APPLIED SPACE ENVIRONMENTS CONFERENCE

TO BE HELD VIRTUALLY

NOVEMBER 1-5

Space Radiation Technologies for Human Missions beyond Low-Earth-Orbit

Lisa C. Simonsen NASA HQ Washington DC

Comparison of Shielded Radiation Human Exposures

Terrestrial Exposures

- Round trip NY to London: < ~0.1 mSv
- One adult chest x-ray: ~0.1 mSv
- Computed Tomography (CT) of Brain: 1.6 mSv
- Background from natural radiation: 3 mSv/yr
- Radiation worker exposure limit: 50 mSv/yr

ISS Low Earth Orbit

- Typical dose-rates: ~ 0.6 mSv/day
- Magnetosphere offers protection against SPEs (except high energy tail) and low energy GCR
- Exposure from trapped radiation and high energy GCR
- 6 months (50 100 mSv) to 1 yr missions (100 200 mSv)

Deep Space – Gateway and Transit

- Outside Earth's magnetosphere in free space
- GCR of greatest concern
- Dose eq. rate: 2 to 3 x's ISS

Mars Mission:

700 to 900-day mission w/ 30 days on surface
~1 to 1.3 Sv

Mars Surface

- Protection via atmosphere & planetary shielding
- Dose eq. rate similar to ISS

Lunar Mission

- Artemis sorties (30 day): 40 55 mSv
- 1-year missions: 300 400 mSv

Lunar Surface

- Protection from planetary shielding
- Increased neutrons
- Dose-rate ~1.5x ISS

Large solar particle events:

- Shield to < 250 mSv
- Venus swing-by increased exposure risk

Galactic Cosmic Rays: The physics of spatial and temporal scales

Whole body hits

13,456 protons/sec
 728 He/sec
 38 HZE/sec

"...every cell nucleus in an astronaut's body would be hit by a proton every few days and by an HZE ion about once a month" Cucinotta, F.A., Durante, M., Lancet Oncol 7: 431-435; 2006; Curtis and Letaw, Adv. Space Res. 9: 293-298; 1989. → Similar findings.

Space Radiation Health Risks

Major Risks -

- Acute Radiation Syndrome
- Radiation Carcinogenesis
- Degenerative Diseases cardiovascular
- Central Nervous System Effects

Biological Challenges – Assessing risk and validating countermeasures

- Radiation quality effects
- Low dose-rates in space
- Translation of experimental models to humans
- Understanding individual radiation susceptibility
- Ground-based simulation of space environment
- Quantifying combined spaceflight stressors

DNA Damage in Cells: Space radiation (HZE) dense ionizing particle track

(Cucinotta & Saganti, Patel & Huff, NASA)

Reducing Exploration Mission Radiation Risks

A combination of mission, vehicle systems, operations, medical countermeasures, and crew selection, as well as post mission health care will enable an acceptable risk posture for long duration missions.

Pre - Mission

- Space Rad Environmental Models & Mission Design (ALARA)
 - •Ensemble Models of Risk Projection
- Crew Selection: age, sex, healthy worker effects
 - Pre-screening for Individual Susceptibility and early disease indicators* (Genetic, Biomarkers)

,	Mission	Location	n & Dur	ation
_				

In - Mission

- Solar Conditions Min vs. Max
- Optimized GCR Shielding with SPE Storm Shelter/Personal Protection
 - Operational Planning; Monitoring/Dosimetry
 - Medical Countermeasures (Pharmaceutical, Nutritional, Exercise)
- Biomarkers/Inflight detection genomic health/personal risk indicators

Post - Mission

- Occupational Health Care for Astronauts
 - Advances in Terrestrial Treatments – Precision Medicine*
- **Biomarkers:** health monitoring for early disease detection, and targeted treatments
 - Medical Countermeasures

Reduction in Total Risk Posture

Increased quality of life & outcomes

The Physical Perspective - Technology Challenges:

Accurate real-time operational forecasting of solar particle events

- Increase warning times in advance of storm 24 hrs
- Reliable predictions of peak flux, duration, magnitude and time evolution of event over hours to >7 days
 All-clear periods

Earth-independent monitoring and forecasting

Miniaturized onboard instrument suite for space weather observation
 possibility of new space weather architecture platforms along Sun-Mars Line
 autonomous forecasting & warning software

Prediction of solar cycle durations

Measurements and models supporting predictions >10 years in advance

Advanced space radiation environment characterization

High energy neutron detectors for >100 MeV neutrons up to 1 GeV neutrons
 Mass power volume, sufficient resolution

Effective GCR Shielding – Passive and Active

Advancement & integration of lightweight, multifunctional materials - mass solutions with ~20% reduction
 Positive trade of active systems compared with passive, high reliability

95 2000 2005 2010 2015 2020

lathaway/NASA/MSFC

Radiation Protection: STMD Strategic Framework

06 Advanced Habitation Systems Protection

TX06.X.X: NASA OCT Technology Taxonomy

Major Asset: Space Weather architecture

Major Asset: NASA Space Radiation Laboratory

8

NASA Space Radiation Laboratory at Brookhaven National Lab

- Simulates space radiation high energy ion beams (H⁺, He, Fe, Si, C, O, Cl, Ti, etc.)
- GCR Simulator with 33 sequential ions
- 3 experimental campaigns per year
- Animal and cell biology facilities
- Heavily utilized by NASA & commercial spaceflight and DOD

NSRL Beam Line Images courtesy of BNL

NSRL GCR Simulator Beam Definition

Simulates LET dose distribution to critical organs/tissues within shielded vehicle

GCR Simulation Beam consists of 33 beams

- 4 H energies plus degrader (65-75% dose)
 4 He energies plus degrader (10-20% dose)
 5 Homminger C. O. Si, Ti, Fo. (C. 8% dose)
- 5 Heavy ions: C, O, Si, Ti, Fe (6-8% dose)

lon	Energy (MeV/n)	Range (cm)	LET (keV/μm)	Dose (mGy)	
¹ H	100	Polyethylene degrader to			
¹ H	150	15.9	0.54	35.0	
¹ H	250	38.1	0.39	68.9	
¹ H	1000	326.6	0.22	123.6	
⁴He	100	Polyethylene degrader to			
⁴He	150	16.0	2.17	7.5	
⁴He	250	38.3	1.56	16.4	
⁴He	1000	327.8	0.88	24.9	
¹² C	1000	110.1	7.95	11.7	
¹⁶ O	350	17.0	20.8	15.4	
²⁸ Si	600	22.7	50.2	8.1	
⁴⁸ Ti	1000	32.5	109.5	4.5	
⁵⁶ Fe	600	13.1	175.1	4.1	
Total				500.0	

21 unique switches with ~ 75 min delivery time

	lon	Energy (MeV/n)	Range (cm)	LET (keV/μm)	Dose (mGy)
	¹ H	20.0	0.43	2.59	30.4
	¹ H	23.3	0.56	2.29	6.7
	¹ H	27.2	0.75	2.02	7.4
	¹ H	31.7	0.98	1.79	8.0
	¹H	37.0	1.30	1.58	8.7
	¹ H	43.2	1.72	1.39	9.3
	1H	50.3	2.26	1.23	10.0
	1H	58.7	2.99	1.09	10.6
	1H	68.5	3.95	0.97	11.1
	1H	79.9	5.20	0.86	11.2
	¹ H	100.0	7.76	0.73	27.2
	lon	Energy (MeV/n)	Range (cm)	LET (keV/μm)	Dose (mGy)
	⁴ He	20.0	0.43	10.34	11.0
	⁴He	23.3	0.57	9.14	2.1
	⁴He	27.2	0.75	8.06	2.2
	⁴He	31.7	0.99	7.12	2.3
	⁴He	37.0	1.31	6.29	2.5
	⁴He	43.2	1.73	5.56	2.6
	⁴He	50.3	2.28	4.92	2.7
	⁴He	58.7	3.01	4.36	2.7
	⁴He	68.5	3.97	3.86	2.7
	⁴He	79.9	5.23	3.43	2.7
1					

Laser lon source

Control system & software

Large binary filter system

Envisioned Future

Integrated radiation protection technologies* to increase permissible mission duration by a factor of two (~400 days to >800 days) within acceptable mission constraints.

> *GCR/SPE shielding, advanced environmental characterization, biomarker surveillance, countermeasures, predictive health models

Compact Earth-independent, on-board space environment observation system as accurate as current Earth-based assets.

Image Credit: NASA Artemis JM 058

Accurate SPE forecasting to minimize crew exposure levels (increase reliability of 24-hour SPE predications by a factor of ~2.5) and optimize mission operations (increase reliability of 7-day SPE forecast by a factor of ~5).

extra

Gap Definitions

Knowledge Gap: unknown data (e.g., chemical and physical properties) that will ultimately drive hardware requirements; these gaps typically require additional scientific research in order to close.

<u>Technology Gap:</u> new and/or novel performance or function that has not been demonstrated (solutions to this gap type are generally TRL 1-4); this gap type aligns with the "New" Technology TRL 1-4 definition within the NASA Technology Readiness Assessment Report (2016)

Development Gap: at least one potential solution has been identified, but additional work is required to ensure feasibility of the *new and/or novel performance or function* in a specific operational application (solutions to this gap type are generally TRL 5-9); this gap type aligns with the "New" Technology TRL 5-9 definition within the NASA Technology Readiness Assessment Report (2016)

Engineering Gap: performance or function is well accepted (*not new or novel*), but requires engineering development for a specific mission (solutions to this gap type are generally TRL 5-9).

Architecture Gap: unknown mission parameters that will ultimately drive hardware requirements; further refinement of mission plans to clarify capability need.

Operations Gap: crewed and uncrewed mission operations considerations, including training and flight operations, that differ from current standards of practice and need to be defined and/or tested in order to enable the mission.