

DC Modeling of 4H-SiC nJFET Gate Length Reduction at 500°C

Mohit R. Mehta (KBRWyle Services, LLC), Philip G. Neudeck (NASA GRC), and John W. Lawson (NASA ARC)

Presented by Mohit Mehta

Funded By

NASA Ames Research Center's Center Innovation Fund (ARC-CIF) and NASA Science Mission Directorate (SMD) under Long-Lived In-Situ Solar System Explorer (LLISSE)

Outline

- 1. Introduction
- 2. 4H-SiC nJFET model in COMSOL
- 3. Validation of the 4H-SiC model
- 4. Results
- 5. Summary

KBR 500°C durable 4H-SiC nJFET structure

Cross-section

Substrate metal contact

n⁻-> Self-align nitrogen implant n⁺-> Phosphorous implant

Top view

nJFET Turn-off for <u>6μm</u> gate length

Measured IC Gen. 10 JFET I-V transfer characteristics

 V_g^{sat} calculated from Saturation Extrapolation Technique

Goal of the Study

Understand quantitative design tradeoffs of reducing the gate length well below $6\mu m$ at 500 °C (and also 460 °C Venus surface temperature)

COMSOL Simulations

Materials

- SiC Antoniou (Cambridge) (mat2)
 - Basic (def)
 - Auger recombination (Auger)
 - Semiconductor material (SemicondMaterial)
 - Shockley-Read-Hall recombination (SRH)
 - Caughey-Thomas mobility model (CaugheyThomasMobilityModel)
 - Bandgap (pg1)
 - Jain-Roulston model (JainRoulstonModel)

4H-SiC **Material Parameters**

nJFET device implementation

- - - Trap-Assisted Recombination 1

- Semiconductor (semi) Semiconductor Material Model 1
 - Insulation 1
 - Zero Charge 1
 - Insulator Interface 1
 - Continuity/Heterojunction 1
 - Initial Values 1 Multi-study
 - **Simulation Protocol**
 - n plus left n self-align left
 - n plus right

p plus

- n self-align right

 - p minus
 - p substrate
 - Source left
- Drain right
- Gate
- Substrate
- Auger Recombination 1
- **Equation View**

- Simple Model (T=500degC)
 - Step 1: Step 1: Stationary Low Mesh
 - Solver Configurations Job Configurations
- - Step 1: Step 1: Stationary Low Mesh
 - Solver Configurations
 - Job Configurations
- - Step 1: Stationary Low Mesh 1
 - Solver Configurations
 - Job Configurations
- Change Vd=20V
 - Step 1: Stationary Low Mesh 1
 - Step 2: Stationary Low Mesh 1.1
 - Solver Configurations
 - Job Configurations
- Vg plot
 - Step 1: Vd=20V
 - Step 2: Vd=15V
 - Solver Configurations
 - Job Configurations
- - Simple Model (T=500degC)
 - Complex Model (T=500degC)
 - √ Change Vs=-25V
 - √ Change Vd=20V
 - √ Vg plot
 - Solver Configurations
 - ▶

 Job Configurations

Equations

Low-field mobility

$$\mu_{\text{low}} = \mu_{\text{min}} + \frac{(\mu_{\text{max}} - \mu_{\text{min}})}{1 + (N/N_{\text{ref}})^{\alpha}}$$
$$\mu_{\text{min/max}} = \mu_{\text{min/max}}^{0} \cdot (T/300 \,\text{K})^{\gamma_{\text{min/max}}}$$

Auger recombination

$$R_{net}^{A} = (C_n n + C_p p)(np - n_{i,eff}^2)$$

Incomplete Ionization

$$\frac{N_d^+}{N_d} = 0.5 \left[1 + g_D \frac{n}{N_c} \exp\left(\frac{\Delta E_{D1}}{k_B T}\right) \right]^{-1} + 0.5 \left[1 + g_D \frac{n}{N_c} \exp\left(\frac{\Delta E_{D2}}{k_B T}\right) \right]^{-1}$$

SRH recombination

$$R^{\text{SRH}} = \frac{np - n_i^2}{\tau_p (n + n_1) + \tau_n (p + p_1)}$$

Influence of model complexity

Simple Model

Low-field mobility

Complex Model

- Low-field mobility
- High-field mobility
- Incomplete ionization
- Auger recombination
- Impact ionization
- SRH recombination
- Band Gap narrowing

Higher operating temperature reduces the influence of the complex model

Schematic for Two Doping Strategy

Self-align nitrogen (SN; n⁻)

Extended phosphorous (EP; n+)

Experimentally realized IC Gen. 10 Device

Substrate metal contact

Validating simulation with experiment at 500°C

Experiment off-state minimum current due to package leakage, not JFET [1]

Long channel JFET potential profile

- Electrons flow "uphill" towards positive bias drain terminal.
- No barrier to electron flow at $V_G = 0 V$ (normally on device).
- Increasingly negative V_G creates potential barrier that exponentially cuts off electron flow from source to drain.
- Potential barrier is largest near middle x coordinate.
- Potential barrier is smallest near the bottom n-channel y coordinate, so this region controls off-state current flow.
- Drain bias has minimal influence on potential barrier and turn-off in long channel device.

Short channel JFET potential profile 🐠

- "Short channel effects" significantly degrade turn-off properties.
- Drain bias has significant influence on potential barrier and turnoff in short channel device.
- Potential barrier maximum shifts to X-coordinate closer to the source terminal.
- Potential barriers are smaller than for long channel devices at comparable gate voltage

Shortening the gate length at 460°C

All plots are extended phosphorous (EP) device structure, n epi thickness 0.4 μ m, V_d = 20 V, V_s = -25 V

X position $[\mu m]$

Shortening of gate length using EP implant strategy alone would not lead to a good turn-off performance

Implant Strategy at 460 °C

Gate length = 3 μ m, N epi thickness, n epi thickness 0.4 μ m, V_d = 20 V, V_s = -25 V

Self-aligned nitrogen

Extended phosphorous

- Extended phosphorous strategy with its higher dose implant reduces parasitic source/drain resistance
- Increases ON-state I_{DSS} by about 20% without significantly changing JFET turn-off characteristics

Thin-Epilayer Design

Reducing the n-epilayer thickness to 0.34 μm (from 0.4 μm) enables good turn-off in 1μm gate length device

Simulation proposed designs

<u>1 μm gate</u> Extended Phosphorous

<u>1 μm gate</u> <u>Self-aligned Nitrogen</u>

Thinner-channel approach significantly tightens the processing risk associated with SiC epilayer thickness tolerance/control as well as the gate finger etch depth.

Summary

- COMSOL simulation study of 4H-SiC JFET I-V characteristics at 500°C and 460°C
 - Verified agreement of simplified modeling with 6μm IC Gen. 10 measurements
 - 6 μm to 1 μm gate length
 - Self-aligned nitrogen and extended phosphorous source/drain implant geometries
 - 0.4 μm and 0.34 μm n-channel thickness
- Acceptable simulated performance at 500 °C for 1 μ m gate length was obtained after the n-channel thickness was decreased from 0.4 μ m to 0.34 μ m

Back up Slides

Reducing W_G Through Simulations

#	Dopant type	W_M [µm]	W_S [µm]	W_R [µm]	W_G [µm]	$V_{th}[V]$	$I_{dss}[\mu \mathrm{A}\mu \mathrm{m}^{-1}]$
1	Shallow n^-	1.5	3.0	1.5	3.0	-9	27.87
2	Shallow n^-	3.0	6.0	3.0	6.0	-8.2	11.79
3	Shallow n^-	3.0	6.0	4.5	3.0	-8.8	22.96
4	Extended n^+	3.0	3.0	4.5	3.0	-8.8	28.59
5	Extended n^+	3.0	3.0	5.0	2.0	-9.74	46
6	Extended n^+	3.0	3.0	5.5	1.0	-14.1	105.9

- Simulations use thicker n epilayer: 0.4μm
- Using a shallow n^- implantation strategy leads to <u>higher</u> V_g^{sat} and <u>lower</u> I_d^{sat}
- A total of 12 designs were explored

Either implantation strategy alone cannot lead to a thinner gate with the required turn-off performance

Electrical Field Distribution

Computation of the Max potential below the gate

Meshing Effect on Electrical Field

Extended n⁺ (W_G: 1µm)

Fine Grid	Max. Efield (MV/cm)	I _d (A)
800	6.4	1.96E-10
1200	7.7	1.96E-10
1600	8.7	1.96E-10
2000	9.4	1.96E-10
2400	9.7	1.96E-10
2800	10.2	1.96E-10
3200	10.7	1.96E-10
3600	11.1	1.96E-10

$$V_g = -15V$$
, $V_d = 20V$, $V_s = -25V$

The "mesh quality" affects the maximum value of the electric field but not the drain current (I_d)

Dopant Implant Profile

Parameters

Low-field mobility

Parameter	p	n
$\mu_{ m max}^0$	$125\mathrm{cm^2Vs}$	$950\mathrm{cm^2Vs}$
$\gamma_{ m max}$	-2.15	-2.4
$\mu_{ m min}^0$	$15.9\mathrm{cm^2Vs}$	$40\mathrm{cm}^2\mathrm{V}\mathrm{s}$
$\gamma_{ m min}$	-0.57	-1.536
$N_{ m ref}$	$1.76 \times 10^{19} \mathrm{cm}^{-3}$	$1.94 \times 10^{19} \mathrm{cm}^{-3}$
α	0.34	0.61

Auger recombination

Property	value	units
C_n	5×10^{-31}	cm^6/s
C_p	2×10^{-31}	cm^6/s

Incomplete Ionization

Property	value	unit
g_D	4	1
ΔE_{D1}	60.7	meV
ΔE_{D2}	120	meV
g_A	4	1
ΔE_A	198	meV

SRH recombination

Property	value	units	
$ au_n$	10	ns	
$ au_p$	10	ns	
ΔE_t	0	V	