NASA/TM-20210023307

‘hl‘:,’- 2 YA

PyHC Integration Strategy Workshop Report

Brian A. Thomas, Arnaud Masson, Julie |. Barnum, Aaron Roberts and Reinhard
Hans Walter Friedel

October 2021



NASA STI Program

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space

science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and

disseminates NASA’s STI. The NASA STI

program provides access to the NTRS Registered

and its public interface, the NASA Technical

Reports Server, thus providing one of the largest
collections of aeronautical and space science STI
in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI
Report Series, which includes the following report

types:

e TECHNICAL PUBLICATION. Reports of

completed research or a major significant
phase of research that present the results of

NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

... In Profile

CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA'’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

Access the NASA STI program home page
at http://www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Phone the NASA STI Information Desk at
757-864-9658

Write to:

NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199



NASA/TM-20210023307

PyHC Integration Strategy Workshop Report

Brian A. Thomas
Goddard Space Flight Center, Greenbelt, MD

Arnaud Masson
European Space Astronomy Centre, Madrid, Spain

Julie I. Barnum
Colorado State University, Fort Collins, Colorado

Aaron Roberts
Goddard Space Flight Center, Greenbelt, MD

Reinhard Hans Walter Friedel
Los Alamos National Laboratory, Los Alamos, New Mexico

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

October 2021



Trade names and trademarks are used in this report for identification only. Their usage
does not constitute an official endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program National Technical Information
Mail Stop 148 Service 5285 Port Royal Road
NASAs Langley Research Springdfield, VA 22161

Center Hampton, VA 703-605-6000

23681-2199




PyHC Integration Strategy Workshop Report

ISWAT O2-06 workshop, organised by NASA, Aug 30 - 31st, 2021
Final Version

contact emails : brian.a.thomas@nasa.gov, Arnaud.Masson@esa.int


mailto:brian.a.thomas@nasa.gov
mailto:Arnaud.Masson@esa.int

Table of Contents

Introduction/Background
Workshop Organization

Results of the Workshop
1. Challenge: Sustainability of Projects/Software (people, dollars)
1.1. Have PyHC projects leverage NumFocus

1.2. Funded position(s) dedicated to Continuous Integration (Cl) and Continuous
Deployment (CD) issues of PyHC projects.

1.3. Template repository for package onboarding.

1.4. Establish different funding levels and mechanisms in PyHC for projects at different
levels of maturity

1.5. Offer pathways and incentives for users of PyHC packages to transition to
developers of those packages.

2. Challenge: How to get new developers

2.1. Collect a master list of known issues and desired additions on PyHC’s website to
provide a list of possible contributions for new developers.

A A b~ b

(¢}

7

2.2. Hold a week-long summer school that covers the skills necessary to contribute to an

open source project.
2.3. Create a dedicated, permanent role for a PyHC Onboarding Scientist.
2.4. Provide credit for software via citations.
2.5. Maintain a packaging guide for PyHC developers.
3. Challenge: How to get new users involved
3.1. Enhance and Expand PyHC Website
3.2. Improve Documentation within all projects

7

O © © © 00 N

1

3.3. Present software in science sections (of conferences), not just informatics/software

sections
3.4. Position for Community Engagement officer
3.5. Hold regular tutorials for PyHC projects at conferences.
3.6. Hold Software Carpentry workshops
3.7. Hire a dedicated PyHC training coordinator.
4. Challenge: Improve engagement with PyHC
4.1. PyHC Social Media and Outreach
4.2. Searchable PyHC website
4.3. Tutorials
4.4. Have a PyHC liaison for instrument teams.
4.5. Hold regularly scheduled virtual PyHC office hours.
5. Challenge: Improve PyHC documentation/discoverability
5.1. Make Table of routines and functions with expanded descriptions
5.2. Software as Infrastructure
5.3. Advertise PyHC and increase discoverability of PyHC website.

2

10
10
11
11
11
11
11
12
13
13
14
14
14
14
14



5.4 Community Reviews 15

5.5. Keyword Search of Packages 16
6. Challenge: Reduce overlapping functionality 16
6.1. Put together a master table showing what functionalities are offered by each
package and each routine within each package. 16
6.2. Data access duplication: align behind one or a few core access packages? (HAPI,
VSO, and something else?). 16
6.3. Create (?) an architectural review board for PyHC. (This is contentious.) 17
7. Challenge: Standardize and Share Data Models 18
7.1. Document current Data Models 18
7.2. PyHC community workshop to develop plan to coalesce Data Models 18

7.3. PyHC might sponsor an AO dedicated to creating a common data model and
modifying existing core PyHC libraries to use the new model. There needs to be a
community consensus on the utility of such a model. (This is contentious and may lead

to more standards.) 18

8. Challenge: Shared Services / APIs 18
8.1. Develop & document recommended methods of accessing data 18

9. Challenge : Mission Engagement 18
9.1. Develop and deploy a software/tool development plan for Heliophysics missions and
instruments 18

9.2. Popularize PyHC APIs with Missions 19
Summary 19
Appendices 21
Participants 21
Agenda 22



1. Introduction/Background

The purpose of the workshop was to draw together key figures in PyHC (Python in Heliophysics
Community) to discuss how the community can better advance our efforts to provide support in
Python for the heliophysics research community. The objective of the workshop was to identify
priorities for technical work in the coming years particularly with regard to a theme of
“Integration”. One goal was to produce a public report of findings and observations that will
eventually enable a strengthening of the Space weather Information architecture, in relation with
the ISWAT 02-06 action team. Additionally, this report will be used to develop a (non-public,
internal) NASA report for recommended action. The key deliverable from the workshop is this
report containing a list of ‘key challenges’ and associated suggestions for action (projects).

2. Workshop Organization

The workshop was a 2-day (~3 hrs/day) virtual meeting held August 30-31, 2021 with
participation from PyHC members across the world (see Appendix A for a participant list).
Portions of the deliverable were created on each day, as follows:

Day 1 (August 30): Identify challenges to developing heliophysics software
Day 2 (August 31): How to solve challenges, suggested actions

A full agenda can be found in Appendix B.

3. Results of the Workshop

The gathered key challenges and associated suggested solutions appear in this section. We
have tried to capture the full range of opinion from the participants in describing these solutions.
These results are presented in no particular order of priority.

1. Challenge: Sustainability of Projects/Software (people, dollars)
1.1. Have PyHC projects leverage NumFocus

NumFocus is a non-profit organization intended to support sustainable open source
science software. A partnership between NumFocus and PyHC projects could provide
increased visibility for a project which could be leveraged to expand the user base as
well as open the range of potential funding options, potentially including those outside
standard government channels. A package would likely require functionality that is
applicable to fields outside space science to get additional outside funds. One way for
packages to solve this would be for them to become part of a larger, successful project


https://iswat-cospar.org/O2-06
https://numfocus.org/community/mission

(e.g., a mission or missions). Each package would need to apply and meet NumFocus
standards.

1.2. Funded position(s) dedicated to Continuous Integration (Cl) and Continuous
Deployment (CD) issues of PyHC projects.

This would be a dedicated PyHC Developer who would work on installation methods
(binary wheels, pip install, conda-forge), implementing integration tests, managing
documentation infrastructure, performing code reviews, fixing bugs, and adding new
requested features to packages. There would be a focus in the role on both project
maintenance and improvements. The PyHC Developer would ideally be someone who's
active in the field of heliophysics and gets a salary to do the proposed work.

This technically falls under the role of the PyHC Technical Lead, but has not been able to
be adequately implemented in practice because the Technical Lead has experienced
project leadership overhead such that digging into the code has been difficult. Namely,
the current Technical Lead is not actively involved in the field of heliophysics research,
and thus has run into issues therein. This speaks to the benefit of the above-mentioned
dedicated PyHC developer who is active in the field of heliophysics and receives a salary
to improve code, fix GitHub issues, etc.

1.3. Template repository for package onboarding.

The creation of a Git repo with boilerplate/filler content that resembles what a
well-structured PyHC repo should look like. This could help existing projects conform to
our standards and help newcomers make good repos. Work would include both technical
layout and developing consensus within the PyHC community on what should be part of
this template repo.

1.4. Establish different funding levels and mechanisms in PyHC for projects at different
levels of maturity

Establish within PyHC several funding profiles for projects. This would be implemented
in three tiers:

1. Yearly Announcement of Opportunity (AO): An initial, low-level funded grant for
one year to prove a concept or get a package initially connected to PyHC or to do
work for common good of all projects such as a common data model effort. This
is a grant and is a small amount of funding to demonstrate that it will work, (on
the order of $50K - $75K). Many projects could be funded by this.

2. Second-year effort proposals: A larger grant for two to three years to establish

and solidify a project and make it stable and maintainable. These would be
awarded to projects that have proven themselves via the first year efforts, or that

5



are somehow already more established in the community. Fewer projects are
selected at this level, since the entry requirements are higher (e.g., demonstrated
adherence to PyHC standards, a threshold number of users and/or developers
using / working on the package, tutorials or at least a getting started guide).

Infrastructure projects: A lower level of baseline maintenance funding for 5 years
as a contract. The benefit to PyHC from using contracts is that they have the
potential to provide greater funding stability for core projects. Note that since
NASA is making a commitment to a project, the project needs to also make a
commitment on deliverables and responsibilities. These would include project
maintenance (e.g., automated, rigorous test code, a regular release schedule
happening at least once per year), user support (e.g., a site for users to submit
bug reports, an user guide updated on at least a yearly basis, giving tutorials at
least twice per year at a relevant science conference and also online), and
collaboration with instrument teams (could also involve tutorials). A comparable
number of these projects as for the second level will be funded.

1.5. Offer pathways and incentives for users of PyHC packages to transition to
developers of those packages.

Incorporate a funding model for projects to source additional developers on PyHC
packages, to the end of eliminating a reliance on a core group of people ad infinitum.

This could be done one of two ways (or both):

1.

Target junior developers. This would be framed as a trade-off; a developer joins a
project and contributes code, and project leadership would teach that developer
how to run a software project. This could be implemented in 3-6 month stints of
development time to allow the developer to determine if they enjoy the work.
Hence, there should be a fellowship of sorts to offer funding in exchange for both
learning to code via working on a project’s code base. The work would be geared
towards undergrad, or more likely, graduate students. This could also be an REU
or internship program to let undergraduates try out scientific software
development.

Create a “Visiting Scientist” (or “Visiting Scientific Developer”) position for
additions/changes to packages. This would get them a substantial amount of
additional funding (~3-6 months) to devote to not just incorporating their code into
the library, but to also help out with other ongoing projects within that library. This
would require projects to have lists of current coding or design needs, so that
applicants to the Visiting Scientist position for a project could know about, get
excited about, and respond to the currently expressed needs of that project. For
example, if SunPy had two of these at a time continuously over the next 5 years,
it would have a transformative effect on the library, adding many vested

6



developers into the project. For people outside the US such as Europe or Japan,
this could cover 3 months mission costs. This would enable smart but rather
limited Python initiatives to be integrated in larger PyHC libraries like SunPy for
instance. (Often, the undergraduates or grad students are the ones developing
the code for a mission, and may also be attracted to this.)

2. Challenge: How to get new developers

2.1. Collect a master list of known issues and desired additions on PyHC'’s website to
provide a list of possible contributions for new developers.

For example, a ‘help wanted’ label next to a package name in the main table in addition
to the master list, or a ‘help wanted’ section on the PyHC website. Also need a way for
new developers to add a proposed addition and let package leads ‘claim’ the project or
provide recommendations on the next steps. Presumably scraped from a GitHub issues
label.

2.2. Hold a week-long summer school that covers the skills necessary to contribute to an
open source project.

The summer school would cover essential research software engineering skills such as
git and GitHub; Python packaging; developing documentation using Sphinx,
reStructuredText, and Read the Docs; continuous integration testing; and introductions
to core PyHC packages. The content for the course could be adapted from past events,
such as the URSSI Winter School in Research Software Engineering and Plasma Hack
Week.

This item is heavily related to items 3.6 “Hold regular tutorials” and 3.7 “Software
Carpentry Workshops” below.

2.3. Create a dedicated, permanent role for a PyHC Onboarding Scientist.

PyHC should create a permanent, “PyHC Onboarding Scientist” position. This person
would sponsor events such as the following:

e Regular tutorials for PyHC projects at conferences.

e Could assist with the PyHC Summer School idea as a result of familiarity with
tutorials.

e Software Carpentry workshops for members of the heliophysics community who
are unfamiliar with Python (they don’t have to run these, just orchestrate them).


https://urssi.us/winterschool/
https://hack.plasmapy.org
https://hack.plasmapy.org
https://software-carpentry.org/

e Assist with creating and curating effective templates for new projects and help
newly selected PyHC developers get into an early pattern of good development
(see item 1.3 above)

e Hack sessions to incorporate legacy code in other languages into a python
package (likely quite useful for code from other missions).

2.4. Provide credit for software via citations.

Implement measures to expand PyHC’s presence in publications (i.e., increase PyHC
software tool citation). The importance to PyHC of this is four-fold: 1) those interested in
a career in science need scientific currency to further that career (i.e., citable work that is
also cited in peer reviewed publications, not just potentially citable), 2) this gives PyHC
packages an opportunity to advertise their tools, 3) it advertises PyHC, driving traffic to
our community (which would ideally then increase PyHC package usage), and 4) this
would demonstrate to scientists, with data, that software has a role in the scientific
record.

One of the most straightforward methods to crediting PyHC software is to publish papers
on the software. For example, there are a few recent publications on PyHC tools (e.g., a2
pysat-specific paper, “PYSAT: Python Satellite Data Analysis Toolkit”, as well as a
"Snakes on a Spaceship" paper, “Snakes on a Spaceship—An Overview of Python in
Heliophysics”). However, steps should be taken to increase citation instances. One way
to achieve this goal is to collect several PyHC manuscripts and submit them for
publication simultaneously. This is done to increase publication likelihood via a “strength
in numbers” approach. If enough packages participated, this could become a special
issue (e.g., in JOSS or JGR Space Physics). This approach would benefit from
considering international collaboration (e.g., consider bringing in IHDEA). Conversely, as
opposed to submitting several individual manuscripts, they could be combined into one
larger, overall publication (such as the above-mentioned “Snakes on a Spaceship”
paper). Once this is successfully done, pushing through publications on PyHC project
tools would become easier since they would be associated with that first round of a large
number of PyHC publications (this process has the added benefit of increased
advertising for PyHC). Something to consider with respect to the above papers is
incorporating the idea of an "executable research article". This kind of article contains all
of the data and code which can be executed to provide plots and analysis of outputs.

In addition to the paper submission ideas above, the community should keep in mind
that:

o DOIls should be attributed to each PyHC python library.

m Infrastructure is already in place (Zenodo, ORCID, ...)


https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025297
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025297
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA025877
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA025877

m These DOIs should be mentioned in outreach articles and on PyHC’s
website (via the addition of a Publications web page).

o  With respect to the above suggested PyHC-tool specific publication ideas, PyHC
also needs to get scientific papers published that cite software.

m PyHC could start by making connections with scientists and offering
support in their research use of the package. This idea dovetails well with
the creation of a PyHC Liaison position (see section 4.4).

o PyHC needs to communicate with editors in chief of major heliophysics journals
about the need to cite DOI related to software libraries, instead of software
names with a website.

m This of course starts with the first bullet point above; PyHC packages
need to utilize DOIs and PyHC needs to make these DOls easily available
on the PyHC website.

2.5. Maintain a packaging guide for PyHC developers.

When developing a new project, there are certain tasks related to packaging, testing,
and documentation that are needed in order to turn it into an actual package. This effort
could involve participating in an existing guide, such as the OpenAstronomy packaging
guide. This is a sister project to “Template repository for Package Onboarding” (section
1.3).

3. Challenge: How to get new users involved
3.1. Enhance and Expand PyHC Website

Enhance and expand functionality and documentation on the PyHC website
(heliopython.org) to showcase the vibrant PyHC community. Items to tackle include:

e Develop a reference presentation on PyHC to be shown on the front page of the
PyHC website.

e Develop a slide deck covering PyHC, which makes it easy for community
members to advertise PyHC via the ability to provide high quality slides.
Develop “Quick Start Guides” for PyHC projects.
Post video presentations/demos and tutorials on PyHC packages. This makes it
easy for people to get started with all of the packages within PyHC. These should
be easily available from the PyHC website (perhaps on the package page). Can
start with the videos from 2021 recorded telecons.

e Host working examples on the PyHC Gallery page.



e Implement functionality search feature for users to find packages. This should
link to the package and to demos of that functionality. Can have pointers to
videos at specific time for this in addition to or in place of a tutorial. Could also
point to papers and sections of papers, if appropriate.

These would show useful use cases, as well as demonstrate functionality of our
packages. Bonus if we can do something easily using our tools that would be very hard
otherwise. Jupyter notebooks, which are backed by BinderHub, would be a desirable
means of capturing examples.

3.2. Improve Documentation within all projects

Improve documentation within the projects to support new users, advanced users, and
the transition to development. Developers would be responsible for this effort, however,
the community would need to develop a standard for documentation and a few common
documentation styles, which give similar results, should be employed (e.g. Sphinx). The
documentation standards would be focused more so on the actual content than style.

3.3. Present software in science sections (of conferences), not just informatics/software
sections

Presentation of technical work, particularly working applications, can be an effective
means of outreach to the user community. By presenting in the science sections, one
can reach non-developers who often are not aware of (easily) available tools they might
be interested in and who won'’t necessarily attend software sections more aimed at
developers.

3.4. Position for Community Engagement officer

Create a Community Engagement Officer position in PyHC (or split up amongst
interested parties). This person would advertise events, new features, tutorials at
conferences, etc. to the wider community. Duties could include:

1. Tweet about current events.

2. Post in community newsletters (link to PyHC blog on website), e.g. SPA
newsletter and SolarNews.

3. Solicit blog posts from community members - i.e., get projects to write about new
things that are happening!

4. “This Week in PyHC” on the blog, for example (could also be monthly)

5. Highlight new features, spotlight packages in rotation, summary in plain English
of new/useful tutorials, etc (e.g.
https://sunpy.org/project/roles.html#communication-and-education-lead).

6. Entice users with tutorials using multiple PyHC packages to achieve an
analysis/science goal (posted on the PyHC Gallery page).

10


https://sunpy.org/project/roles.html#communication-and-education-lead

3.5. Hold regular tutorials for PyHC projects at conferences.

We should hold regular tutorials for PyHC at conferences to continuously remind others
of our efforts and increase visibility of PyHC packages. The tutorials would likely last a
few hours each, and could cover either a single PyHC package or how to use multiple
PyHC packages in conjunction with each other. The initial setup of these tutorials would
likely require some time devoted by project teams. Basing these tutorials on existing
example notebooks would reduce the amount of preparation time needed for holding
one of these events.

3.6. Hold Software Carpentry workshops

These workshops would be for members of the heliophysics community who are
unfamiliar with Python.

These two-day workshops cover foundational skills like using the Unix shell, version
control with git & GitHub, and programming with Python. The topics covered by these
workshops are necessary for both using and contributing to PyHC packages.

3.7. Hire a dedicated PyHC training coordinator.

This staff person would be responsible for organizing training events such as summer
schools, conference tutorials, and Software Carpentry workshops.

4. Challenge: Improve engagement with PyHC
4.1. PyHC Social Media and Outreach
Improve engagement within the PyHC through utilizing social media tools including

o Twitter
m Post examples from packages
m Provides outreach to wider groups.

o Twitch (e.g., Dan Welling). hitps://www.twitch.tv/spacecataz1663

e Streams working on papers. Provides commentary and humor.
Has many visual results to work with. Helps ensure Dan works on
papers if he schedules a stream.

o Found a way to perform outreach while getting “real” work
done
e Regularly link to Dan and others who do blogs, streams, etc.
e Maintain a list on heliopython.org

11


https://software-carpentry.org/
https://www.twitch.tv/spacecataz1663

Improve PyHC outreach as follows

o Creation of a PyHC Newsletter with announcements of new results, project
highlights, etc.

o Improve the PyHC blog content (input from developers) including

Package examples (in gallery)
Package release or other milestone announcements
Package introductions/Intro text (if they give an intro presentation, could
include link to that)
Post standard Developer Questions
e Standard set of written questions to be answered by every
developer.
e Provides a base level of content to supplement blog as needed

o Help PyHC members get to learn about everyone in the community. Being a
community requires a level of regular interaction. New users will have a chance
to directly learn about the different people working in PyHC. The more people we
cover the more likely it is that a new user (or PyHC ‘developer’) will find some
commonality with another person in the community. PyHC Mixers? If we were all
local we could have mixer events and just interact socially. Perhaps a need to do
the same online? Monthly? Quarterly? Overall, form enough connections
between people to make a community.

o Replace use of Element with Helionauts?

The Element group chat is not used well, and importantly is not indexed
by Google. If we had discussions on a google-able discussion board,
people could find us when googling their problems. Helionauts may not be
openly searched/accessed, but they are working on that.

( ). Investigate if we could create a
PyHC category on helionauts and switch to using that for questions from
the community (bonus is that other non-PyHC members could see and
provide ideas/suggestions as well).

4.2. Searchable PyHC website

Contents (e.g. tutorials, blogs, PyHC projects) need to be searchable (by Google) to get
more ‘hits’. Most people do not immediately go first to the PyHC page to look at tools,
they go to Google and start searching for keywords. We need to make it such that the
PyHC website is one of the first couple options that pops up when people do this.
Although we have a lot of information on Github, it seems that the Google search engine
doesn’t index deep enough on GitHub. Some ideas that could be investigated with

respect to this:

12


https://community.openastronomy.org/

e |everage PyHC docstrings: Make sure PyHC docstrings get indexed by Google
so they’re more easily found. E.g. we know what projects are, PyHC could go
through docstrings on projects and pull info out --> exposes PyHC more in
Google

o Investigate this with intersphinx?
o Post somewhere on our website the various package routines?

e Make a PyHC package requirement to have things be picked up (better Search
Engine Optimization or SEO). This would need sustained effort to keep things
up-to-date (monthly job that runs and checks?).

Utilize SEO keywords in blogs, tutorials, etc.
Consider using SPASE?
Have packages link to PyHC website

4.3. Tutorials

To help developers/scientists understand the utility of PyHC packages, we need to
populate the PyHC gallery with more tutorials. Many of the tutorial ideas discussed
previously fall under this (e.g., onboarding new devs/users).

Interactive shared tutorials/package howtos
o Add more tutorials/examples to PyHC Gallery, emphasizing tutorials that use
multiple PyHC packages. One FTE could work on this indefinitely; endless
tutorials/examples can be imagined. We just have to start producing them.
o Have good demos and examples that show useful use cases.
i.  Shows how to use software and that it is useful at the same time.
i.  Ensure tutorials are reproducible/copyable by containerizing (or
something similar) OR have someone go check/update them all
indefinitely. (The first is likely easier in the long run.)

This work would feed into the needs of the 2.2 section related to Summer School, the 2.3
section related to a PyHC Onboarding Scientist, and the 3.6 section on regular PyHC
projects’ tutorials at Conferences.

4.4. Have a PyHC liaison for instrument teams.

This is a funded position to go to new instrument teams and offer free Python
development support to help ensure that new instrument team tools mesh well with or
leverage or expand existing PyHC tools. The liaison would provide free (to the teams)
software support for a specific time period during a mission and would work to make
software tools developed by the team part of the PyHC ecosystem. These could be
incorporated into the mission or instrument AOs, or at least timed to coincide with when
new instrument teams are being formed after a proposal is selected.

13



Get scientists/users excited about this by pinging Instrument Teams via a PyHC liaison
and suggesting PyHC tools!

4.5. Hold regularly scheduled virtual PyHC office hours.

Have those funded to do PyHC-specific tasks (e.g., PyHC PI, PyHC Technical Lead),
hold regularly-scheduled office hours. Perhaps also have a couple of developers from
the community participate (could be different each month)? These office hours would be
an opportunity for members of the broader heliophysics community to stop by and talk
with representatives from PyHC. These events should be advertised via newsletters so
that the broader community is aware of them. On the occasions when nobody shows up,
this time could be used as a co-working session among a few PyHC members. These
office hours would require low effort (~2—3 person-hours per session) and would likely
have a commensurate reward.

5. Challenge: Improve PyHC documentation/discoverability
5.1. Make Table of routines and functions with expanded descriptions

Table of routines and functions shall be made available with expanded descriptions.
Current table of routines could be supplemented with a written tour of the community
More information about each package would be helpful for new and current users
Current table requires keyword support by community packages

5.2. Software as Infrastructure

o Longer term financing to support inter-package connections, as well as a host of
community maintenance and support activities, is essential for a healthy community.

o Freely available and open source development shouldn’t be synonymous with free
development. We are professionals and quality science software requires time and
capable scientists and developers. All of that requires funding.

o Transition from a personal collection of science methods to a public, tested,
documented, and well formed package requires significant time and energy. These
activities may not reach a sufficient level for an isolated proposal to the government.
However, if the government wants a solid foundation, and a working actualization, for
open and reproducible science, then that requires funding for all kinds of ‘little’ things.
Each important on their own, but even more so in aggregate. All the little things form
the difference between a conglomeration of packages and a community.

5.3. Advertise PyHC and increase discoverability of PyHC website.

14



Advertise PyHC telecons, new releases, package improvements and capabilities, etc. in
community newsletters (e.g. SolarNews, UK Solar, SPA, GEM, SHINE, CEDAR), see
also section 4.1

Advertise PyHC at meetings (needs to be consistent and everywhere PyHC folks go).
Cite Software DOls.

Increase discoverability of PyHC website
e ask package repositories/websites to link to PyHC website
e toincrease ‘Googling’ status, paid advertising?
e see also Section 4.2

Improve ranking in search engines (get links from other sites, ping other places about
underlying package support)

5.4 Community Reviews

The community could band together to help review each others’ software packages in
code review. The process might be one of:

e Developer(s) from package A could review package B.

e Developers could form connections, possibly resulting in collaboration.

e Developer A's Improves knowledge of package B

Documentation review, and code creation, can generally benefit from outside
perspectives. Developers already have an established mental model of the software and
it can be difficult to see things as a new user may.

The use of community review could be applied as a requirement to join PyHC, with
reviewers selected by the community. To begin, developers from the most established
community packages could review a select few PyHC packages. Once approved,
developers of those packages would be added to a potential pool of review committee
members. The number of reviewers, etc. should be established via a community
generated and approved standard.

Continuing reviews of approved packages could be enforced at major releases.
The time and effort in reviewing a package depends upon the size of the package

involved. Review of a larger package, including code, documentation, unit tests, and
actual use, could take 3 FTEs a month or more.

15



5.5. Keyword Search of Packages

We need packages to associate with all possible taxonomy keywords; this should
improve search functionality on the PyHC website and onGoogle. We have a taxonomy
of keywords on the PyHC site already (although this should be vetted and improved by
the community), but only some projects add keywords to their projects. SPASE provides
a possible source of keywords. We have filtering capabilities on the Projects page
based on these keywords already for maximum utility the keywords need to be widely
used. Additionally, we aren’t displaying the keywords anywhere on the site. Once
keyword usage is consistent across projects we should display those keywords
somewhere.

Create and integrate a common template for auto-document generation for packages
which includes HTML-based META tags along with places where links to the PyHC
website occur in standard places. Create a standardized ‘look n feel’ for documentation
and cross referencing. This issue is also related to issue 4.2.

Create a keyword-based search interface on the PyHC website, perhaps using
intersphinx.

6. Challenge: Reduce overlapping functionality

6.1. Put together a master table showing what functionalities are offered by each
package and each routine within each package.

The first step in reducing overlap is to discover what overlap exists. Making such a
master table would accomplish that. It could also address onboarding topics by showing
users and new developers what packages have what functionalities (if we made the
master table look pretty and shared it on our site). The table, and thus the taxonomy,
should include methods: coordinate transformation, time, units, data search & retrieval,
etc.. The basic table entries will be quick for each method, so cost depends on how
many methods there are in the package. A few days of work could go a long way.

6.2. Data access duplication: align behind one or a few core access packages? (HAPI,
VSO, and something else?).

Data access is a functionality that’s duplicated across so many projects. It seems
obvious to us that we should strive for a one-stop-shop kind of solution for data access,
like HAPI. Then every PyHC package gets its data in the same way from the same
place. HAPI is the obvious choice, the only issue is that it can’t serve some percentage
of datasets. There’d have to be a backup for such datasets. Some packages already
have a HAPI implementation, others would need to start fresh. There is also the
question of what type of data format is used (xarray? ...) and therefore how it plays with
other packages. There is not complete consensus on this. This is likely opening a can

16



of worms. The various packages all had specific reasons for choosing the structure
they have. While some standardization across the packages can (and should) be
done, it will cause a divide in other cases. It is better to choose a few options as a
best practice to follow rather than attempting to enforce this kind of thing.

6.3. Create (?) an architectural review board for PyHC. (This is contentious.)

An architectural review board is a governance body that makes major decisions
regarding the overall architecture of a software system. A board for PyHC would make
major decisions not so much on the internal structure of different software projects but
rather on interoperability between different PyHC packages. A goal of this board would
be to decide how to consolidate overlapping functionality and made recommendations
but does not make mandates.

Because PyHC software projects are currently largely autonomous, this board would
need buy-in and active participation from the different major projects in order for it to be
successful, including from projects with pre-existing governance bodies. There should
be a mechanism for members of PyHC to propose architectural changes.

There was considerable pushback on this suggestion. One consideration is that most of
the PyHC projects in existence started prior to PyHC, and were developed without
significant coordination. Many of the packages (including SunPy and PlasmaPy) have
their own governance bodies which currently make these sorts of decisions. In the best
case, there would be buy-in from the different projects and we'd get much closer to a
cohesive Python ecosystem for all of heliophysics. In the worst case, individual projects
would ignore the decisions of the board and we'd have wasted time and effort and made
many of us grumpy. An alternative worth considering would be to hire a software
architect, though the advantage of a board is that it would include representatives from
the different software packages.

An alternative suggested approach instead of a board or software architect is to
advertise to the packages what options are already in use (and why) for various
scenarios and let them choose. There can be specific notes indicating possible
incompatibilities (e.g. installing cdflib on a windows machine), but the packages need to
be able to choose what is best for their development.

And finally, another point here is that duplication isn't something that is always
undesirable. For example, users want to be able to generate the plots they are used to
for their given conventions, so offering plotting in any particular package is not
necessarily a duplication of effort. Now, using another package to do the plotting for you
is good (e.g. plasmapy using another package's plotting features instead of developing
its own). This is where the interoperability question becomes important: how to use data
retrieved in one package in another package's function. If we can figure this out, THIS is
where the user's options will suddenly expand to take advantage of the various versions

17



of functionality in the different packages. Such examples should be one focus of
cross-package tutorials.

7. Challenge: Standardize and Share Data Models
7.1. Document current Data Models

Document use of existing data models, whether they are created in PyHC projects or are
inherited by a supporting package such as Astropy.

7.2. PyHC community workshop to develop plan to coalesce Data Models

The community should offer a proposal to focus on coalescence on data models through
an incremental approach. This probably relies on activity 7.1. (above).

7.3. PyHC might sponsor an AO dedicated to creating a common data model and
modifying existing core PyHC libraries to use the new model. There needs to be a
community consensus on the utility of such a model. (This is contentious and may lead
to more standards.)

This probably relies on success of 7.2. (above). The AO could support one project per
core library to come up with a joint set of Python data structures or interfaces that would
underpin all current and future core PyHC modules. These data structures would need to
offer ways of representing the common Heliophysics data types, including solar images
and multivariate time series data (often in-situ measurements).

8. Challenge: Shared Services / APIs
8.1. Develop & document recommended methods of accessing data

PyHC should curate/support/recommend the ways of accessing data (uniform approach
that outlasts a project, a promulgation support). It's important to get instrument
teams/others to adopt these services for their own internal mechanisms. Possibly under
jurisdiction of the above-proposed PyHC liaison.

9. Challenge : Mission Engagement

9.1. Develop and deploy a software/tool development plan for Heliophysics missions and
instruments

This is becoming a NASA standard, namely, that missions use currently existing, open
software when possible rather than reinventing. PyHC should be aware of this, and work
with missions and international agencies as appropriate to understand new requirements
for PyHC driven by missions.

18



9.2. Popularize PyHC APIs with Missions

PyHC should fund efforts to reach out to instrument teams to get them to adopt existing
data APIs and other existing Python mechanisms/curate/support/recommend this kind of
way of accessing data (uniform approach that outlasts a project, a promulgation
support). Get instrument teams/others to adopt these services for their own internal
mechanisms. Possibly under jurisdiction of the above-proposed PyHC liaison.

4. Summary

The results of the workshop show that there are many potential concrete actions which could be
taken to improve the PyHC software and their associated projects. Key challenges may be
grouped into items which involve sustaining/improving/expanding the community (key
challenges 1, 2, 3, 4, and 9), improving information dissemination (challenge 5) and technical
goals to better integrate and coalesce projects (challenges 6, 7, and 8). Solutions to challenges
ranged from smaller and/or straight forward efforts (e.g., publishing results in science sections at
conferences - section 3.3, holding regular, virtual office hours - section 4.5, or documenting
current data models - section 7.1) to more detailed, long-term solutions (e.g., establishing new
funding levels/mechanisms based on project maturity - section 1.4, creating and holding a
yearly week-long “PyHC Summer School” - section 2.2, or creating new positions for PyHC -
sections 1.1, 1.2, 2.3, 3.4, 3.7, and 4 .4).

The community displayed particular interest in solving challenges associated with sustaining,
improving, and expanding the community (the first group of challenges indicated in preceding
paragraph). As a starting point, the documentation of each major Python library shall be
improved describing in more details its content. Tutorials deserve particular mention in this area.
The creation and dissemination of project tutorials, especially for newcomers, was brought up
several times and participants posited that tutorials leveraging more than one PyHC project
would be of special benefit for the community. The consensus seemed to be that tutorials allow
projects to show scientists what kind of functionalities are available, what science questions
could be answered with a package (which helps keep a project relevant, and will help the
project continue to secure funding), demonstrate ways to better interoperate with other PyHC
projects (which helps improve projects overall), and improve outreach to others in the
heliophysics and space weather realms with tutorial presentation at conferences, meetings, etc.
Some ideas in this grouping had more overall consensus than others, but disagreements were
for the most part related to differing ideas in implementing suggested solutions, as opposed to
fundamental disagreement on the importance of solving the challenges themselves.

Interestingly, while the initial goal of the workshop was to focus particularly on project integration
this was the area showing the most contention and lack of consensus (challenges in the 3rd
grouping, i.e. technical goals to better integrate and coalesce projects). Many meeting
participants encouraged PyHC to document current project data models, services/APIs, project
functionalities, etc. and make recommendations based on the science question at hand.

19



Participants strongly discouraged a coalescence on one project (be that in totality or in specific
functionality therein - e.g., data access) or data model to the end of reducing redundancy. Some
argued that, in fact, not all redundancy is a bad thing; there’s utility to having some functionality
replicated when projects attack a goal in differing fashion because of differing importance of
requirements. This approach, in fact, was felt to allow projects to tailor methods to work with
their project’s unique needs.

In closing, even though some of the results were not anticipated at the outset of the meeting (by
the organizers at least) they are uniformly interesting and insightful and much of the captured
content is actionable. The workshop may therefore be considered successful at achieving its
goal to uncover areas for improvement, increased attention and/or resourcing in the PyHC
community. The organizers wish to thank all of the participants for their time and effort to
contribute to this report and attend the workshop itself.

20



Appendices

A. Participants

Name Role Institution
Aaron Roberts Workshop Organizer NASA/GSFC
Arnaud Masson Workshop Organizer

Baptiste Cecconi VESPA/maserpy

Bill Rideout MADRIGAL

Bob Weigel HAPI Client

Brian Thomas Workshop Organizer NASA/GSFC

David Stansby

HelioPy, pyPFSS

Eric Grimes PySPEDAS

Jack Ireland SunPy

Jan Gieseler SolarMACH University of Turku
Jeremy Faden AutoPlot

Jonathan Niehof SpacePy; db processing UNH

Jon Vandergriff HAPI Client JHUAPL
Julie Barnum Workshop Organizer LASP
Michael Hirsh General

Nick Murphy PlasmaPy

Paul O'Brien IRBEM, AE9/AP9-IRENE Aerospace
Rebecca Ringuette Kamodo (CCMC) GSFC/NASA
Reinhard Friedel Workshop Organizer NASA/HQ
Russell Stoneback pysat Stoneris
Shawn Polson LASP/PyHC (general) LASP

Will Barnes AlAPyY/SunPy NRL

21




B. Agenda
Day 1: [3 hrs]

e Introduction [30 min] - Aaron Roberts presents
o Purpose of the workshop, collect findings and observations on what we can do --
feeds a private nasa report on actions to take/funding.
o Some Provocations
m ML integration?
m Cloud integration? (ex. write CDF to S3)
m Interoperability of Python Packages (ex. read in SpacePy and now want
to calculate number of plasma parameters and call routines from
PlasmaPy)
m Interoperability with non-Python (APIs, IDL, MatLab, Java, etc)

e Breakout Sessions: Collect examples of challenges we have encountered -- challenges
in specific research workflows [1:30 hrs] ~5 ppl per group.

e Open Discussion of Challenges, which are the most important [1 hr],
o Each group has 5 min to present their thoughts,
o Open discussion to try to rank priorities. [45 min]
Day 2: [3 hrs]
e Review of challenges from first day [30 min] (Brian)
e Breakout Sessions : Discussion of how to solve some key challenges [1:30 hr]
e Synthesis Discussion on Findings and Observations [1 hr]

o [Each group presents their way to solve/approach to the challenges [15 min]
o Open discussion of approaches, feedback on suggested solutions [45 min]

22



	TM 20210023307.pdf
	1.  Introduction
	1.1 Purpose
	1.2 Scope

	2.  LunaNet Interoperability Overview
	3.  User Services
	3.1 Communications Services
	3.1.1 Real-Time Communications Services
	3.1.1.1 Real-Time Link Layer Communications Services
	3.1.1.2 Real-Time Network Layer Communications Services

	3.1.2 Store-and-Forward Communications Services
	3.1.3 Messaging Services

	3.2 Position, Navigation, and Timing Services
	3.2.1 Reference Signals
	3.2.1.1 One-Way Doppler Reference (1wDRef)
	3.2.1.2 Pseudo-Range and Timing Reference (1wRTRef)
	3.2.1.3 Time-Transfer Reference (Tref)

	3.2.2 One-Way Measurements
	3.2.2.1 One-Way Doppler Measurement (1wDMeas)
	3.2.2.2 Pseudo-Range Measurement (1wRTMeas)

	3.2.3 Two-Way Measurements
	3.2.3.1 Two-Way Doppler Measurement (2wDMeas)
	3.2.3.2 Range Measurement (2wRMeas)

	3.2.4 Two-Way Transponder
	3.2.4.1 Two-Way Coherent Doppler Transponder (2wD-XPND)
	3.2.4.2 Non-Regenerative Range Transponder (2wNRR-XPND)
	3.2.4.3 Regenerative Range Transponder (2wRR-XPND)

	3.2.5 Supplemental Navigation Products (Nav-G<x>)
	3.2.6 Location Service (Loctn)

	3.3 Detection and Information Services
	3.3.1 Lunar Search and Rescue (LunaSAR) Services
	3.3.2 Space Weather Alerting Services

	3.4 Science Services
	3.5 Service Access
	3.5.1 Earth-based Scheduling Service
	3.5.2 Multiple Access Links
	3.5.2.1 Multiple Access Forward Link/Augmented Forward Signal (AFS) Service
	3.5.2.2 Multiple Access Return Link
	3.5.2.3 User Initiated Services



	4.  LunaNet Service Provider to User Interfaces
	4.1 LNSP-User Lunar Surface Interfaces
	4.2 LNSP-User Proximity Interfaces
	4.3 LNSP-User DTE Interfaces
	4.4 LNSP-User Terrestrial Interfaces

	5. LunaNet Service Provider to LunaNet Service Provider Services
	5.1 LNSP A-LNSP B Communications Services
	5.2 LNSP A-LNSP B PNT Services

	6. LunaNet Service Provider to LunaNet Service Provider Interfaces
	6.1 LNSP A-LNSP B Lunar Surface Interfaces
	6.2 LNSP A-LNSP B Crosslink Interfaces
	6.3 LNSP A-LNSP B DTE Interfaces
	6.4 LNSP A-LNSP B Terrestrial Interfaces

	References
	Appendix A. LunaNet Interoperability Specification Phase Allocations
	Appendix B. Acronyms and Abbreviations
	Appendix C. Detailed Signal Definitions
	TP–20210021073 Rev.1.pdf
	1.  Introduction
	1.1 Purpose
	1.2 Scope

	2.  LunaNet Interoperability Overview
	3.  User Services
	3.1 Communications Services
	3.1.1 Real-Time Communications Services
	3.1.1.1 Real-Time Link Layer Communications Services
	3.1.1.2 Real-Time Network Layer Communications Services

	3.1.2 Store-and-Forward Communications Services
	3.1.3 Messaging Services

	3.2 Position, Navigation, and Timing Services
	3.2.1 Reference Signals
	3.2.1.1 One-Way Doppler Reference (1wDRef)
	3.2.1.2 Pseudo-Range and Timing Reference (1wRTRef)
	3.2.1.3 Time-Transfer Reference (Tref)

	3.2.2 One-Way Measurements
	3.2.2.1 One-Way Doppler Measurement (1wDMeas)
	3.2.2.2 Pseudo-Range Measurement (1wRTMeas)

	3.2.3 Two-Way Measurements
	3.2.3.1 Two-Way Doppler Measurement (2wDMeas)
	3.2.3.2 Range Measurement (2wRMeas)

	3.2.4 Two-Way Transponder
	3.2.4.1 Two-Way Coherent Doppler Transponder (2wD-XPND)
	3.2.4.2 Non-Regenerative Range Transponder (2wNRR-XPND)
	3.2.4.3 Regenerative Range Transponder (2wRR-XPND)

	3.2.5 Supplemental Navigation Products (Nav-G<x>)
	3.2.6 Location Service (Loctn)

	3.3 Detection and Information Services
	3.3.1 Lunar Search and Rescue (LunaSAR) Services
	3.3.2 Space Weather Alerting Services

	3.4 Science Services
	3.5 Service Access
	3.5.1 Earth-based Scheduling Service
	3.5.2 Multiple Access Links
	3.5.2.1 Multiple Access Forward Link/Augmented Forward Signal (AFS) Service
	3.5.2.2 Multiple Access Return Link
	3.5.2.3 User Initiated Services



	4.  LunaNet Service Provider to User Interfaces
	4.1 LNSP-User Lunar Surface Interfaces
	4.2 LNSP-User Proximity Interfaces
	4.3 LNSP-User DTE Interfaces
	4.4 LNSP-User Terrestrial Interfaces

	5. LunaNet Service Provider to LunaNet Service Provider Services
	5.1 LNSP A-LNSP B Communications Services
	5.2 LNSP A-LNSP B PNT Services

	6. LunaNet Service Provider to LunaNet Service Provider Interfaces
	6.1 LNSP A-LNSP B Lunar Surface Interfaces
	6.2 LNSP A-LNSP B Crosslink Interfaces
	6.3 LNSP A-LNSP B DTE Interfaces
	6.4 LNSP A-LNSP B Terrestrial Interfaces

	References
	Appendix A. LunaNet Interoperability Specification Phase Allocations
	Appendix B. Acronyms and Abbreviations
	Appendix C. Detailed Signal Definitions
	Template.pdf
	Template.pdf
	TM Template.pdf
	Report Template.pdf
	Blank Page









