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Introduction

The continuing exponential increase in scientific data generation has accentuated the lack of investment
in tools for researchers to discover and access all data relevant to a given hypothesis quickly, accurately,
and completely. They are typically faced with a wide range of challenges related to gathering and
comparing multiple sets and types of data from many different sources and databases. Yet research into
the biological processes underlying health risks of space environments will necessarily involve comparing
findings from experiments on model organisms with one another, and ultimately corroborating them with
those of human studies. For example, an investigator wishing to probe the effects of CO; on the human
eye may wish to construct the following query:

Query 1.  “Find transcription data on all mammals studied in space with gravity between 0 and 0.2 and
exposed to pCO2 levels higher than 0.35 mmHg, that also have proteome profiles and
measurements of intra-ocular pressure”.

NASA-funded scientific data discovery systems often will fail to discover all the data relevant to a complex
query like Query 1, and/or include too much irrelevant data. This is primarily because these systems most
commonly employ natural language term indexing. Natural language term indexing technologies, the
most prevalent kind of indexing used by scientific data systems today, index terms devoid of any context
or meaning. The result is too often a set of search results with precision and recall that are low, particularly
when executing a complex query like Query 1 due in part to the lack of uniformly applied structuring,
understanding and indexing of both the data and the query itself. Thus, for an ambiguous term such as
“space” in Query 1, a system will be unaware of whether it refers to an anatomic region of an organism
(such as “epidural space” (1)), a quality of swarming by organisms (“space swarm”), or to the vacuum of
“outer space (2).” Ontological logic can be used to discriminate among these concepts when data are
indexed and queried so that queries specifying the concept of “outer space” do not yield results that
include data associated only with epidural space. In the case of Query 1, the word ‘space’, is indexed
against one or more ontologies to specify the correct interpretation of what is written: the concept “outer
space”.

Conversely, while many natural language query systems suffer from returning wrong results, they are also
prone to missing many results, particularly where the concept being searched is represented in a different
way to the word searched. For example, many data discovery systems do not leverage the power of
synonymy, hypernymy, and hyponymy information available through resources developed by the
biomedical community (such as (3) and (4)). Query 1 contains a tremendous amount of domain
knowledge, both explicit and implicit, that is essential to the proper execution of this kind of query: 1)
transcription data include those data from micro-array, “single-cell RNA-seq”, spatial transcriptomics and
other assays; 2) mammals includes rodents, mini pigs, dogs, humans, and monkeys (and rodents includes
mice, rats and others); 3) a “space environment” must include a location (approximately) outside the
earth’s atmosphere, etc. Capturing and representing this knowledge when indexing data for retrieval or
when generating queries of these data have long presented significant challenges for scientific data
systems designers (5, 6).

We highly recommend space agencies fund systems that can build and maintain knowledge graphs linking
the wide range of data collected through space biology research. Such a knowledge graph would aim to
resolve common challenges of data sourcing by both vastly improving the way it is queried and indexed.



We recommend building the knowledge graph using current state-of-the-art technologies, and by doing
so, space agencies will set a new standard for data collection and retrieval in the biological sciences.

The Shift to Semantic Data Models

Most scientific data repositories, particularly the largest ones in the biological and physical sciences, rely
on relational database technologies. Implementations of the relational database model have evolved into
various highly efficient and powerful data management systems capable of rapidly searching and
accessing millions of records using modest equipment. However, as knowledge expands in a given domain
(application area), maintaining systems that rely on relational database systems (RDBS) is all too often
expensive and painstaking, largely because lexical domain knowledge is almost always inextricably
embedded in the table schemas at the core of these systems. For example, while the introduction of a
new attribute for an object type represented in an RDBS is often fairly straightforward (as simple as adding
a new column to an existing table describing the object type’s attributes), adding a new object type that
has only some of the attributes of an existing object, plus additional new attributes can be quite
challenging, and result in large numbers of sparsely populated tables. What this means is that, particularly
for a large, established RDBS, these systems cannot evolve to accommodate changes in data structures
and become static and difficult to maintain.

Furthermore, the ability of Structured Query Language (SQL), the most-commonly implemented standard
for searching RDBS, to leverage domain knowledge easily and automatically is limited. Consequently,
designers of scientific data repository systems must develop and incorporate bespoke methods for
expanding or otherwise enhancing user-generated queries based on domain semantics prior to execution,
which is quite often cost-prohibitive. For example, to expand the query term “mammals” in Query 1,
developers might choose to develop software that leverages the NIH taxonomy of living organisms (7),
that can transform the term into a SQL phrase consisting of a union of terms describing all sub-types of
mammals. This query expansion capability, while critically important, not only requires significant
investments in software development, but supervision of the development by those with specialized
domain knowledge. In addition, term expansion strategies, when naively used, can lead to large
reductions in search precision.

These and other weaknesses of RDBS have led to the development of several alternative formulations for
storing and querying data, including those that have come to be labeled “NoSQL” systems. By de-coupling
data schemas from the structures used to store the data (to form schema-less systems), NoSql systems
feature a robustness to changes in domain knowledge, and, more importantly, have the ability to leverage
this knowledge in query generation and execution. Many NoSql systems support the SPARQL query
language, a standard for representing queries as a series of triples to filter knowledge or other kinds of
graph representations of data. SPARQL can also be used to query knowledge in the form of ontologies,
and a large and growing body of biomedical knowledge is currently represented in ontologies through
world-wide open source ontology-building efforts such as the OBO Foundry. Using the features of NoSq|,
SPARQL, and the burgeoning knowledge available in the form of ontologies together, systems can achieve
a much higher level of incorporation of domain knowledge into data retrieval.

However, NoSQL systems that are “aggregate orientated” suffer from problems due to the way data is
stored. Aggregate orientated NoSQL systems only group data based on a single dedicated view, meaning
that to realize new projections and perspectives of the data that it must then be crunched and duplicated.
These issues make aggregate orientated NoSQL systems inefficient when needing to compute graph like
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queries, such as those shown in figure 1. On the other hand, NoSQL native graph databases, such as Neo4J
and OrientDB, offer a much better alternative for both graph processing and graph storage. Systems like
these are designed specifically to query only the proportion of the data (graph) traversed in the query.
Graph databases like aggregate orientated NoSQL databases are schema-free, naturally additive, and do
not suffer from query issues such as “join-pain” commonly encountered in RDBS alternatives.

Semantic Query Expansion

There are several ways that scientific data discovery systems can and should leverage more suitable query
systems to empower users. One such way involves systems dynamically querying a repository of domain
semantics like OBO Foundry for terms related in pre-defined way to submitted query terms, and then
searching the index of the repository for these additional terms, to enhance recall (“query expansion” (6,
8)). For example, if a user submits a search to OBO Foundry using the terms “eukaryote” and “space
radiation”, a system could pre-process the query by determining that “solar cosmic radiation” is a kind of
“space radiation”, and that “Mus musculus” is a type of “eukaryote”. The system could then augment the
user’s original query with the terms “solar cosmic radiation” and “Mus musculus”, likely yielding more,
relevant query results. Alternatively, the system could have indexed data sets with these additional terms
prior to any query (“index expansion”), yielding similar results.

These simple query and index expansion examples indicate the power of leveraging domain semantics to
improve data discovery using one kind of domain semantics (subclass relationships), and there are more
complex ways to transform user queries using other kinds of domain semantics. For example, by
leveraging consider the query that includes the terms “radiation” and “gene expression”. Using existing
knowledge of domain semantics like that found in the OBO Foundry in the form, this query could
automatically be expanded to include the term “RNA-seq”, even though that term is not a synonym,
hyponym or hypernym of either of the two query terms. In the OBO Foundry knowledge base, the class
“gene expression” is identified as an output of the “assay” subclass “RNA-seq” (specifically, the class RNA-
seq includes the axiom “RNA-seq” “has_specified_output” some [is about some gene expression]”,
meaning the assay outputs something that is, at least in part, about the class “gene expression”). The
result of using this kind of readily available, community vetted, continuously maintained domain
knowledge would be increased search recall. More specifically, it is likely some data sets exist which are
identified in repositories as employing RNA-seq, but that make no mention of the concept “gene
expression”, the subject of the output of this assay.

Semantically Linked Data Retrieval

The application of the above-described approaches that leverage domain semantics to enhance retrieval
precision and recall is certainly a step forward, compared to commonly used, keyword retrieval methods.
However, these methods still yield suboptimal results when given the kind of query complexity inherent
in Query 1. Consider a system that transformed Query 1 into the disjunction of a set of semantically
expanded terms; the transformed query is likely to yield too many irrelevant studies in search results, as
it would include any and all studies involving transcription profiling, proteome profile or measuring intra-
ocular pressure. And using instead a conjunction of the expanded set of terms could exclude relevant
data, when no single investigation used all these kinds of assays. The only way to properly execute Query
1is if all of the knowledge implicit in the query is represented in both the query and/or index generated.
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objects. Complex queries
that reference linked data and objects can only be successfully executed when there is communication of
this type of knowledge from users to data retrieval systems.

Linked data can be represented by using any of a variety of technologies, but over the past decade a few
have been developed for the specific purpose of efficiently and easily representing linked data. Chief
among these technologies are graph databases (10), and the more specialized triplestores (11).

This knowledge graph implicit in the natural language of Queryl could be represented by the example
SPARQL query shown in Figure 2. Note that in this example, there are 14 separate constraints on the data
sought, and these constraints involve 7 different object types, three instances of samples, three assays,
and 1 whole organism, with six different properties linking them all together. These properties each
provide powerful and meaningful context for the objects in the query; for example, by specifying that the
organism for which transcriptome data are sought also had samples in which intra-ocular pressure was
measured (as opposed to searching for the term “intra-ocular pressure” in any metadata context). While
the complexity of Queryl as represented either as a graph or in the SPARQL language may seem
dauntingly complex, there has been progress in the last decade in the development of interfaces that
support users generating these kinds of complex, graph-based queries that include domain semantics
(12). In addition, commercial-grade technologies like Neo4j include visualization modules that support
users inspecting SPARQL results and allowing them to validate their results match their query’s intent.



“Find transcription data on all mammals studied in space with g between 0 and 0.2 and exposed to
pCO2 levels higher than 0.35 mmHg, that also have proteome profiles and measurements of intra-
ocular pressure”

PREFIX OBI: <http://somewhere/peopleInfo#>

PREFIX rdf: <ww.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX BFO: <http://www.ifomis.org/bfo

PREFIX NCBITaxon: <http://purl.obolibrary.org/obo/ncbitaxon>

SELECT ?datal
WHERE

{
?assayl OBI:has specified output ?datal
?assayl rdf:type OBI:’transcription profiling assay’
?assayl OBI:has specified input ?samplel
?samplel BFO:part of ?organisml
?organisml BFO:part of ?organisml
?organisml RBO:exposed to ‘g between 0 and 0.2’
?organisml RBO:exposed to ‘pCO2 > 0.35 mmHg’
?samplel NCBITaxon:order “Mammalia”
?assay2 OBI:has specified input ?sample2
?sample2 BFO:part of ?organisml .
?assay?2 rdf:type OBI:’proteome profiling assay?’
?assay3 OBI:has specified input ?samplel
?sample3 BFO:part of ?organisml
?assay3 OBI:has specified output OBI "intra-ocular pressure datum’

}
Figure 2. Query 1 represented as a SPARQL query.

Each of the properties in the example query in Figure 2 is specified as current, actual relationship types
specified by ontologies of the OBO Foundry. While this global knowledgebase has yielded broad models
in many areas of biomedicine, it currently lacks deep models for specific application areas like the space
sciences. It will be imperative for the space science communities to further these models in order to
leverage this knowledge in all kinds of scientific data systems. Augmenting these models using the process
and principles recommended by the OBO Foundry, in which ontologies are transparently and
cooperatively developed and interconnected by the scientific community themselves, should also be
among top priorities for the space agencies, as well as academia and industry involved in space science
research.

Conclusions

The challenges to building a deep and broad understanding of the biological effects of off-world
environments on organisms and their ecosystems are great. But humankind is still relatively early in this
process. However, now is the time for building processes and systems that support the creation and
querying of knowledgebases that can support an ever-evolving understanding of space biology. Further
delay would doom future investigators to using outdated, brittle data retrieval paradigms and limit their
ability to corroborate and augment this knowledge rapidly and accurately.


http://www.w3.org/1999/02/22-rdf-syntax-ns
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