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n- -> Self-align nitrogen implant
n+ -> Phosphorous implant

500°C durable 4H-SiC nJFET structure
Cross-section Top view
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𝑉𝑔
𝑠𝑎𝑡 = −10.68V

𝑉𝑔
𝑠𝑎𝑡 = −9.66V

𝑉𝑔
𝑠𝑎𝑡 calculated from Saturation 

Extrapolation Technique

Measured IC Gen. 10 JFET I-V transfer characteristics

nJFET Turn-off for 6µm gate length

Vs = -15V 

Vs = -25V 

Vs = -15V 

Vs = -25V 

Measured off-state minimum current
due to package leakage, not JFET [1]

[1] P.G. Neudeck, D.J. Spry, L. Chen, N.F. Prokop, M.J. Krasowski, Demonstration of 4H-SiC Digital Integrated Circuits Above 800 °C, IEEE Electron Device 
Letters. 38 (2017) 1082–1085. https://doi.org/10.1109/LED.2017.2719280.

https://doi.org/10.1109/LED.2017.2719280
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Understand quantitative design tradeoffs of reducing the gate length 
well below 6mm at 500 °C (and also 460 °C Venus surface temperature)

Goal of the Study

Vs = -25V 



6

COMSOL Simulations

4H-SiC 
Material Parameters

nJFET device 
implementation

Multi-study 
Simulation Protocol
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Equations

Arvanitopoulos, A., N. Lophitis, S. Perkins, K. N. Gyftakis, M. Belanche Guadas, and M. Antoniou. “Physical Parameterisation of 3C-Silicon Carbide (SiC) 
with Scope to Evaluate the Suitability of the Material for Power Diodes as an Alternative to 4H-SiC.” In 2017 IEEE 11th International Symposium on 
Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 565–71, 2017. https://doi.org/10.1109/DEMPED.2017.8062411.

Low-field mobility Auger recombination

SRH recombinationIncomplete Ionization

https://doi.org/10.1109/DEMPED.2017.8062411
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Influence of model complexity
Simple Model

• Low-field mobility • Low-field mobility
• High-field mobility
• Incomplete ionization
• Auger recombination
• Impact ionization 
• SRH recombination
• Band Gap narrowing

Complex Model
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Higher operating temperature reduces 
the influence of the complex model 
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Schematic for Two Doping Strategy
Self-align nitrogen (SN; n-) Extended phosphorous (EP; n+)

Experimentally realized IC Gen. 10 Device
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Validating simulation with 
experiment at 500oC

Experiment off-state minimum current 
due to package leakage, not JFET [1]

[1] P.G. Neudeck, D.J. Spry, L. Chen, N.F. Prokop, M.J. Krasowski, Demonstration of 4H-SiC Digital Integrated Circuits Above 800 °C, 
IEEE Electron Device Letters. 38 (2017) 1082–1085. https://doi.org/10.1109/LED.2017.2719280.

Leakage current 
not simulated

https://doi.org/10.1109/LED.2017.2719280
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Long channel JFET potential profile
x=0mm x=6mm

• Electrons flow ”uphill” towards positive bias drain terminal.
• No barrier to electron flow at VG = 0 V (normally on device).
• Increasingly negative VG creates potential barrier that exponentially 

cuts off electron flow from source to drain.
• Potential barrier is largest near middle x coordinate.
• Potential barrier is smallest near the bottom n-channel y coordinate, 

so this region controls off-state current flow.
• Drain bias has minimal influence on potential barrier and turn-off in 

long channel device.

Device: 6 µm gate length SN JFET
Simulation conditions: Vd = 20V

Vs = -25V
T = 500oC
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Short channel JFET potential profile
x=0mm x=6mm

Device: 1 µm gate length EP nJFET
Simulation conditions: Vd = 20V

Vs = -25V
T = 460oC

(Source edge of gate) (Drain edge of gate)
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Plotted values of Vg

• “Short channel effects” significantly degrade turn-off properties.
• Drain bias has significant influence on potential barrier and turn-

off in short channel device.
• Potential barrier maximum shifts to X-coordinate closer to the 

source terminal.
• Potential barriers are smaller than for long channel devices at 

comparable gate voltage

VS = -25 V
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3 µm

2 µm

1 µm

Shortening the gate length at 460°C
All plots are extended phosphorous (EP) device structure, n epi thickness 0.4 µm, Vd = 20 V, Vs = -25 V

Gate length 
(WG)

Shortening of gate length using EP implant strategy 
alone would not lead to a good turn-off performance
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Self-aligned nitrogen Extended phosphorous

Gate length = 3 µm, N epi thickness, n epi thickness 0.4 µm, Vd = 20 V, Vs = -25 V

• Extended phosphorous strategy with its higher dose implant reduces 
parasitic source/drain resistance

• Increases ON-state IDSS by about 20% without significantly changing 
JFET turn-off characteristics

Implant Strategy at 460 °C

SN EP
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1 µm gate
Extended Phosphorous

1 µm gate
Self-aligned Nitrogen

Reducing the n-epilayer thickness to 0.34 µm (from 0.4 µm) enables good turn-off in 1µm gate length device

Thinner-channel approach significantly tightens the 
processing risk associated with  SiC epilayer thickness 
tolerance/control as well as the gate finger etch depth.

Thin-Epilayer Design

Simulation proposed designs

WG = 6mm

Ln = 0.4 µm
T = 500oC

WG = 1 mm

Ln = 0.34 µm

T = 460oC

(EP)

(SN)

(SN-SOA)
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Summary

• COMSOL simulation study of 4H-SiC JFET I-V characteristics at 500°C and 460°C

• Verified agreement of simplified modeling with 6µm IC Gen. 10 measurements

• 6 µm to 1 µm  gate length

• Self-aligned nitrogen and extended phosphorous source/drain implant geometries

• 0.4 µm and 0.34 µm n-channel thickness

• Acceptable simulated performance at 500 °C for 1 µm gate length was obtained after 
the n-channel thickness was decreased from 0.4 µm to 0.34 µm
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Back up Slides
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Reducing WG Through Simulations

• Simulations use thicker n epilayer: 0.4mm
• Using a shallow n- implantation strategy 

leads to higher 𝑉𝑔
𝑠𝑎𝑡 and lower 𝐼𝑑

𝑠𝑎𝑡

• A total of 12 designs were explored

Either implantation strategy alone cannot lead to a thinner 
gate with the required turn-off performance

𝑉𝑡ℎ 𝐼𝑑𝑠𝑠
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Electrical Field Distribution

Extended n+ Shallow n-

WG = 1mm
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Computation of the Max potential 
below the gate
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Meshing Effect on Electrical Field
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Mesh quality

Fine Grid
Max. Efield

(MV/cm)
Id (A)

800 6.4 1.96E-10
1200 7.7 1.96E-10
1600 8.7 1.96E-10
2000 9.4 1.96E-10
2400 9.7 1.96E-10
2800 10.2 1.96E-10
3200 10.7 1.96E-10
3600 11.1 1.96E-10

The “mesh quality” affects the maximum value of the 
electric field but not the drain current (Id)

Vg = -15V, Vd = 20V, Vs = -25V

Extended n+ (WG: 1mm)





Dopant Implant Profile
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Parameters

Low-field mobility Auger recombination

SRH recombinationIncomplete Ionization


