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“Felix, qui potuit rerum cognoscere causas” 

“Lucky is he who has been able to 
understand the causes of things”

(Virgil 29 BC)



• di·ag·nos·tic
– a distinctive symptom or characteristic.

• a program or routine that helps a user to identify errors.
– the practice or techniques of diagnosis.

• "advanced medical diagnostics”
– PHM Community – “Detect and Isolate”

• Fault Magnitude 
• System/Component

Why Diagnostics
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• Safety and Decision Making
– Reconfiguring the system to avoid using the component before it fails
– Prolonging component life by modifying how the component is used
– Optimally plan or replan a mission

• Adopting condition-based maintenance strategies, instead of time-
based maintenance 

– scheduling maintenance
– planning for spare components

• System operations can be optimized in a variety of ways

Why Prognostics



• Reliability & Performance 
– product reputation reduced safety factors 

• Operational Optimization
– Prolonging component life by modifying how the component is 

used (e.g., load shedding/distribution)
– Optimally plan or replan a mission

Why Prognostics
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Basic Idea
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Basic Idea
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Not necessarily a one-dimensional 
problem!

… This schematic is oversimplified!
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• RUL: Remaining Useful Life
– Model underlying physics of a 

component/subsystem

– Model physics of damage 
propagation mechanisms

– Determine criteria for End-of-Life 
threshold

– Develop algorithms to propagate 
damage into future

– Deal with uncertainty
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• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age parameters
• EOD prediction computes prediction of time of EOD, given state and age parameter 

estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging rate progression
• EOL prediction computes prediction of time of EOL, given age parameter and age rate 

parameter estimates

Integrated Prognostics Architecture
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State of the Art

• Results tend to be intuitive
• Models can be reused
• If incorporated early enough 

in the design process, can 
drive sensor requirements 
Computationally efficient to 
implement

• Model development requires 
a thorough understanding of 
the system

• High-fidelity models can be 
computationally intensive

• Easy and Fast to implement
• May identify relationships 

that were not previously 
considered

• Requires lots of data and a 
“balanced” approach”

• Results may be counter(or 
even un-)intuitive

• Can be computationally 
intensive, both for analysis 
and implementation

• Paris-Erdogan Crack 
Growth Model

• Taylor tool wear model
• Corrosion model
• Abrasion model

• Regression analysis
• Neural Networks (NN)
• Bayesian updates
• Relevance vector machines 

(RVM)



Model-based prognostics
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• EOL defined at time in which performance 
variable cross failure threshold

R(tp) = tEOL � tp
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Hybrid Approach

Machine-Learning underlying physics 
parameters

Understanding and Learning underlying  
Physics  for Complex Systems

Advanced Composites

Tiltrotor Test Rig 



Approach 1 : Deep Learning + Physics Model Calibration

Overall architecture of the hybrid prognostics framework 
fusing physics-based and deep learning models. 

Calibration Policy

Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, “Real-Time Model Calibration with Deep Reinforcement Learning”, arXiv:2006.04001
Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, “Fusing Physics-based and Deep Learning Models for Prognostics”, arXiv:2003.00732

https://arxiv.org/search/eess?searchtype=author&query=Chao%2C+M+A
https://arxiv.org/search/eess?searchtype=author&query=Kulkarni%2C+C
https://arxiv.org/search/eess?searchtype=author&query=Goebel%2C+K
https://arxiv.org/search/eess?searchtype=author&query=Fink%2C+O
https://arxiv.org/abs/2006.04001
https://arxiv.org/search/eess?searchtype=author&query=Chao%2C+M+A
https://arxiv.org/search/eess?searchtype=author&query=Kulkarni%2C+C
https://arxiv.org/search/eess?searchtype=author&query=Goebel%2C+K
https://arxiv.org/search/eess?searchtype=author&query=Fink%2C+O
https://arxiv.org/abs/2003.00732


Physics-informed RNN

Approach 2 : Physics + RNN

Overall architecture of the physics-informed 
recurrent neural network

Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S. (2021). "Usage-based Lifing of Lithium-Ion Battery with Hybrid Physics-Informed 
Neural Networks," AIAA Aviation 2021.

Renato G. Nascimento; Matteo Corbetta; Chetan S. Kulkarni; Felipe A.C. Viana, “Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery 
Modeling and Prognosis”. Journal of Power Sources 2021 (accepted)

Physics-informed neural network framework for
Li-ion Battery SOC estimation

System model 
(physics/empirical)

Data-driven model(s)
System input

Real Process

MLP model 
for 𝑉!"#,%

MLP model 
for 𝑉!"#,"

Unknown (physical) 
parameters

Input current



Approach 2 : Physics + RNN
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Next Steps : Looking Ahead

• High Model Granularity
• Onboard/DM
• Computational cost
• Real time

• System Complexity
• Available Data
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Next Steps : Looking Ahead

• System Complexity
• Low Model Granularity

• Data Spectrum availability
• Offline/Online
• Computational cost
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Next Steps : Looking Ahead

Credit: www.nasa.gov



• Health Management framework helps enable 
– Systems safe and efficient 
– Decision making

• Hybrid Approaches 
– Physics based  methods  can be combined with machine learning to determine and evaluate 

models for complex physical systems.
• High Fidelity simulation 
• Field and Tests 

– These models enable in verification and validation for autonomy in shorter period of time than 
current state of the art. 

• Computational tools are two slow. 
– With availability of test and field data, machine learning able to blend the digital data fabric for 

model update
– Uncertainty Quantification

• Requirements for autonomous systems
• Framework still in early stages and needs maturation

Concluding Remarks

25
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