSP(J,I) =      0.2795



      SURFALB(J,I) =      0.2795
        ZIN(J,I,1) =     69.3150
              GIDN =      0.0545       GIDS =      0.0805

               PSF =      7.0100
              GASP =      6.9102
GASP: Global Average Surface Pressure

             PTROP =  8.0000E-04
            P(J,I) =      8.1203
       TSTRAT(J,I) =    192.7632
          T(J,I,L) =    226.7106
          U(J,I,L) =     -4.3707
          V(J,I,L) =      5.3277

           GT(J,I) =    267.6625
      STEMP(J,I,1) =    209.8746        SDEPTH( 2) =    
0.0075 m
      STEMP(J,I,5) =    209.0226        SDEPTH(10) =    
0.0961 m

       CO2ICE(J,I) =  0.0000E+00
       ALICEN      =  0.6000            ALICES       =  
0.5000
       EGOCO2N     =  0.8000            EGOCO2S      =  
1.0000
      STRESSX(J,I) = -2.8061E-03        STRESSY(J,I) =  
3.5275E-03
      TAUSURF(J,I) =     0.48165

      fuptopv(J,I) =   114.52032        fuptopir(J,I)  =   
213.56181
      fdntopv(J,I) =   453.28476
     fupsurfv(J,I) =   116.20900        fupsurfir(J,I) =   
290.11661
     fdnsurfv(J,I) =   415.83743        fdnsurfir(J,I) =    
51.76165

       NPCFLAG =  F
   Water vapor =  8.8870E-08

You will notice that time ( TAU ) has advanced 240 hours (10 sols) from

the TASK 1 simulation.

TASK 3: Run with Modified Runtime Physics
Options

The third exercise has two parts and focuses on running the GCM from with



modified options for the treatment of dust. Instead of using radiatively active

transported dust ( ACTIVE_DUST = .TRUE. ), these simulations will use

prescribed dust in the vertical ( ACTIVE_DUST = .FALSE. ) with globally

uniform and constant ( VDUST = .FALSE. ) total column dust optical depths

that the user can set to any value ( TAUTOT = VALUE ).

We will execute two simulation with TAUTOT  values of 0.3 and 2.0,

respectively, which represent low and high dust loading cases. We will test

these new options by warm starting a simulation from the end of the TASK 1

simulation, which means that the warm start files used will be the same as

those used in TASK 2.

TASK 3.1: Global Dust Optical Depth = 0.3

Steps:

1. Create a new run directory and populate it with gcm2.3 , restart , 

htest , and the /data  directory (plus its contents) from the TASK 2 run

directory.

2. Copy the fort.*_0002  files from the TASK 1 run directory into this new

run directory and rename them without the _0002  extension.

3. In the restart  file, change the following flags to:

active_dust = .false.
vdust = .false.

1. Also in the restart  file, verify that tautot = 0.3

2. Execute the simulation.

3. After the simulation finishes, run htest  on the first record of the last 

fort.11  file ( _0003 ) > with J=18 , I=1 , and L=24 . You should see

something very similar to:

History file name:  fort.11_0003
Record number?  1
J, I, L (Which are: Lat, Lon, Layer)  18, 1, 24

Run number: 2014.11

  History file name:  fort.11_0003
         Run number:  2014.11
      Record number:      1



               Grid:  J = 18    I =  1    L = 24

                Ls =       99.04
            RSDIST =      2.7092
            DECMAX =     25.2193
               TAU =      480.00
            TOFDAY =        0.00
 Time at Grid Point =       12.00

            TAUTOT =      0.3000
             RPTAU =        6.10

        TOPOG(J,I) =   9688.4170  ----->  -2.6044 km
         ALSP(J,I) =      0.2795
      SURFALB(J,I) =      0.2795
        ZIN(J,I,1) =     69.3150
              GIDN =      0.0545       GIDS =      0.0805

               PSF =      7.0100
              GASP =      6.9155
 GASP: Global Average Surface Pressure

             PTROP =  8.0000E-04
            P(J,I) =      8.1335
       TSTRAT(J,I) =    191.7084
          T(J,I,L) =    226.1000
          U(J,I,L) =     -2.6611
          V(J,I,L) =      5.0604

           GT(J,I) =    267.7570
      STEMP(J,I,1) =    210.1247        SDEPTH( 2) =    
0.0075 m
      STEMP(J,I,5) =    208.9654        SDEPTH(10) =    
0.0961 m

       CO2ICE(J,I) =  0.0000E+00
       ALICEN      =  0.6000            ALICES       =  
0.5000
       EGOCO2N     =  0.8000            EGOCO2S      =  
1.0000
      STRESSX(J,I) = -3.0583E-03        STRESSY(J,I) =  
4.2290E-03
      TAUSURF(J,I) =     0.41011

      fuptopv(J,I) =   116.24009        fuptopir(J,I)  =   
213.04865
      fdntopv(J,I) =   453.28494
     fupsurfv(J,I) =   117.04001        fupsurfir(J,I) =   
290.54834
     fdnsurfv(J,I) =   418.81110        fdnsurfir(J,I) =    



51.34554

       NPCFLAG =  F
   Water vapor =  7.9585E-08

You will notice that the ground temperature ( GT ) at this grid point is 

267.75 K and the (near-> surface, since we chose L = 24) air temperature

( T ) is  226.1 K.

TASK 3.2: Global Dust Optical Depth = 2.0

Steps:

1. Create a new run directory and populate it with gcm2.3 , restart , 

htest , and the /data  directory (plus its contents) from the TASK 2 run

directory.

2. Copy the fort.*_0002  files from the TASK 1 run directory into this new

run directory and rename them without the _0002  extension.

3. In the restart  file, change the following flag to:

tautot = 2.0

1. Also in the restart  file, verify that:

active_dust = .false.
vdust = .false.

1. Execute the simulation.

2. After the simulation finishes, run htest  on the first record of the last 

fort.11  file ( _0003 ) with J=18 , I=1 , and L=24 . You should see

something very similar to:

History file name:  fort.11_0003
Record number?  1
J, I, L (Which are: Lat, Lon, Layer)  18, 1, 24

Run number: 2014.11

  History file name:  fort.11_0003
         Run number:  2014.11
      Record number:      1
               Grid:  J = 18    I =  1    L = 24

≈

≈



                Ls =       99.04
            RSDIST =      2.7092
            DECMAX =     25.2193
               TAU =      480.00
            TOFDAY =        0.00
 Time at Grid Point =       12.00

            TAUTOT =      2.0000
             RPTAU =        6.10

        TOPOG(J,I) =   9688.4170  ----->  -2.6044 km
         ALSP(J,I) =      0.2795
      SURFALB(J,I) =      0.2795
        ZIN(J,I,1) =     69.3150
              GIDN =      0.0545       GIDS =      0.0805

               PSF =      7.0100
              GASP =      6.9340
 GASP: Global Average Surface Pressure

             PTROP =  8.0000E-04
            P(J,I) =      8.0227
       TSTRAT(J,I) =    191.3996
          T(J,I,L) =    234.7205
          U(J,I,L) =      2.7318
          V(J,I,L) =      3.8033

           GT(J,I) =    260.3738
      STEMP(J,I,1) =    221.2417        SDEPTH( 2) =    
0.0075 m
      STEMP(J,I,5) =    212.0935        SDEPTH(10) =    
0.0961 m

       CO2ICE(J,I) =  0.0000E+00
       ALICEN      =  0.6000            ALICES       =  
0.5000
       EGOCO2N     =  0.8000            EGOCO2S      =  
1.0000
      STRESSX(J,I) =  1.5366E-04        STRESSY(J,I) =  
4.8486E-03
      TAUSURF(J,I) =     2.69408

      fuptopv(J,I) =   114.68562        fuptopir(J,I)  =   
119.80155
      fdntopv(J,I) =   453.28500
     fupsurfv(J,I) =    69.66179        fupsurfir(J,I) =   
259.86200
     fdnsurfv(J,I) =   249.27484        fdnsurfir(J,I) =   
120.63870



       NPCFLAG =  F
   Water vapor =  6.5969E-08

You will notice that the daytime ground temperature is cooler and the

daytime near-surface air temperature is warmer than in the previous

simulation (TASK 3.1). This is expected since we've significantly increased

the atmospheric dust loading.

Configure Directory Structure
< Optional >

While not necessary, it may be useful to place the different directories described above in

different locations on your computer.

/code, /documentation, /tutorial, /analysis

    - where the code and documents reside and where the 
executable will be created
    - does not require much disk space

/run

    - where the executable will be run and where the output 
files will be created
    - significant disk space required, so it's often in a 
different location (scratch, etc)

/data

    - where required input files reside
    - default location is ```/run/data```
    - you'll point to this directory in the source code if it 
isn't in default location

Update Paths to Input Files

BEFORE MODIFYING SOURCE CODE: make sure you're in a location where making

changes is OK

Change paths in input.f, laginterp.f90, and initcld.f

As an example, modying input.f for path to topography file:

OPEN(UNIT=9,



!     *  FILE='data/topog37x60.mola_intel',
     *  FILE='/scr1/jsmith/gcm/data/topog37x60.mola_intel',
     *  STATUS='OLD',FORM='UNFORMATTED')
      READ(9) BOUNDUM
      CLOSE(9)

- Make sure to change the paths to all required input
files.

In [ ]:  



NASA Ames Legacy Mars Global Climate
Model README
Official Public Release

This software has reached end of life and will not receive further updates aside from critical bug fixes.

Installing, Compiling, and Running The
Legacy GCM

Introduction
Welcome to the Mars Climate Modeling Center (MCMC) Legacy Mars Global Climate Model (GCM)
installation tutorial. By the end of this tutorial, you will know how to configure, compile, and run the
GCM, and how to check the initial model results for accuracy. The analysis pipeline tutorial will build
on what you learn here by expanding on model analysis capabilities.

The GCM presented here is extensively documented in Haberle et al. 2019 (Documentation of the
NASA/Ames Legacy Mars Global Climate Model: Simulations of the present seasonal water cycle).

Requirements
This tutorial has been tested on Mac, Linux, and Windows 10. The commands below are assumed to
be utilized in the terminal on Mac and Linux machines, and in either the native terminal or Cygwin on
Windows machines (depending on the version of the Windows). If you need Cygwin for a Windows
machine, you can find instructions for download and installation here.

FORTRAN Compiler
A FORTRAN compiler is required to compile the GCM. We recommend the Intel or GNU compiler.
While the Intel (ifort) FORTRAN compiler requires purchasing a license, the GNU (gfortran) FORTRAN
compiler is freely available. Information on the Intel compiler can be found here:

https://www.sciencedirect.com/science/article/pii/S0019103518305761
https://cygwin.com/


https://www.intel.com. The GNU compiler can be installed with a package manager such as
Homebrew, MacPorts or Cygwin, or directly from the source code. Once you have installed the
compiler, make sure you have the path to it included in your bash or csh profile.

Installing and Compiling the GCM
The first steps are to install and compile the GCM on your machine.

Installation: Clone the repository

% git clone https://github.com/nasa/legacy-mars-global-climate-model.git


This will produce a directory called  legacy-mars-global-climate-model . Navigate into that
directory and list its contents:

% cd legacy-mars-global-climate-model

% ls -l


The following directories will be visible:

A Note on Directory Configuration

While not necessary, it may be useful to place the different directories described above in
different locations on your computer. The source code and data files are relatively small and can
be placed anywhere. The GCM history files can take up large amounts of disk space (a typical 2
year run uses ~20 gigabytes) so you may want to place the  run / directory in a scratch directory
or somewhere similar. Note that any changes you make to the default directory structure need to
be taken into account in the instructions below, so if you are unsure about how to do this, it is
probably best to start with the default structure.

Compilation: Makefile & Compiler Compatibility

./documentation          # contains GCM documentation


./code                   # contains the GCM source code


./run                    # is where you will run the model


./run/data               # contains the required input files for the GCM


./analysis               # contains a simple analysis routine for checking a simulation


./analysis/validation    # contains sample plots from the default settings


./tutorial               # contains files used in this tutorial


https://www.intel.com/
https://brew.sh/
http://macports.org/
https://cygwin.com/
https://gcc.gnu.org/wiki/GFortran


From the main model directory ( legacy-mars-global-climate-model/ ), navigate to the source code
( code/ ) directory:

% cd code


The Makefile is set up to use the GNU Fortran (gfortran) compiler by default. Settings for the Intel
(ifort) compiler are also available. You will need to modify the Makefile to use ifort. To do this, open
the Makefile and comment the gfortran options and uncomment the ifort options. The original lines
are:

#F90_COMP  = ifort

#F_OPTS    = -c -O2

F90_COMP = gfortran

F_OPTS   = -c -O3 -finit-local-zero -frecord-marker=4


and the lines modified for ifort will instead be:

F90_COMP = ifort

F_OPTS   = -c -O2

#F90_COMP  = gfortran

#F_OPTS    = -c -O3 -finit-local-zero -frecord-marker=4


Once the Makefile is ready, you can proceed with compiling the model. First, remove all object files
( *.o ), and module files ( *.mod ) to ensure a clean build by typing:

% make clean


Next, compile the code by typing:

% make

which creates an executable file called  gcm2.3 . Note that warnings that are not fatal may appear
during the compile. If the executable is written, the compilation was successful. If fatal errors are
produced during the compile and the compile fails, no executable will be created. In this case, check
that the compiler can be found on the command line (i.e., set the  $PATH  correctly) and that the
Makefile is set up properly for your compiler.

Running the Model



Before running the model, you will need to move (or copy) the executable file ( gcm2.3 ) to the  run/ 
directory as well as the tutorial namelist file ( tutorial/mars_tutorial ). Navigate into that directory,
and list its contents (note that this command assumes you're using the default directory structure):

% cp gcm2.3 ../run/

% cd ../run/

% ls


You will see the following in this directory, which are all the necessary components for running the
model:

gcm2.3           # the executable

mars_tutorial    # the input file that includes runtime options


The  mars_tutorial  file has the default set-up for your initial test simulation. The parameters and
options in the  mars_tutorial  file are described in more detail below, but for now, no editing of this
file is needed.

To run the model, type:

% ./gcm2.3 <mars_tutorial> m.out &


In this command,  m.out  is the name of the output log file that will be produced, and the  &  will
make the model run in the background.

If the model is running correctly, you will see fort.11, fort.51, and fort.91 files being created in the
current directory ( run/ ). The initial default simulation will simulate 20 sols (Martian days) and take
approximately an hour to complete.

Analyzing GCM Output

Checking the Default Simulation
To check that the simulation ran properly, we will run a simple analysis routine called  htest.f90 .
Navigate to the  tutorial/  directory:

% cd ../tutorial/




To compile  htest.f90  using gfortran, type:

% gfortran -c historymod.f90

% gfortran -o htest htest.f90 historymod.o


To compile using ifort, type:

% ifort -c historymod.f90

% ifort -o htest htest.f90 historymod.o


Next, copy the  htest  executable ( htest.exe  in Windows) and  htest.in  input file to the  run/ 
directory and navigate to it:

% cp htest htest.in ../run/   #  cp htest.exe htest.in ../run/ in Windows

% cd ../run/


 htest  is a routine that prints out information from one location (in latitude, longitude, and vertical
coordinate) at one time step of the simulation. To print out information from latitude index number 18
(the equator), longitude index 1 (-180 East), and vertical coordinate index 24 (first atmospheric layer
above the ground) at the first output from the 20th martian day of simulation, type:

% ./htest < htest.in


The output from  htest  will be:



You should reproduce the information above quite closely. There may be variations in the fourth or
fifth decimal place due to hardware and compiler differences but they should be small. If you



reproduce these  htest  results, you have successfully installed and run the GCM.

Notices:
Copyright © 2021 United States Government as represented by the Administrator of the National
Aeronautics and Space Administration. All Rights Reserved.

Disclaimers
No Warranty: THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY
KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY
WARRANTY THAT THE SUBJECT SOFTWARE WILL CONFORM TO SPECIFICATIONS, ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL BE
ERROR FREE, OR ANY WARRANTY THAT DOCUMENTATION, IF PROVIDED, WILL CONFORM TO
THE SUBJECT SOFTWARE. THIS AGREEMENT DOES NOT, IN ANY MANNER, CONSTITUTE AN
ENDORSEMENT BY GOVERNMENT AGENCY OR ANY PRIOR RECIPIENT OF ANY RESULTS,
RESULTING DESIGNS, HARDWARE, SOFTWARE PRODUCTS OR ANY OTHER APPLICATIONS
RESULTING FROM USE OF THE SUBJECT SOFTWARE. FURTHER, GOVERNMENT AGENCY
DISCLAIMS ALL WARRANTIES AND LIABILITIES REGARDING THIRD-PARTY SOFTWARE, IF
PRESENT IN THE ORIGINAL SOFTWARE, AND DISTRIBUTES IT "AS IS."

Waiver and Indemnity: RECIPIENT AGREES TO WAIVE ANY AND ALL CLAIMS AGAINST THE
UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, AS WELL AS ANY
PRIOR RECIPIENT. IF RECIPIENT'S USE OF THE SUBJECT SOFTWARE RESULTS IN ANY
LIABILITIES, DEMANDS, DAMAGES, EXPENSES OR LOSSES ARISING FROM SUCH USE,
INCLUDING ANY DAMAGES FROM PRODUCTS BASED ON, OR RESULTING FROM, RECIPIENT'S
USE OF THE SUBJECT SOFTWARE, RECIPIENT SHALL INDEMNIFY AND HOLD HARMLESS THE
UNITED STATES GOVERNMENT, ITS CONTRACTORS AND SUBCONTRACTORS, AS WELL AS ANY
PRIOR RECIPIENT, TO THE EXTENT PERMITTED BY LAW. RECIPIENT'S SOLE REMEDY FOR ANY
SUCH MATTER SHALL BE THE IMMEDIATE, UNILATERAL TERMINATION OF THIS AGREEMENT.
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