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%RSOOT durable 4H-SiC nJFET structure
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(kR nNJFET Turn-off for 6um gate length (€
Measured IC Gen. 10 JFET I-V transfer characteristics
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Understand quantitative design tradeoffs of reducing the gate length
well below 6pum at 500 °C (and also 460 °C Venus surface temperature)
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G Equations

Low-field mobility Auger recombination
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Arvanitopoulos, A., N. Lophitis, S. Perkins, K. N. Gyftakis, M. Belanche Guadas, and M. Antoniou. “Physical Parameterisation of 3C-Silicon Carbide (SiC)
with Scope to Evaluate the Suitability of the Material for Power Diodes as an Alternative to 4H-SiC.” In 2017 IEEE 11th International Symposium on
Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 565-71, 2017. https://doi.org/10.1109/DEMPED.2017.8062411.
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igr  Influence of model complexity
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%R Schematic for Two Doping Strategy (&
Self-align nitrogen (SN; n)  Extended phosphorous (EP; n*)
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Validating simulation with
experiment at 500°C
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[1] P.G. Neudeck, D.J. Spry, L. Chen, N.F. Prokop, M.J. Krasowski, Demonstration of 4H-SiC Digital Integrated Circuits Above 800 °C,
IEEE Electron Device Letters. 38 (2017) 1082-1085. https://doi.org/10.1109/LED.2017.2719280.
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(kgr Long channel JFET potential profile @
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Electrons flow “uphill” towards positive bias drain terminal.
> 14 16 1 No barrier to electron flow at V; = 0 V (normally on device).
Increasingly negative V creates potential barrier that exponentially
cuts off electron flow from source to drain.
Device: 6 um gate length SN JFET Potential barrier is largest near middle x coordinate.
Simulation conditions: V, = 20V Potential barrier is smallest near the bottom n-channel y coordinate,
V, =-25V so this region controls off-state current flow.
T =500°C Drain bias has minimal influence on potential barrier and turn-off in
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(ikgr Short channel JFET potential profile €
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“Short channel effects” significantly degrade turn-off properties.
Drain bias has significant influence on potential barrier and turn-
off in short channel device.

Potential barrier maximum shifts to X-coordinate closer to the
source terminal.

Potential barriers are smaller than for long channel devices at
comparable gate voltage




(imr Shortening the gate length at 460°C

All plots are extended phosphorous (EP) device structure, n epi thickness 0.4 um, V,=20V, V,=-25V
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%R Implant Strategy at 460 °C

Gate length = 3 um, N epi thickness, n epi thickness 0.4 um, V, =20V, V,=-25V
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Extended phosphorous strategy with its higher dose implant reduces
parasitic source/drain resistance

Increases ON-state I, by about 20% without significantly changing
JFET turn-off characteristics




%R Thin-Epilayer Design

Reducing the n-epilayer thickness to 0.34 um (from 0.4 um) enables good turn-off in 1um gate Iength deV|ce
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Thinner-channel approach significantly tightens the
processing risk associated with SiC epilayer thickness
tolerance/control as well as the gate finger etch depth.




G Summary

e COMSOL simulation study of 4H-SiC JFET |-V characteristics at 500°C and 460°C
Verified agreement of simplified modeling with 6um IC Gen. 10 measurements

6 um to 1 um gate length

Self-aligned nitrogen and extended phosphorous source/drain implant geometries

0.4 um and 0.34 um n-channel thickness

 Acceptable simulated performance at 500 °C for 1 um gate length was obtained after
the n-channel thickness was decreased from 0.4 um to 0.34 um
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(kgr Reducing W, Through Simulations

T _ 460 °C | | ## | Dopant type | Wy [nm] | We [pm] | Wr [nm] | We [nm] | V[V] | 1 [nA pm™7
Shallow n~ 1.5 3.0 1.5 3.0 -9 27.87
Shallow n~ 3.0 6.0 3.0 6.0 —8.2 11.79
Shallow n™ 3.0 6.0 4.5 3.0 —8.8 22.96

Extended n™ 3.0 3.0 4.5 3.0 —8.8 28.59

Extended n™ 3.0 3.0 5.0 2.0 —9.74 46

— — —Design 1 Extended n™ 3.0 3.0 5.5 1.0 —14.1 105.9
= = =Design 2|

Design 3

nesign4| ®  Simulations use thicker n epilayer: 0.4um
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oesgns) *  Using a shallow n” implantation strategy

5 leads to higher V5" and lower [5%

Gate voltage (V) [V] )
° A total of 12 designs were explored

Either implantation strategy alone cannot lead to a thinner
gate with the required turn-off performance




Electrical Field Distribution
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%R Computation of the Max potential
below the gate

2 X 1015 [1/cm3]

1 X 1018 [1/cm?]
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Dopant Implant Profile
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Parameters

Parameter

Auger recombination

Low-field mobility
P n

0
Hmax

125¢cm? Vs

950 cm? V s

’Ym aX

—2.15

—2.4

Property

value

units

0
Mmin

15.9cm? Vs

40cm? Vs

Ymin

—0.57

Chn

5 x 1072t

cm® /s

2 x 1073t

~1.536 C,
1.94 x 10 ¢m =3
0.61

cm® /s

Niet 1.76 x 10" cm—3
Q 0.34

Incomplete lonization
Property

SRH recombination
Property

unit
gp 4 1

AFEp 60.7 | meV

AFpo 120 | meV

ga 4 1
AEA 198 meV

value

value | units

Tn 10 ns

Tp 10 ns
AFE; 0 \Y%




