

BioSentinel: NASA's first interplanetary biological mission

Sergio R. Santa María

Research Professor, COSMIAC Research Center University of New Mexico

> Lead Scientist, BioSentinel mission NASA Ames Research Center

sergio.santamaria@nasa.gov

SCHOOL OF MEDICINE

UBI VULT

SCHOOL OF MEDICINE

SCHOOL OF MEDICINE

NASA

SCHOOL OF MEDICINE

The limits of life in space – as we know it – is 12.5 days on a lunar round trip or 1.2 years in LEO. As we send people further into space, we need to understand the biological risks and how they can be addressed

Artemis-1 mission & BioSentinel

...

1

(FIF

EXFLORATION MISSION-1 Artemis-1

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

Total distance traveled: 1.3 million miles – Mission duration: 25.5 days – Re-entry speed: 24,500 mph (Mach 32) – 13 CubeSats deployed

Artemis-1: secondary payloads (6U CubeSats)

Why Cubesats?

- Small Sats are ever more capable: technology miniaturization
- Access to space: multiple low-cost launches possible (test, learn, iterate)
- Excellent education vehicle (worldwide)
- Autonomous operations
- Technology migration: ISS; landers/orbiters for moon, Mars, other planets

NASA Ames pioneering biological space missions

C. richardii

SporeSat-1 (2014 / 3U): ion channel sensors, microcentrifuges

Objective: develop a tool with autonomous life support technologies to study the biological effects of the space radiation environment at different orbits

- NASA's first biological study in interplanetary deep space
 - First CubeSat to combine bio studies with autonomous capability & physical dosimetry beyond LEO
 - Far beyond the protection of Earth's magnetosphere (~0.3 AU from Earth at 6 months)
 - BioSentinel will allow to compare different radiation & gravitational environments (free space, ISS, lunar surface)

What is **BioSentinel?**

BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation and will provide a tool to study the true biological effects of the space environment at different orbits.

BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation and will provide a tool to study the true biological effects of the space environment at different orbits.

Why?

Space radiation environment's unique spectrum cannot be duplicated on Earth. It includes high-energy particles, is omnidirectional, continuous, and of low flux.

How?

Lab-engineered *S. cerevisiae* cells will sense & repair direct (and indirect) damage to their DNA. Yeast cells will remain dormant until rehydrated and grown using a microfluidic and optical detection system.

Why budding yeast?

It is an eukaryote; easy genetic & physical manipulation; assay availability; flight heritage; ability to be stored in dormant state

While it is a simple model organism, yeast cells are the best for the job given the limitations & constraints of spaceflight

BioSentinel: a bio CubeSat for deep space

BioSentinel: a bio CubeSat for deep space

BioSentinel: LET spectrometer

- LET spectrometer device: Timepix solid-state device
 - Measures linear energy transfer (LET) spectra
 - Time-over-threshold (TOT) mode. Wilkinson-type ADC
 - ✤ direct energy measurement per pixel
 - $_{\circ}$ LET 0.2 300 keV/µm into 256 bins, 3% width; store hourly bin totals
 - Download "local space weather" periodic snapshots

- SPE trigger (future missions): TID rate increase causes wetting of a fluidic card
 - ^o LET shutter time and ground command as alternative / backup

BioSentinel: a bio CubeSat for deep space

BioSentinel: experimental design

Initial parameters:

- 18 fluidic minicards (each card has 16 microwells) yeast cells dried inside wells
- Yeast strains: wild type & HR-defective mutant strains
- Mission length: 6-9 months at KSC + 6-12 months in space (2 cards activated per time point)
- Dormant fluidic cards maintained at ~ 8-10°C to ensure longevity
- Active cards maintained at ~23°C for growth temperature
- One set of cards will be reserved in the event of an SPE

Hardware and Testing Status

Yeast strain selection:

- Wild type strain (control for unrepairable DNA damage & yeast health)
- DNA repair defective mutants (radiation sensitive)

Long-term biocompatibility & other tests:

- Long-term medium & metabolic dye storage (completed 2-year test)
- Long-term yeast desiccation (completed 2-year test) & desiccation method selection (completed)
- Long-term biocompatibility in fluidic cards (completed 2-year test)
- Sterilization method selection (autoclaving vs. e-beam vs. EtO) (completed)
- Spacecraft EDU assembly, vibration & TVPM tests (completed)
- FlatSat optical calibration tests & EVT (completed)
- Optical data processing & optimization
- Integrated into Orion Stage Adapter on Sept 27, 2021 (aka flight-ready)

Ongoing radiation experiments:

- Cells irradiated in suspension and in desiccated state (with & without shielding)
- Strain sensitivity via optical density readings in microplate readers or GSE optical units
- Sources: gamma (ARC); protons & SPE simulations (Loma Linda); HZE ions & GCR sims (NSRL)

BioSentinel: long-term reagent storage

Conclusions:

- Full-spectrum optical analysis (left): 19-month old alamarBlue dye shows no optical differences compared to fresh alamarBlue
- Wild type yeast cells grow similarly in freshly-made SC medium compared to SC stored in flightlike fluidic bags after 19 months (right)

Yeast cells are loaded into fluidic cards and air-dried prior to card sealing and payload integration. Cells will remain in desiccated / dormant state until activated in flight by addition of growth medium containing a metabolic dye

As expected, wild type cells show higher viability than DNA repair defective cells

What is BioSentinel going to encounter in deep space?

Ben Klamm

BioSentinel: ground radiation studies

Strain	Dose (cGy)	Average of slope	<i>p</i> -value
<i>rad51</i> diploid	0 cGy	5.48	
<i>rad51</i> diploid	1 cGy	5.04	0.0369
<i>rad51</i> diploid	10 cGy	4.90	0.00143
rad51 diploid	250 cGy	4.53	0.00445

Strain	Dose (cGy)	Average of slope	<i>p</i> -value
rad51 diploid	0 cGy	4.58	
rad51 diploid	10 cGy	3.89	0.000447
rad51 diploid	100 cGy	3.54	6.83E-05

HR-defective cells are sensitive to low doses of high-LET radiation

BioSentinel: ground radiation studies

Strain	Dose (cGy)	Average of slope	p-value of Student's t-test
wt diploid	0 cGy	3.768446962	
wt diploid	250 cGy	3.797220975	0.389667098

Strain	Dose (cGy)	Average of slope	p-value of Student's t-test
rad51 diploid	0 cGy	1.669702202	
rad51 diploid	250 cGy	1.056909521	0.009304165

After 27 months in desiccated state, rad51 mutant cells still show sensitivity to ionizing radiation

BioSentinel: future & ongoing objectives

A flexible design that can (and will be) used on different space platforms

Recent publications (2020 – 2021)

ASTROBIOLOGY **Research Article** Volume 20, Number 8, 2020 ASTROBIOLOGY Introduction to BioSentinel Mary Ann Liebert, Inc. Volume 20, Number 8, 2020 DOI: 10.1089/ast.2019.2073 © Mary Ann Liebert, Inc. **BioSentinel:** DOI: 10.1089/ast.2019.2068 **BioSentinel:** Long-Term Saccharomyces cerevisiae Preservation A Biological CubeSat for Deep Space Exploration for a Deep Space Biosensor Mission Sergio R. Santa Maria,^{1,2} Diana B. Marina,^{2,3} Sofia Massaro Tieze,^{2,4} Sofia Massaro Tieze,^{1,2} Lauren C. Liddell,^{2,3} Sergio R. Santa Maria,^{2,4} and Sharmila Bhattacharya² Lauren C. Liddell,^{2,5} and Sharmila Bhattacharya² CUBESAT handboo CubeSats for microbiology ASTROBIOLOGY **Research Article** Volume 21, Number 5, 2021 and astrobiology research Mary Ann Liebert, Inc. DOI: 10.1089/ast.2020.2305 **BioSentinel:** Luis Zea^a, Sergio R. Santa Maria^b, and Antonio J. Ricco^b ^aBioServe Space Technologies, University of Colorado, Boulder, CO, United States, A Biofluidic Nanosatellite Monitoring Microbial ^bNASA Ames Research Center, Moffett Field, CA, United States Growth and Activity in Deep Space proceedings MDPI Michael R. Padgen,¹ Lauren C. Liddell,^{1,2} Shilpa R. Bhardwaj,^{1,3} Diana Gentry,¹ Diana Marina,^{1,4} Macarena Parra,¹ Travis Boone,^{1,5} Ming Tan,^{1,6} Lance Ellingson,^{1,5} Abraham Rademacher,^{1,5} Joshua Benton,^{1,7} Aaron Schooley,^{1,5} Aliyeh Mousavi,⁸ Charles Friedericks,¹ Robert P. Hanel,¹ Proceedings Antonio J. Ricco,¹ Sharmila Bhattacharya,¹ and Sergio R. Santa Maria^{1,9} **Developing Technologies for Biological Experiments** in Deep Space ⁺ Feature Article: DOI. No. 10.1109/MAES.2019.2953760 Elizabeth M. Hawkins 1,2,3, Ada Kanapskyte 1,4 and Sergio R. Santa Maria 5,6,* **BioSentinel: A 6U Nanosatellite for Deep-Space** biosensors 🖉 MDPI **Biological Science** Perspective Space Biology Research and Biosensor Technologies: Antonio J. Ricco, Sergio R. Santa Maria, Robert P. Hanel, Past, Present, and Future ⁺ Sharmila Bhattacharya, BioSentinel Team, NASA Ames Research Center Radworks Group, Johnson Space Center

Ada Kanapskyte ^{1,2}, Elizabeth M. Hawkins ^{1,3,4}, Lauren C. Liddell ^{5,6}, Shilpa R. Bhardwaj ^{5,7}, Diana Gentry ⁵ and Sergio R. Santa Maria ^{5,8,*}

ber of

Extinct

0

32

Other projects

Adaptive evolution & beneficial mutations unde

SENSOR SIDE 1 → SENSOR SIDE 2 CIRCUIT BOARD SHIELD

Cells in solution

(PF/pF)

ric

Normalized Ratio

5 Time (hrs)

· SC0.25% : SC2.0% (glucose)