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The limits of life in space — as we know it — is 12.5 days on a lunar round trip or 1.2 years in LEO. As we
send people further into space, we need to understand the biological risks and how they can be addressed
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TEXFECRATICN-MISEICIN=1 Artemis-1

The first uncrewed, integrated flight test of NASA’s Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport
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N@fﬁg Artemis-1: secondary payloads (6U CubeSats)
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Why Cubesats?

« Small Sats are ever more capable: technology
miniaturization

» Access to space: multiple low-cost launches possible
(test, learn, iterate)

« Excellent education vehicle (worldwide)

« Autonomous operations

« Technology migration: ISS; landers/orbiters for moon,
Mars, other planets




E. coli  GeneSat-1 (2006 / 3U): gene expression

EcAMSat (2017 / 6U): antibiotic resistance

S. cerevisiae = PharmaSat (2009 / 3U): drug dose response
BioSentinel (2022 / 6U): DNA damage response

B. subtilis = O/OREOS* (2010 / 3U): survival, metabolism | 35%
*Organism/Organic Response to Orbital Stress :

C. richardii  SporeSat-1 (2014 / 3U): ion channel sensors, microcentrifuges




BioSentinel mission

Objective: develop a tool with autonomous life support technologies to study the biological effects of the
space radiation environment at different orbits

« NASA's first biological study in interplanetary deep space
- First CubeSat to combine bio studies with autonomous capability & physical dosimetry beyond LEO
- Far beyond the protection of Earth’s magnetosphere (~0.3 AU from Earth at 6 months)
- BioSentinel will allow to compare different radiation & gravitational environments (free space, |ISS, lunar surface)

N.ASA IS SENDING SOME LUCKY YEAST INTO

RIﬁ\PIATIpN-FILLED DEEP SPACE POPULAR Distance to ISS: ~ 350 km

WHERE NO YEAST HAS GONE BEFORE N

R aas Sk s SCIENCE Distance to the Moon: ~385,000 km
Distance at 6 months: ~40°000,000 km

Lunar transit
Lunar Transfer (3-7 days)

& Fly-by

BioSentinel escapes into
a heliocentric orbit

Launch

Secondary payload
deployment (L+4-5 hrs)




What is BioSentinel?

BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation and
will provide a tool to study the true biological effects of the space environment at different orbits.

‘\ 7 o ' , \
Double-strand break Chemical bond between Chemical modification Chemical Linkage of
neighboring nucleotides of a nucleotide Two Strands




What is BioSentinel?

BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation and
will provide a tool to study the true biological effects of the space environment at different orbits.

Why?
Space radiation environment’s unique spectrum cannot be duplicated on Earth. It includes high-energy particles, is
omnidirectional, continuous, and of low flux.

How?
Lab-engineered S. cerevisiae cells will sense & repair direct (and indirect) damage to their DNA. Yeast cells will remain
dormant until rehydrated and grown using a microfluidic and optical detection system.

Why budding yeast?

It is an eukaryote; easy genetic & physical
manipulation; assay availability; flight heritage;
ability to be stored in dormant state

While it is a simple model organism, yeast cells
are the best for the job given the limitations &
constraints of spaceflight




BioSentinel: a bio CubeSat for deep space

6U Cubesat
37x24x12cm~10L
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Spacecraft sections:

» BioSensor payload (~4U with 18 fluidic cards
loaded with desiccated cells, each with dedicated
thermal control & optical detection system)

» Spacecraft bus (propulsion, navigation, batteries,
transponder, star tracker...)



BioSentinel: a bio CubeSat for deep space

BioSensor payload
(~4U, 4.5 kg)

Solar arrays
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BioSentinel: LET spectrometer

 LET spectrometer device: Timepix solid-state device
o Measures linear energy transfer (LET) spectra
o Time-over-threshold (TOT) mode. Wilkinson-type ADC
« direct energy measurement per pixel
o LET 0.2 — 300 keV/um into 256 bins, 3% width; store hourly bin totals
o Download “local space weather” periodic snapshots

« SPE trigger (future missions): TID rate increase causes wetting of a fluidic card
o LET shutter time and ground command as alternative / backup

Pixelated 300 pum thick Si
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BioSentinel: a bio CubeSat for deep space

16-well fluidic card (x18) Card stack

9-card fluidic manifold (x2)




BioSentinel: experimental design

Initial parameters:

« 18 fluidic minicards (each card has 16 microwells) — yeast cells dried inside wells

* Yeast strains: wild type & HR-defective mutant strains

« Mission length: 6-9 months at KSC + 6-12 months in space (2 cards activated per time point)
* Dormant fluidic cards maintained at ~ 8-10°C to ensure longevity

» Active cards maintained at ~23°C for growth temperature

* One set of cards will be reserved in the event of an SPE

9-card manifold
(1 of 2)

Fluidic card
(1 of 18)

4U payload



Hardware and Testing Status

Yeast strain selection:

- Wild type strain (control for unrepairable DNA damage & yeast health)
- DNA repair defective mutants (radiation sensitive)

Long-term biocompatibility & other tests:

- Long-term medium & metabolic dye storage (completed 2-year test)

- Long-term yeast desiccation (completed 2-year test) & desiccation method selection (completed)

- Long-term biocompatibility in fluidic cards (completed 2-year test)

- Sterilization method selection (autoclaving vs. e-beam vs. EtO) (completed)

- Spacecraft EDU assembly, vibration & TVPM tests (completed)

- FlatSat optical calibration tests & EVT (completed)

- Optical data processing & optimization
- Integrated into Orion Stage Adapter on Sept 27, 2021 (aka flight-ready)

Ongoing radiation experiments:

- Cells irradiated in suspension and in desiccated state (with & without shielding) [
- Strain sensitivity via optical density readings in microplate readers or GSE optical units
- Sources: gamma (ARC); protons & SPE simulations (Loma Linda); HZE ions & GCR sims (NSRL)



BioSentinel: long-term reagent storage

alamarBlue full-spectrum analysis Cell growth in aged and fresh SC medium
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Conclusions:

*  Full-spectrum optical analysis (left): 19-month old alamarBlue dye shows no optical differences
compared to fresh alamarBlue

«  Wild type yeast cells grow similarly in freshly-made SC medium compared to SC stored in flight-
like fluidic bags after 19 months (right)



BioSentinel: long-term yeast desiccation

Yeast cells are loaded into fluidic cards and air-dried prior
to card sealing and payload integration. Cells will remain
in desiccated / dormant state until activated in flight by
addition of growth medium containing a metabolic dye

Survival (%)

Long-term desiccation (diploid strains)
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As expected, wild type cells show higher viability than
DNA repair defective cells




BioSentinel: interplanetary space radiation

What is BioSentinel going to encounter in deep space?
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BioSentinel: optical detection system

Dedicated 3-color optical system at each well to track growth via T35 5 W H G35 s W ® T3 D‘éseﬂ%y) R
optical density and cell metabolic activity via dye color changes sz | @) @) 0 000 o G O Q\O e 3 Oﬁ'\.
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Yeast growth with flight-like HR repair defective cells show sensitivity to ionizing radiation

optical unit



BioSentinel: ground radiation studies

300 MeV/n Fe-56 irradiation: rad51 diploid 1 GeV/n O-16 irradiation: dry rad51 diploid
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HR-defective cells are sensitive to low doses of high-LET radiation

SRl Lase (e | AerEmpalabpe | pElie Strain Dose (cGy) | Average of slope | p-value
rad51 diploid | O cGy 5.48 rad51 diploid | 0cGy 4.58

rad51 diploid | 1 cGy 5.04 0.0369 rad51 diploid | 10 cGy 3.89 0.000447
rad51 diploid | 10 cGy 4.90 0.00143 rad51 diploid 100 cGy 3.54 6.83E-05
rad51 diploid | 250 cGy 4.53 0.00445




BioSentinel: ground radiation studies

300 MeV/n Fe-56 irradiation in SC medium + alamarBlue 300 MeV/n Fe-56 irradiation in SC medium + alamarBlue
Strain: wild type diploid (AGED cells) Strain: rad51 diploid (AGED cells)
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y & P€ | Student’s t-test (cGy) g P€ | Student’s t-test
wt diploid | O cGy 3.768446962 rad51 diploid | 0 cGy 1.669702202
wt diploid | 250 cGy 3.797220975 0.389667098 rad51 diploid | 250 cGy 1.056909521 0.009304165

After 27 months in desiccated state, rad57 mutant cells still show sensitivity to ionizing radiation



BioSentinel: future & ongoing objectives
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Recent publications (2020 — 2021)
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Other projects
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