
Learning Based Edge Computing in Air-to-Air
Communication Network

Zhe Wang
Dept. of Electrical and Computer Engineering

University of Louisville
Louisville, United States
zhe.wang@louisville.edu

Eric J. Knoblock
Communications and Intelligent Systems Division

NASA Glenn Research Center
Cleveland, OH, United States

eric.j.knoblock@nasa.gov

Hongxiang Li
Dept. of Electrical and Computer Engineering

University of Louisville
Louisville, United States

h.li@louisville.edu

Rafael D.Apaza
Communications and Intelligent Systems Division

NASA Glenn Research Center
Cleveland, OH, United States

rafael.d.apaza@nasa.gov

Abstract—This paper studies learning-based edge computing
and communication in a dynamic Air-to-Air Ad-hoc Network
(AAAN). Due to spectrum scarcity, we assume the number of
Air-to-Air (A2A) communication links is greater than that of
the available frequency channels, such that some communication
links have to share the same channel, causing co-channel inter-
ference. We formulate the joint channel selection and power con-
trol optimization problem to maximize the aggregate spectrum
utilization efficiency under resource and fairness constraints. A
distributed deep Q learning-based edge computing and commu-
nication algorithm is proposed to find the optimal solution. In
particular, we design two different neural network structures and
each communication link can converge to the optimal operation
by exploiting only the local information from its neighbors,
making it scalable to large networks. Finally, experimental results
demonstrate the effectiveness of the proposed solution in various
AAAN scenarios.

Index Terms—AAAN, deep Q-learning, edge computing, re-
source allocation

I. INTRODUCTION

As the airspace is becoming more crowded and complex,
Air-to-Air (A2A) communications are becoming increasingly
important in both military and civil aviation applications. In
particular, the National Aeronautics and Space Administra-
tion (NASA) is investigating advanced A2A communication
technologies to facilitate the Urban Air Mobility (UAM) and
Advanced Air Mobility (AAM) concepts and help emerging
aviation markets to safely develop an air transportation system
that moves people and cargo between places previously not
served or underserved by aviation – using new aircraft that
are only just now becoming possible [1]. As in many other
wireless communication systems, spectrum scarcity stands out
as the main challenge in aeronautical communications. To
address this challenge, the concept of autonomous spectrum
management was developed for A2A and Air-to-Ground(A2G)
communications to modernize the existing Air Traffic Control
(ATC) system and conceive future UAM/AAM applications
[2].

As artificial intelligence and machine learning are taking
center stage, learning-based technologies have drawn signifi-
cant attention in many fields including aeronautical communi-
cation and networking [3]. Compared to conventional model-
based approaches, well-trained neural networks can make
quick decisions in complex environments that are intractable in
practice. On the other hand, to reduce communication latency
and save bandwidth, edge computing has recently emerged as
a distributed computing paradigm that brings computation and
data storage closer to the end user [4]. Under the context of
aeronautical communications, edge computing enables quick
decision making by each operating aircraft, which is in con-
trast to existing aviation systems relying on centralized ground
control. In particular, edge computing-based A2A communica-
tions allow aircraft within the communication range to directly
exchange information without having to route the data through
the ground infrastructure.

In this paper, we consider a distributed Air-to-Air Ad-
hoc Network (AAAN), which is featured by high mobility,
lack of central control, and self-organization. The objective
is to maximize the aggregate spectrum utilization efficiency
under resource and fairness constraints. In particular, we
propose a distributive optimization framework that leverages
edge computing and deep reinforcement learning for real-time
decision making in dynamic network environments.

Deep Reinforcement Learning (DRL) has been recently
applied to solve dynamic spectrum access problems [5] and
power control problems [6], [7] in various wireless networks.
In [5], Naparstek and Cohen proposed a deep multi-user
reinforcement learning algorithm for distributed dynamic spec-
trum access, where the long short-term memory model is
adopted to extract essential features for spectrum prediction.
Along a different line, the authors in [6] proposed a DRL-
based algorithm for power allocation, without considering
the channel selection problem. Additionally, Liang et. al.
proposed joint spectrum and power allocation algorithms for



vehicular communications with delayed CSI feedback [7].
However, these studies are limited to Device-to-Device (D2D)
communications or vehicular networks, which rely on cellular
networks as the underlying infrastructure.

Relevant studies on aerial edge computing mostly involve
A2G communications. In [8], a new Mobile Edge Computing
(MEC) framework was proposed from an A2G integration
perspective, where a case study is conducted to demonstrate
the performance improvements in computation capability and
communication connectivity based on real-world road topol-
ogy. Moreover, the authors in [9] applied MEC to minimize
the energy optimization for A2G integrated wireless networks.
Recently, a survey on A2G integrated mobile edge networks
was conducted in [10]. Other studies on edge computing for
D2D communications in the mobile cellular network can be
found in [11]–[13].

Different from those terrestrial or A2G networks, we con-
sider a generic AAAN that is completely distributive without
ground control. Optimization of such a network poses multiple
challenges. First, due to each aircraft’s high mobility, the
network is highly dynamic and a communication link suffers
from transient connection and disconnection. Second, the flight
safety information is time-critical and must be delivered in
real time. Third, multiple communication links must compete
and share a limited spectrum to balance the aggregate net-
work throughput and fairness among individual aircraft. To
tackle these challenges, we propose a Learning based Edge
Computing Resource Allocation (LECRA) algorithm for A2A
communications. This paper extends our previous work in
[14] to meet the aircraft’s individual quality of service (QoS)
requirements. Our contributions are summarized as follows:
• LECRA is flexible to balance the spectrum utilization

efficiency and user fairness, where the QoS associated
with different communication links is adjustable to reflect
their unequal priorities or importance.

• LECRA adopts two alternative neural network structures
based on Deep Q-learning, which is a model-free and
off-policy algorithm. It is robust to produce the optimal
channel and power allocation solutions, even in a highly
dynamic aerial environment.

• LECRA is completely distributive, where each A2A
communication link only needs to obtain local informa-
tion from their neighbors to make decisions. Therefore,
LECRA enjoys high scalability by taking advantage of
edge computing and communication.

The rest of the paper is organized as follows. Sec. II
describes the system model and formulates the joint resource
allocation problem. The LECRA algorithm is discussed with
details in Sec. III. Experimental results are presented in Sec.
IV to evaluate the performance of the LECRA algorithm in
different scenarios. Finally, a conclusion is drawn in Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a single-hop point-to-point
AAAN communication network, as illustrated in Fig. 1. We
assume a total of M aircraft {A1, A2, ..., AM}, each equipped

Fig. 1: Single Hop A2A Communications.

with a single antenna, and N pair of A2A communication
links {L1, L2, ..., LN}. In AAAN communications, the aircraft
are constantly moving and the surrounding environment is
constantly changing, so the spectrum access and power control
must be updated in a dynamic fashion. Two aircraft are defined
as neighbors if they are within the direct communication range
R, and only neighbors can establish a communication link. For
example, Fig. 1 shows three aircraft pairs (Ai, Aj), (Am, An),
and (Ah, Ak) establish three communication links at time t. At
time t+1, aircraft Am,t+1 and An,t+1 move out of their direct
communication range and become disconnected. Meanwhile,
aircraft Am,t+1 and An,t+1 respectively become neighbors
of Ah,t+1 and Aj,t+1, so new communication links can be
established.

Due to spectrum scarcity, we consider a spectrum limited
communication scenario where the number of available fre-
quency channels, K, is always less than the number of A2A
links (i.e., K < N ). As a result, some communication links
have to simultaneously share the same channel, causing co-
channel interference. For fairness consideration, we impose
that no communication link can use more than one channel at
any given time [15] and a minimum QoS shall be maintained
for each link. In this case, the Signal to Interference plus Noise
power Ratio (SINR) for link n on channel k is given by

SINRn,k =
φn,kpn,k|hn,k|2

σ2 +
∑
v∈V φv,kpv,k|hv→n,k|2

(1)

where φn,k is the channel selection indicator at time t (i.e.,
φn,k = 1 when channel k is selected by link n, otherwise
φn,k = 0, and

∑
k∈K φn,k ≤ 1); hn,k and pn,k denote link

n’s channel gain and transmit power on channel k, and σ2

represents the AWGN power. Suppose link n is interfered by
a set of neighboring links V transmitting on the same channel,
hv→n,k denotes the channel gain of the interference link.

To simplify the problem, we assume unit bandwidth so
that the spectrum efficiency becomes the data rate, which is
Rn,k = log2(1 + SINRn,k). In order to maximize the sum
rate, the joint channel selection and power control problem is



Fig. 2: DRL Training Model in LECRA

formulated as follows:

max
φ,p

N∑
n=1

K∑
k=1

Rn,k

s.t. 0 ≤ pn,k ≤ Pmax,∀Ln ∈ L
K∑
k=1

φn,k ≤ 1,∀Ln ∈ L,∀k ∈ K

SINRn ≥ SINRminn

(2)

where channel selection φn,k ∈ {0, 1} and transmit power
pn,k ∈ [0, Pmax] are optimization variables, and SINRminn

is the minimum QoS required by link n, representing user
fairness.

To solve the optimization problem in (2), we propose a
DRL-based joint resource allocation algorithm that can be
implemented in a distributive manner via edge computing
and communication. As shown in Fig. 2, each communication
aircraft is a learning agent equipped with a decision engine to
solve the problem (2) using its local information. We assume
that each aircraft can exchange information with its neighbors
through a common control channel. More specifically, each
communication link can obtain information about its own
link and its neighboring links. Based on the premise that the
dynamic network and communication patterns are correlated
in time, it is reasonable to expect the A2A pairs can learn
from their historical data and optimize their current decisions
on channel selection and power allocation.

III. LEARNING-BASED JOINT RESOURCE ALLOCATION

Our LECRA algorithm is based on deep Q-learning, which
is an off-policy deep reinforcement learning algorithm to solve
dynamic programming problems. It has the advantages of
evaluating the expected utility among available actions without
prior knowledge of the system model, as well as handling
stochastic transitions without adaptations. Fig. 2 illustrates the
DRL training model in LECRA, where each communication
link makes its own decisions. Specifically, the goal of each
agent is to learn an optimal policy that maximizes the ac-
cumulated reward in an observable Markovian environment.
The agent must find out which action yields the most reward
through trial and error rather than explicit instructions. This
can be achieved by successively improving its Q value of
particular actions at particular states, where each state-action
pair has a particular Q value and all of them are stored in a
Q table.

LECRA consists of several major elements: action, state,
reward, transition, and policy. Given an arbitrary communica-
tion link, we use V and D to denote the sets of links caus-
ing/suffering interference to/from the chosen link respectively.

a) Action: In A2A communications, in every coherence
time slot each agent needs to take two actions: channel se-
lection and power assignment. We use K to represent channel
action set, which consists of K actions because there are K
channels available. From Section II, we know each agent can
select no more than one channel during the same time slot



(i.e.,
∑
k∈K φ

(t)
n,k ≤ 1,∀L). To reduce the search space, the

maximum power Pmax is discretized to δ levels so that the
power assignment action set is P = {Pmax

δ , 2Pmax

δ , ..., Pmax}.
Thus, the resource allocation action space is denoted by A =

{(φ(t)k , p)|k ∈ K, p ∈ P}. For example, a(t)n = {φ(t)n,k, p
(t)
n,k}

means that, at time t, agent n takes channel action φ
(t)
n,k and

power action p(t)n,k. Accordingly, each agent has an action space
of size Kδ.

b) Reward: Our distributed approach delegates the op-
timization problem in (2) to individual agents who locally
maximize the sum rate. To this end, the reward of each agent
is calculated as:

r(t+1)
n =

∑
k∈K

R
(t)
n,k −

∑
d∈D(t+1)

λ
(t)
n→d − λ

(t)
SINR (3)

where the first term is the data rate of the given link. In
the second term, D(t+1) denotes the neighboring link set
that will be interfered by link n at time t + 1, and penalty
λ
(t)
n→d represents the sum rate loss in D(t+1) due to link n’s

transmission:

λ
(t)
n→d =

∑
k∈K

R
(t)
d\n,k −

∑
k∈K

R
(t)
d,k (4)

where R(t)
d\n,k is the spectral efficiency of each link d ∈ D(t+1)

without considering the interference from link n:

R
(t)
d\n,k = log2(1 +

φ
(t)
d,kp

(t)
d,k|h

(t)
d,k|2

σ2 +
∑
x6=n,d φ

(t)
x,kp

(t)
x,k|h

(t)
x→d,k|2

). (5)

The last term of equation (3) is the penalty incurred when
link n’s estimated SINR is below the threshold SINRminn . It
is worth noting that in practice, the agent calculates the reward
at the beginning of time slot t+1 by using delayed information
from time slot t.

c) State: The state vector s describes the status of the
AAAN and it has the following elements: (i) Given link n’s
channel selection, transmitting power, channel gain, received
interference-plus-noise power, and data rate. (ii) V link’s
channel selection, transmitting power, channel gains, and date
rate. (iii) D link’s channel gains, data rate, and received
interference-plus-noise power. To reduce the computation
complexity and communication overhead, we set a threshold
Nneighbor to limit the number of neighboring links that can be
included in the state vector, i.e., |V(t)

n | = |D(t)
n | = Nneighbor.

d) Policy: Given the state vector s, a policy π(s, a)
produces resource allocation action a. In LECRA, we design
two alternative neural network structures (i.e., Deep Q-learning
Network (DQN) and DQN plus Deep Deterministic Policy
Gradient (DQN+DDPG)) to generate different learning poli-
cies. Specifically, DQN has a fully connected neural network
that can predict discrete actions. On the other hand, DDPG is
a model-free off-policy algorithm based on the deterministic
policy gradient [16]. The DDPG structure includes a critic
network and an actor-network, both of which are constructed
by fully connected neural networks but have different func-
tions. The critic network is used to learn critic, where the

training process adopts the Bellman equation to find the
optimal Q(s, a). It is well known that DDPG can predict
continuous actions, which is suitable to solve our continuous
power allocation problem. Fig. 2 shows the DDPG+DQN
training model, which becomes the DQN training model by
removing the DDPG network.

Algorithm 1 Learning based Edge Computing Resource Al-
location (LECRA)

1: Initialize Q value parameter θtrain with random values,
and θtarget = θtrain.

2: Initialize replay memory E with zero value
3: Initialize state s
4: for t = 1, tm do
5: if t− 1 < B or rand(t) < ε then
6: Randomly select an action a(t) ∈ A
7: else
8: Action a(t) = maxaQ(s(t), a; θtarget)
9: end if

10: Perform action a(t) on environment
11: Get updated state s(t+1)

12: Calculate reward r(t+1) using equation (3)
13: Store e(t) = (a(t), s(t), r(t+1), s(t+1)) in E
14: if t− 1 > B then
15: Sample random mini-batch E from E
16: Calculate equation (6) and update θtrain
17: end if
18: if t mod Tc == 0 then
19: θtarget ← θtrain
20: end if
21: end for

Our LECRA is summarized in Algorithm 1. We use
Q(s, a; θ), Q∗(s, a; θ∗) and θ∗ to denote the Q value, the
optimal Q value, and the optimal parameters. The replay
memory of an agent stores experiences by interacting with the
environment, and these experiences form a memory Dataset
E , with the maximum size of B. In Algorithm 1, the Mean
Squared Error (MSE) is adopted to calculate the loss, and the
loss of a random mini-batch E is defined as:

L(θ
(t)
train) =

1

b

∑
e(t)∈E

(y
(t)
target −Q(s(t), a(t); θ

(t)
train))

2 (6)

where the target value y(t)target for DQN training is calculated
as:

y
(t)
target = r(t+1) + γmax

a′
Q(s(t), a′; θ

(t)
target) (7)

At each time slot, the stochastic gradient descent algorithm is
applied to train DQN by using mini-bath E .

IV. SIMULATION RESULTS

A. AAAN Setup

The AAAN consists of ten communication links (N = 10)
that share a limited number of frequency channels (K =
2, 3, 5). To simulate the 3-D dynamic airspace, all A2A
communication pairs are randomly located within a cube of



Fig. 3: 10 A2A Links Initial Deployment in a 3-D Space.

2, 000×2, 000 in horizontal distance and between 300 and 500
in altitude. The distance between the transmitter and receiver
of each communication link is in the range of (20, 500). Fig.
3 provides a 3-D view of the initial random deployment of the
ten A2A links. In our simulation, each time slot corresponds
to the channel coherence time that is set as 20 ms.

B. Model Parameters

LECRA provides two different neural network policies:
DQN and DDPG+DQN. For both polices, we set the maximum
number of neighbors as Nneighbor = 5. In Policy 1, the
number of transmit power levels is set as δ = 8, and there are
three hidden layers of size (200, 200, 100). Policy 2 consists
of three different networks: Critic, Actor, and DQN networks.
Both the Critic and Actor networks have three hidden layers
of size (200, 150, 100), while the DQN network also has three
hidden layers of size (150, 150, 100).

In our experiments, each hidden layer takes ReLU as an
activation function. We apply RMSProp as the optimizer to
minimize the loss calculated by equation (6), where adaptive
learning rate is applied. The DRL model applies adaptive ε-
greedy strategy with an initial value ε0 = 0.05, which is
suppressed by the decay factor λε. The replay memory size is
B = 1000, and the mini-batch size is b = 128. To maintain
”quasi-static”, the hyper-parameter of the target network is
updated every 50 time steps (Tc = 50). The discount factor
is set as γ = 0.25. For the reward function in (3), we assign
λ
(t)
SINR = 8 to punish each link violating the minimum SINR

requirement.

C. Performance Evaluation

We conduct extensive experiments to evaluate the perfor-
mance of our proposed LECRA algorithm. In particular, we
set the moving speed of aircraft at v = 10 units/s and the
moving direction is randomly selected at the beginning of each
experiment.

a) Sum-rate Vs. User Fairness: In this set of experi-
ments, we evaluate the sum-rate of the AAAN under indi-
vidual QoS constraints. We assume ten A2A links share three
frequency channels. Fig. 4a and 4b depict the learning results
for Policy 1 and 2 respectively. In each plot, we compare the
LECRA performance for three cases: no fairness constraint,
SINR ≥ 2dB and SINR ≥ 5dB. Our observations can
be summarized as follows: (1) Policy 1 on average achieves
higher sum rates than Policy 2. Specifically, in Fig. 4a the
sum-rates of Policy 1 in the three cases converge to 85.7 bps,
83.2 bps, and 83.1 bps respectively. In Fig. 4b the sum-rates
of Policy 2 converge to 85.9 bps, 84.0 bps, and 83.3 bps
respectively. (2) Policy 2 converges faster than policy 1. We
see that Policy 1 starts to converge after about 5, 000 training
iterations, while Policy 2 can converge after about 3, 000
training iterations. For both policies, due to the high mobility
of the AAAN, all learning curves experience fluctuations after
converging. (3) Generally, as the QoS threshold SINRmin

increases, the sum rate decreases and becomes more fluctuated.
b) Sum-rate Vs. Number of Channels: In this set of

experiments, we investigated the relationship between the sum
rate and the number of available channels. For easy exposition,
we assume ten A2A links share either two or five channels
without user fairness constraint. Fig. 5 depicts the learning
results for both policies. As expected, both the sum rate
and convergence time increase with the number of available
channels, due to added spectrum resource and searching space.
Specifically, for K = 2, Policy 1 and 2 converge to the highest
sum rate at 74.1 bps and 74.3 bps after about 3000 training
iterations. For K = 5, Policy 1 and 2 converge to the highest
sum rate at 99.7 bps after about 6000 training iterations.
We also observe that Policy 1 introduces more fluctuations
than Policy 2. This is because the DQN structure in Policy
1 has finite discrete action space for both channel and power
allocation. In particular, we discretize the transmission power
range into eight levels for the power control action space.
However, it is likely that the optimal power control is not
included in this discretized action space. As a result, Policy
1 may switch back and force to find out the optimal power
value. On the contrary, DDPG has continuous action space to
find out the optimal power control strategy.

V. CONCLUSIONS

In this paper, the problem of dynamic resource allocation
was studied to maximize the aggregate spectrum utilization
efficiency in a multi-channel AAAN. We proposed a DRL-
based edge computing and communication solution to au-
tonomously find the optimal channel selection and power
control strategy. Our LECRA algorithm allows the agent of
each A2A communication link to learn the optimal policy
in a distributed manner by gathering and analyzing only
the local information. The experimental results demonstrated
the effectiveness of our LECRA algorithm in complex and
dynamic AAAN environments.



(a) Policy1: DQN. (b) Policy2: DDPG+DQN.

Fig. 4: 10 Links (Speed = 10 units/s) Share 3 Channels with/without SINR Fairness.

Fig. 5: 10 Links (Speed = 10 units/s) Share Various Channels
without SINR Fairness.
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