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Key Points: 21 

• Retrievals from satellite remote sensing have transformed hydrology by providing global 22 
information about state variables and fluxes. 23 

• Benefits of remote sensing to hydrologic science will benefit from integrating 24 
information from multiple sensors and disciplines. 25 
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Abstract 28 

Over the last half century, remote sensing has transformed hydrologic science. Whereas early 29 
efforts were devoted to observation of discrete variables, we now consider spaceborne missions 30 
dedicated to interlinked global hydrologic processes. Furthermore, cloud computing and 31 
computational techniques are accelerating analyses of these data. How will the hydrologic 32 
community use these new resources to better understand the world’s water and related challenges 33 
facing society? In this Commentary, we suggest that optimizing the benefits of remote sensing 34 
for advancing hydrologic research will happen by integrating multidisciplinary and multisensor 35 
data, leveraging commercial satellite measurements, and employing data assimilation, cloud 36 
computing, and machine learning. We provide several recommendations to these ends. 37 

Plain Language Summary 38 

Observations from satellites have transformed hydrologic science. Early efforts, five decades 39 
ago, mapped attributes like snow cover, rainfall, topography, and vegetation, but now we 40 
consider new missions specifically designed to study global hydrologic processes. We also take 41 
advantage of new technologies like cloud computing and artificial intelligence. We describe 42 
strategies for maximizing the benefits of remote sensing for hydrology, encouraging research 43 
across disciplines using multiple sensors, using new commercially available satellites, and 44 
combining remote sensing measurements with hydrologic models. 45 

1 Introduction 46 

Remote sensing measurements have led to paradigmatic advances across the geosciences. 47 
The vantage of Earth orbit allows sensors to spatially resolve surficial and subsurface properties 48 
planetwide, shedding new light on global processes (National Academies of Sciences, 49 
Engineering, & Medicine, 2018). Scientific discoveries enabled by global observations have so 50 
completely transformed atmospheric and ocean sciences that introductory textbooks had to be 51 
rewritten (Wunsch & Ferrari, 2018). For example, observations of atmospheric and oceanic 52 
eddies and motions on a wide range of scales led to rethinking of the frameworks of General 53 
Circulation and the Conveyor Belt (Fu & Cazenave, 2001). Indeed, given the immense financial 54 
and intellectual investment involved, the goal of a major satellite mission dedicated to hydrologic 55 
science should be nothing less than paradigm-altering science: the goal should be scientific 56 
discovery that generates new hypotheses and theories challenging our current understanding of 57 
the hydrologic cycle and its role in weather, climate, and the biosphere. 58 

In this paper, we briefly summarize past progress (section 2) and describe a path forward 59 
towards these ambitious goals (section 3) along with several specific recommendations (section 60 
4), with the focus predominantly on spaceborne remote sensing of the water balance. We do not 61 
attempt an exhaustive history of hydrologic remote sensing; several contributions have done so 62 
in depth (Lettenmaier et al., 2015; Peters-Lidard et al., 2018). While technological innovations 63 
(e.g., UAVs, smart phones for citizen science) have been transforming hydrologic science at 64 
smaller scales (McCabe et al., 2017), our focus here is on spaceborne remote sensing 65 
measurements with global capabilities, including instruments integrated with the International 66 
Space Station. Given the global focus, we discuss missions led by space agencies, as well as the 67 
private sector. We discuss missions dedicated to hydrology, as well as efforts to leverage 68 
instruments originally designed for other purposes. The objective of the paper is to describe a 69 
path forward to optimize hydrologic remote sensing in the years to come. 70 



2 Progress in Hydrologic Remote Sensing 71 

Remote sensing of hydrology is best understood as a set of sub-fields of varying maturity 72 
related to airborne and space-based observation of the fluxes and storages that comprise the 73 
water cycle: precipitation, evapotranspiration, river discharge, and storage in groundwater, soil 74 
moisture, snow cover and water equivalent, and surface water (Lakshmi et al., 2014). 75 
Transformative advances in measuring the water cycle should be expected when global patterns 76 
in each storage and flux term can be adequately measured. Currently, maturity varies widely 77 
among sub-fields: some sub-fields, like precipitation, count decades of history, while others still 78 
require enabling technological advances. For example, mapping snow extent is mature and done 79 
regularly (Hall et al., 2002), but accurate snow depth or snow water equivalent measurements 80 
remain unavailable from space for the mountain areas with deep snow (Dozier, Bair, & Davis, 81 
2016). Here we consider several of these sub-fields, roughly in order of decreasing maturity: 82 
precipitation, terrestrial water storage, soil moisture, evapotranspiration, surface water (river 83 
discharge and surface water storage), and snow. For a comprehensive review of current 84 
capabilities and limitations, please see Lettenmaier et al. (2015) and Peters-Lidard et al. (2018). 85 

Some of the first hydrologic remote sensing applications estimated precipitation from 86 
cloud images from weather satellites over fifty years ago (Lettenmaier et al., 2015). Remote 87 
sensing skill took an important step by leveraging passive microwave measurements (Levizzani 88 
& Cattani, 2019), and took a major leap forward with the launch of TRMM in 1997, the Tropical 89 
Rainfall Measuring Mission and the first dedicated precipitation mission based on radar 90 
measurements (Kummerow et al., 2000). The current Global Precipitation Measurement Mission 91 
comprises a constellation of satellites whose radar-based core launched in 2014 (Hou et al., 92 
2014), producing fine temporal and spatial analyses of surface precipitation (Huffman et al., 93 
2020). A key area of research remains improving accuracy of remotely sensed precipitation 94 
products where gauge corrections are not available (Su, Hong, & Lettenmaier, 2008). The 95 
availability and improvement of such analyses depend on the continuation and expansion of the 96 
constellation of passive microwave satellites, with the possible use of “SmallSat” constellations 97 
in the next decades. 98 

Terrestrial water storage represents the sum of all hydrologic storage terms and can be 99 
measured from space via fluctuations in Earth’s gravity field. The Gravity Recovery and Climate 100 
Experiment (GRACE) satellite mission was launched in 2002, and had multiple objectives, of 101 
which one targeted terrestrial hydrology. GRACE provided a new way to quantify changes in 102 
total terrestrial water storage at regional to continental scales, enabling maps of groundwater 103 
depletion, trends in freshwater availability, and loss of ice from Antarctica and Greenland 104 
(Rodell et al., 2018; Tapley et al., 2019). Continuity of this unique data record was considered so 105 
important that NASA and the German Space Agency launched GRACE Follow-On in 2018 106 
(Landerer et al., 2020), and the National Academies recommended that a third mass change 107 
mission be launched in the coming decade (National Academies of Sciences, Engineering, & 108 
Medicine, 2018). 109 

Measurement of the individual storage terms is vital, and concerted efforts to measure 110 
soil moisture date back decades to the Heat-Capacity Mapping Mission (Heilman & Moore, 111 
1982). Passive and active microwave measurements were used opportunistically to create soil 112 
moisture data products that continue in operational use (de Jeu et al., 2008). The Soil Moisture 113 
and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) missions launched in 114 
2009 and 2015, respectively, and enabled global soil moisture mapping (McColl et al., 2017) and 115 



breakthroughs in large-scale land atmosphere interactions, agricultural mapping (Lawston, 116 
Santanello Jr, & Kumar, 2017) and soil science (Dirmeyer & Norton, 2018). Measurement of 117 
deep soil moisture is a possible future advance, perhaps by measuring reflections of signals of 118 
opportunity transmitted by communications satellites (Yueh et al., 2020). 119 

Remote sensing of evapotranspiration has leveraged geostationary and polar orbiting 120 
satellites designed primarily for other purposes, particularly sensors in the visible to shortwave 121 
infrared in combination with thermal wavebands allowing for monitoring from fields to 122 
continental scales (Anderson et al., 2011). Landsat, in particular, has been broadly demonstrated 123 
as having operational utility for water management and decision support (Anderson et al., 2012). 124 
Evapotranspiration is related to surface temperature and other quantities observable from space 125 
via surface energy balance parameterizations (Kustas et al., 2003). The development of data 126 
fusion methods combining multiple satellite sources has significantly improved the reliability of 127 
daily evapotranspiration monitoring relevant for many water resource applications, as seen in the 128 
OpenET (https://openetdata.org/, Ketchum et al., 2020) effort in the U.S. and the SEN-ET 129 
(Guzinski et al., 2020) developed by European Space Agency’s Sentinel Application Platform. 130 
Accurate ET retrievals, especially in semi-arid regions, remain an important area of research  131 
(Xiao et al., 2017). New sensor systems such as the ECOSTRESS mission on the International 132 
Space Station (Fisher et al., 2020) sample thermal information at different times of day and show 133 
improvement in evapotranspiration monitoring by capturing dynamics caused by variation in 134 
environmental factors and agricultural practices (Anderson et al., 2021). 135 

Information about surface water spans both river discharge and changes in surface 136 
storage. Remote sensing of surface water extent has leveraged instruments designed for other 137 
purposes, principally Landsat, whose 30 m resolution and nearly 50-year record has enabled 138 
global mapping of decadal-scale changes in surface water extent (Pekel et al., 2016). The Surface 139 
Water and Ocean Topography (SWOT) radar altimetry mission, the first satellite specifically 140 
dedicated to measure the levels of rivers and lakes, will launch in 2022 (Biancamaria, 141 
Lettenmaier, & Pavelsky, 2016). In combination with the latest measurements of surface water 142 
extent from NISAR (also to launch in 2022), and height measurements from modern laser and 143 
radar altimeters (e.g. ICESat-2, Sentinel 6 Michael Freilich), the availability of data for surface 144 
water studies is rapidly expanding, leading to major breakthroughs (Cooley, Ryan, & Smith, 145 
2021). The influx of commercial imagery from companies such as Maxar and Planet is also 146 
changing this field rapidly by enabling frequent (~daily), fine spatial (≤3 m) observations of 147 
surface water extent (Cooley et al., 2017; 2019; Dadap et al., 2021), especially in smaller lakes 148 
and rivers. The combination of the first dedicated surface water mission (SWOT), widely 149 
available fine-resolution optical (SmallSats, Sentinel-2) and radar (NISAR) imagery, and 150 
additional spaceborne altimeters (Sentinel 6 Michael Freilich, ICESat-2) mean that a “golden 151 
age” of surface water remote sensing is clearly on the horizon. Only by combining all these 152 
measurements, perhaps using data assimilation methods, will we achieve optimal space-time 153 
coverage of river discharge and lake storage changes. 154 

In contrast, a dedicated mission to measure snow water equivalent has never been 155 
launched, despite the fact that remote sensing of snow cover was one of the first hydrological 156 
applications of remote sensing. Lettenmaier et al. (2015) pointed out that remote sensing of 157 
mountain snow is a critical need to advance hydrologic science. Remote sensing of snow 158 
presence or absence is a well-established capability (Bormann et al., 2018), but relating snow to 159 
other processes requires knowledge of snow water equivalent. Active work on developing snow 160 



missions, for example the Canadian Space Agency’s Terrestrial Snow Mass Mission concept 161 
(Garnaud et al., 2019), is ongoing. However, as we discuss later in more detail, due to snow’s 162 
complexity, one technology is unlikely to be able to measure all types of global snow, likely 163 
requiring multiple observation types depending on the terrain and the magnitude of the snowfall 164 
(Dozier, Bair, & Davis, 2016). 165 

There is thus a wide range of maturity in remote sensing of hydrologic variables, and 166 
reliable spaceborne observations of several quantities do not exist. The most detailed picture of 167 
the global water cycle can only be created using measurements of all hydrologic fluxes and states 168 
from remote platforms and models. Further, the increasing availability of observations from 169 
small and commercial satellites, sub-orbital platforms, and signals of opportunity will be 170 
valuable for downscaling and for filling spatial and temporal measurement gaps (McCabe et al., 171 
2017). Therefore, while the influx of remote sensing data into the hydrologic sciences in the past 172 
several decades has been transformative, the biggest scientific discoveries are surely yet to come. 173 
Given this context, what is the path forward to ensure that remote sensing of hydrology achieves 174 
its full potential in the years to come? 175 

3 Path Forward: Enabling Power of Multiple Sensors and Interdisciplinary Work in 176 
Hydrologic Remote Sensing 177 

One possible solution to measuring the water cycle is an integrated mission that would 178 
simultaneously measure all storages and fluxes from a single platform. While such approaches 179 
have been explored, they have generally been abandoned as being cost-prohibitive. Given the 180 
wide range of maturity of the various sub-fields and noting the increasing availability of 181 
measurements across the electromagnetic spectrum and now including gravity, here we highlight 182 
the importance of leveraging all available datasets. The path toward unlocking global scientific 183 
discoveries includes multidisciplinary, multisensor remote sensing (3.1), leveraging commercial 184 
measurements (3.2), and improvements in the tools used to synthesize observations from 185 
disparate sensors, namely data assimilation and cloud computing (3.3). 186 

3.1 Multidisciplinary and Multisensor: Avoiding Silos and Sharing Knowledge 187 

Paradigm-altering hydrologic science driven by remote sensing will require optimal use 188 
of data from multiple disciplines and synthesizing data from multiple remote sensors. While it is 189 
already commonplace for many hydrologic applications to use multiple kinds of measurements, 190 
it is even more common for a research project to revolve around a particular sensor or 191 
subdiscipline (e.g., atmospheric science or surface hydrology), revealing a “silo mentality.” All 192 
too often, perspectives, approaches, literature, or observations in one field go unused in another. 193 
Breaking out of this silo mentality can open the availability of rich new datasets. 194 

Perhaps the simplest way of stepping away from silo thinking is to leverage 195 
measurements from other disciplines, exploring old science questions with new datasets. For 196 
example, the GRACE mission was conceived to study the dynamics of the continents, 197 
suboceanic crust, and lithosphere, and to map the geoid and thereby enable better interpretation 198 
of data from ocean altimetry (Keating et al., 1986). Well before the 2002 launch, however, 199 
recognition that the time-varying gravity field would track spatial changes in the water held in 200 
snow, ice, the soil, and groundwater contributed to the rationale for such a mission (National 201 
Research Council, 1997). Eventually, the hydrologic (Rodell, Velicogna, & Famiglietti, 2009) 202 
and cryospheric (Velicogna, 2009) investigations proved to be the most compelling and prolific 203 



applications of these data. As another example, some of the first algorithms for remote sensing of 204 
solar-induced fluorescence (SIF)—a proxy for photosynthesis about which hundreds of papers 205 
are now published each year—were based on re-imaging measurements intended for greenhouse 206 
gas monitoring (Joiner et al., 2013). Now there are efforts making use of satellite-based SIF 207 
observations for constraining global transpiration estimates from land surface models and other 208 
hydrologic states and fluxes (Jonard et al., 2020; Pagan et al., 2019). Similarly, GPS observations 209 
have been leveraged to measure soil moisture variations (Larson et al., 2008) and other 210 
hydrologic quantities. Other as-yet-unrealized valuable hydrologic datasets may exist in current 211 
spaceborne observations, including commercial datasets, SmallSats, and signals of opportunity. 212 

Another way of moving beyond the silo mentality in remote sensing is to recognize that 213 
“noise” in one discipline may be “signal” in another. Studies of microwave remote sensing of 214 
soil moisture have long retrieved proxies for vegetation water content (van de Griend & Owe, 215 
1994); the influence of vegetation water content on soil moisture retrievals was understood a 216 
decade earlier (Wang, 1985). However, only in the last decade has the community used low-217 
frequency microwave remote sensing of vegetation water content as a valuable dataset in and of 218 
itself, rather than only a technical correction factor to improve soil moisture retrievals (Steele-219 
Dunne, Friesen, & van de Giesen, 2012). Since then, vegetation water content estimates have 220 
significantly advanced understanding of stomatal closure responses to both atmospheric and soil 221 
moisture (Konings, Williams, & Gentine, 2017), the impact of vegetation diversity on the 222 
response of evapotranspiration to drought (Anderegg et al., 2018), as well as plant growth 223 
responses to water stress and other factors (Feldman et al., 2018; Liu et al., 2015). They also hold 224 
promise for a variety of applications in agriculture, carbon cycle science, and fire hazard 225 
assessment (Konings, Rao, & Steele-Dunne, 2019). 226 

The final way of escaping from silos is to more regularly leverage all available 227 
measurements simultaneously to characterize hydrologic processes. The use of multiple 228 
observations can enable a fundamental step change in our ability to characterize a hydrologic 229 
quantity or to do groundbreaking new work. As described in section 2, multisensor remote 230 
sensing is central to strategies in the more mature sub-fields, including precipitation and 231 
evapotranspiration (Cammalleri et al., 2013, 2014). Even broader approaches merging a full 232 
spectrum of Earth observations are already being leveraged in other disciplines such as in 233 
agronomy for crop yield estimation (Guan et al., 2017). Fully achieving the “golden age” of 234 
surface water remote sensing described in the previous section requires the non-trivial work to 235 
bring together the water surface extent and water surface elevation measurements from a large 236 
range of platforms. It also requires two approaches to high-quality validation data (Lundquist et 237 
al., 2019): (1) Long-term observational networks from a wide variety of scientific disciplines, 238 
such as the Long Term Ecological Research network (LTER, Kratz et al., 2003) or the U.S. 239 
Department of Agriculture experimental watersheds (Nayak et al., 2010; Renard et al., 2008) and 240 
Long Term Agro-ecosystem Research network (Baffaut et al., 2020), provide consistent data to 241 
assess trends and to validate remotely sensed retrievals across multiple, evolving satellite 242 
sensors. (2) Dedicated field campaigns, which use remote sensing to address cross-disciplinary 243 
science questions, collect information through intensive human activity that is beyond the 244 
realistic capability of unattended instruments. Examples include FIFE (First ISLSCP Field 245 
Experiment, Sellers et al., 1988), BOREAS (Sellers et al., 1997), multiple-year field campaigns 246 
to capture a range of environmental conditions (Kustas et al., 2018), and campaigns to integrate 247 
atmospheric and hydrologic science to better model and measure mountain precipitation, often 248 
the source of most of the water (Lundquist et al., 2019). 249 



Some quantities in the hydrologic cycle simply cannot be measured with current 250 
technologies using a single sensor alone; the prime example is snow. It is highly unlikely that a 251 
single sensor will be able to fully reveal snow characteristics, which include snow water 252 
equivalent, density, wetness, grain size, and radiative forcing from light-absorbing impurities, 253 
thereby suggesting a multi-pronged approach, leveraging multiple types of observations, time 254 
series, and modeling. As an example, increasing availability of surface altimetry measurements 255 
from stereophotogrammetry (Dehecq et al., 2020), lidar (Painter et al., 2016), or high-frequency 256 
radar (Moller et al., 2017) show promise for snow depth retrievals, but modeling will be 257 
necessary to determine density and thereby the water equivalent. The Ku-band radar approaches 258 
being pursued most recently by the Canadian Space Agency (Garnaud et al., 2019) will likely be 259 
most successful for shallow snow away from trees, such as snow accumulating on Arctic tundra. 260 
Incorporation of snow albedo and surface temperature will help to resolve the energy balance 261 
(Kongoli et al., 2014), and in turn can provide information on snowmelt rates, which can be used 262 
to retrospectively determine what snow accumulation must have been (Bair et al., 2016; 263 
Margulis et al., 2016; Rittger et al., 2016). Understanding the repeatability of these historic snow 264 
accumulation patterns can then improve prediction and modeling of current snowpacks (Pflug & 265 
Lundquist, 2020). Bringing these pieces together will provide the best chance for success but will 266 
require modeling and assimilation as described in section 3.3. 267 

3.2 Combining Commercial and Government Satellite Observations 268 

Measurements from commercial platforms are rapidly expanding Earth observations 269 
(McCabe et al., 2017). The current model for most Earth observation remote sensing is that 270 
government agencies are the primary providers. Indeed, the continuity and reliability of data 271 
from ESA, EUMETSAT, NASA and NOAA, for example, are essential to produce climate data 272 
records, allowing the scientific community to plan for long-term use, such as the Copernicus 273 
Sentinel program. Moreover, several companies, notably Maxar and Planet, and now ICEYE and 274 
Capella Space, provide imagery at much finer spatial resolution than most sensors funded by 275 
space agencies. How will the availability of observations from commercial platforms change the 276 
landscape of remote sensing of hydrology? 277 

As space agencies are publicly funded, observations from many national space agencies 278 
are available free of charge. The 1984 decision to transition Landsat to a commercial operation 279 
demonstrated that data costs substantially limit the scope of science and applications; the 1999 280 
reduction in cost and the 2008 return to free Landsat data demonstrated that freely available data 281 
bring huge benefits to modern science and applications (National Research Council, 2013; 282 
Wulder et al., 2012). A cost model where imagery must be budgeted in the costs of grants stifles 283 
scientific research and hinders its use by resource managers. Thus, the availability of commercial 284 
satellite data to researchers, whether through space agency or national science agency 285 
agreements or individual grants, is vital towards allowing these technological and observational 286 
advances to make an impact on hydrologic research. Recent progress, such as the 2018 287 
agreement between Maxar and the U.S. Government and the 2020 agreement between Planet and 288 
NASA, makes fine-resolution imagery available to members of the research community. Such 289 
access agreements and data availability are also vital towards ensuring the reproducibility of 290 
scientific analyses using commercial data. A note of caution is that these agreements are short-291 
term. Studies focused more broadly on environmental data show that privatization incurs some 292 
risk (National Research Council, 2001). 293 



Whereas recent progress in the availability of commercial data is a significant step, there 294 
remain other challenges towards the broad inclusion of commercial imagery in hydrologic 295 
research. For example, thorough documentation of dataset creation and validation is critical for 296 
efficiently entraining new users, enabling them to quickly resolve inevitable misunderstandings 297 
when working with new datasets. Space agencies nationally and internationally have set a high 298 
standard for documentation and validation at all levels of the processing and algorithm chain. For 299 
example, NASA’s Algorithm Theoretical Basis Documents explain not only how raw 300 
observations are converted to data products of interest, but also enough of the underlying theory 301 
to provide insights into dataset limitations. In contrast, in the private sector, fewer resources are 302 
dedicated towards accuracy assessment and calibration and validation, so uncertainties may not 303 
be well understood. Furthermore, private sector processing algorithms may be intellectual 304 
property and are not readily available to all users. Therefore, along with any commercial data 305 
agreement should come adequate documentation and data processing transparency, which are 306 
key to scientific use of remote sensing measurements. 307 

Finally, it is vital that raw data be made available, especially in the critical period where 308 
the community is attempting to assess the utility of a new data type. Assimilation of raw 309 
radiances rather than retrieved precipitation data products was vital in the evolution of numerical 310 
weather prediction (McCarty, Jedlovec, & Miller, 2009). Similarly, hydrologists with access to 311 
the range of data products processing levels are better able to adapt algorithms for specific 312 
contexts. For example, retrieval of surface reflectance of snow-covered landscapes in 313 
mountainous terrain can benefit from more advanced modeling and high-resolution digital 314 
surface models—but only if the raw data are made available. Such availability of raw data will 315 
be especially important given the nascent development of commercial synthetic aperture radar 316 
imagery from companies such as ICEYE and Capella Space. Overall, while commercial satellite 317 
data have made substantial inroads into hydrologic research in the past five years, further 318 
development will continue to require dialogue and interaction between scientists, federal science 319 
and space agencies and private companies. 320 

3.3 Bringing Everything Together through Data Assimilation and Cloud Computing 321 

To fully achieve landmark changes in hydrologic science, we must leverage 322 
multidisciplinary and multisensor remote sensing measurements, and data assimilation methods 323 
are surely one of the most important tools for this merger. Data assimilation is at its heart a 324 
simple concept that is decades old, in which observations replace or adjust modeled estimates of 325 
states or fluxes (Reichle, 2008). In principle, data assimilation could be used to merge multiple 326 
observational quantities across the entire water cycle. However, the devil is in the details in 327 
terms of obtaining optimal estimates for hydrologic systems from assimilating remote sensing 328 
measurements into models; often issues center around the quantification of uncertainty. 329 

As a non-trivial example, consider assimilation of GRACE terrestrial water storage into a 330 
large-scale hydrologic model, and comparison of the assimilation analysis estimates with in situ 331 
groundwater levels. Uncertainty could arise from the meteorological forcing data, the in situ 332 
data, model structure error associated with the generation of runoff and evaporative fluxes, 333 
representation of soil moisture-groundwater interactions, static soil parameters such as specific 334 
yield, scale mis-match between the model grid and in situ observations, GRACE data processing 335 
errors, other invalid assumptions, or any combination of these factors (Girotto et al., 2017). 336 
Ensuring that the right model states, fluxes and/or parameters are adjusted properly and that 337 



comparisons with observations in situ are correctly interpreted requires a thorough understanding 338 
of model and observation uncertainty. These issues are compounded when multiple, imperfect 339 
observations are assimilated simultaneously (Kumar et al., 2019). 340 

Uncertainty in hydrologic predictions results from uncertainty in model inputs, including 341 
meteorological forcing data, model parameters and model structure (Ajami, Duan, & Sorooshian, 342 
2007). Better understanding of model uncertainty hinges on assessment of hydrologic datasets, 343 
comprehension of hydrologic processes, simplifying assumptions, parameter equifinality, and 344 
how these attributes combine within hydrologic models (Moradkhani et al., 2005). Hydrologic 345 
models used wisely have enabled countless scientific discoveries: their impact can hardly be 346 
overstated. However, comparing models with remote sensing observations, especially 347 
assimilating observations into models, tends to reveal new model limitations (Liu & Gupta, 348 
2007). It is thus vital when assimilating data to be wary of possible model structural errors (Clark 349 
et al., 2008), and thus biases, and to consistently think back to the hydrologic processes being 350 
modeled. 351 

Better understanding of remote sensing observation uncertainty is also vital; as with 352 
model uncertainty, awareness of potential bias is critical, especially in higher level retrieved data 353 
products. For example, snow water equivalent retrievals from passive microwave data often 354 
exhibit significant biases in mountainous areas. Assimilation of these biased estimates are more 355 
likely to degrade, rather than improve, modeled estimates (Andreadis & Lettenmaier, 2006). 356 
Assimilation of radiances instead of retrieved hydrologic quantities and lower-level data 357 
products in general can help circumvent issues of bias in retrievals from remote sensing 358 
observations, for precipitation (Ebtehaj, Bras, & Foufoula-Georgiou, 2015), soil moisture 359 
(Reichle et al., 2019), snow (Li, Durand, & Margulis, 2017), and in other contexts. Additionally, 360 
instrumental-variable techniques have been applied to correct remote-sensing-based estimates of 361 
soil moisture/evapotranspiration coupling strength for the biasing impact of random retrieval 362 
errors (Crow et al., 2015; Lei et al., 2018). Through this advancement, Crow et al. (2020) 363 
recently identified the over-coupling of soil moisture and surface evapotranspiration as an 364 
important source of systematic modeling error in numerical weather prediction of summertime 365 
near-surface air temperature. Another important effort in understanding retrieval errors is 366 
mapping error climatology and relating these to physical processes (Barros & Arulraj, 2020). 367 
Support for remote sensing theory and remote sensing phenomenology is a cornerstone for 368 
efforts to understand uncertainty in remote sensing observations, as well as assimilation of 369 
microwave radiances, in part via development of forward simulation models that relate remote 370 
sensing measurements to the hydrological quantities of interest and relevant nuisance factors. 371 
Continued progress in bringing multidisciplinary, multisensor remote sensing measurements will 372 
be achieved as further progress is made in understanding and documenting data product 373 
uncertainty. 374 

We believe that the class of data assimilation methods that apply water balance closure as 375 
a constraint will be highly relevant to future work to bring together the various remotely sensed 376 
quantities (Pan & Wood, 2006; Pascolini-Campbell et al., 2021; Rodell et al., 2015) . Such 377 
methods compute estimates of each term in the water balance that are constrained to close the 378 
water balance, while remaining as close as possible to the measured quantities. The specified 379 
uncertainty in the retrieved quantities is critical to these estimates, as it is to all data assimilation.  380 

Machine learning and the capacity to analyze big data are also leading to rapid innovation 381 
in remote sensing, as the community seeks to leverage major advances in related fields. Indeed, 382 



some recent work suggests that the ever-changing balance between physically based models and 383 
statistical approaches in hydrology may be tipping in the favor of statistics (Nearing et al., 2021). 384 
We must leverage these important advances, while remaining vigilant of the “black box” nature 385 
of some algorithms, so that we get the right answers for the right reasons (Kirchner, 2006). As 386 
the power of machine learning algorithms is limited by the availability of appropriate training 387 
data as well as explicitly addressing the physical processes, a critical problem is how to develop 388 
training data for approaches based on multidisciplinary, multisensor remote sensing (Elmes et 389 
al., 2020), particularly those that accurately characterize extreme events. Indeed, observational 390 
errors in training data can introduce significant bias in the resulting ML model prediction. 391 

If data assimilation and machine learning represent algorithms to bring measurements 392 
together, cloud computing provides the means to do so in practice. The need to observe multiple 393 
hydrologic quantities with multiple types of observations simultaneously, along with the 394 
continued massive increase in data volumes, are already necessitating that much of remote 395 
sensing of hydrology move to cloud computing. The basic paradigm of data-intensive computing 396 
brings the computing to the data rather than downloading data to personal or institutional 397 
computers. Therefore, fully exploiting cloud computing requires that the data providers (NASA, 398 
NOAA, international partners, commercial satellite companies) and the vendors of cloud services 399 
(Amazon, Google, Microsoft) agree to host voluminous datasets on the clouds. Discussions are 400 
under way to do this, but as of this writing some widely used datasets are available only via 401 
download from agency repositories. The strategy is truly transformative as dataset sizes grow, 402 
but not all widely used data are available on one of the major cloud providers. Meanwhile, data 403 
volumes are continuing to expand: NISAR alone will produce up to 140 petabytes of data over 404 
its mission lifetime, comparable to the current entire data volume of NASA’s Earth Observing 405 
System Data and Information System (Blumenfeld, 2017). Renewed focus on cloud computing 406 
approaches and interoperability is needed to allow researchers to perform multisensor analyses 407 
using such new high data rate instruments or long time series of other image datasets. 408 

Much research along with several resource management applications are moving to the 409 
cloud already. For example, the freely available cloud geospatial analytics tools of Google Earth 410 
Engine (Gorelick et al., 2017), combined with cloud access to the Landsat archive and other 411 
satellite datasets of use in hydrologic studies, has lowered the barrier of entry towards analyzing 412 
trends in surface water, combining multiple hydrologic datasets for preliminary analyses. For 413 
example, Pekel et al. (2016) and Donchyts et al. (2016) mapped global surface extent and trends, 414 
and Venancio et al. (2020) mapped evapotranspiration at field spatial scales. Bair et al. (2018) 415 
used Microsoft Azure for a machine learning application combining passive microwave data 416 
from AMSR-2 with optical imagery from MODIS to map snow water equivalent in high 417 
mountains. Zinno et al. (2020) used Amazon Web Services to process interferometric SAR 418 
imagery to create a deformation map of Italy. The power of cloud computing combined with data 419 
assimilation enable prediction of hydrologic processes between opportunities for acquisition of 420 
imagery. Therefore, demonstrating the incremental value of that new information is crucial 421 
(Bernknopf et al., 2018), as is getting feedback on data products and distribution methods 422 
(Hossain et al., 2020). We must ensure that hydrologic observations enable those who make the 423 
policies and decisions that will conserve and manage our most precious resource (Knipper et al., 424 
2019). 425 



4 Summary and Recommendations 426 

Hydrologic remote sensing will achieve its true potential once measurements across 427 
relevant variables are integrated together along with hydrologic models to transform how we 428 
observe and understand the global water cycle. Success can be claimed when introductory 429 
hydrologic textbooks are rewritten. To achieve these lofty goals, the remote sensing community 430 
must escape from siloed ways of operating and improve how we work across disciplines, with 431 
multiple types and sources of observations including commercial and international imagery. We 432 
must advance understanding and treatment of observation and model uncertainty within data 433 
assimilation schemes, harness emerging machine learning capabilities, and move computing 434 
tasks to the cloud. 435 

Accomplishing new hydrologic science will require the remote sensing community to 436 
move beyond simply learning how to estimate each state and flux of the water cycle. If our end-437 
goal is developing useful data products, progress will be slow. Focus must shift to long-standing 438 
science questions that are now within reach, thanks to remote sensing. This change is under way: 439 
for example, Lettenmaier et al. (2015) noted that at the 25th anniversary of Water Resources 440 
Research in 1990, 33 years after the launch of Sputnik, only seven of the journal’s published 441 
papers used remotely sensed data. At the 50th anniversary, that picture had changed, with remote 442 
sensing now widely used in hydrology. The reason given for this lag was simple: it was the time 443 
required for hydrologists to learn to work with new remote sensing measurement data types. We 444 
suggest that avoiding disciplinary silos, working with multiple types of measurements, and 445 
bringing these pieces together using data assimilation, machine learning, and cloud computing 446 
are among new important skillsets that need to be learned by the community. 447 

In the context of the path forward we have described, what can be done to best prepare 448 
the hydrologic community now for the measurements to come from new satellites in the coming 449 
years? We offer the following three specific recommendations as examples of activities that will 450 
move the community towards the broader goals we have outlined in the previous section. 451 

First, the trend by space agencies towards bundling multiple satellite missions within 452 
coherent observation strategies shows promise for escaping from siloed thinking. The 453 
establishment of the Sentinel program by ESA is a step towards bridging across typical 454 
disciplinary divides. Sentinel missions combine multiple sensors and are widely used by multiple 455 
scientific communities across the Earth Sciences. By bundling multiple sensors and scientific 456 
objectives into a single program, some of the inertia to interdisciplinary collaboration across 457 
hydrology remote sensing subfields is reduced. Similarly, NASA’s recently announced “Earth 458 
System Observatory” (ESO) takes the Designated Observable missions from the Earth Science 459 
and Applications Decadal Survey and packages them together. Considering these missions as 460 
part of a single program elevates the big-picture vision of measuring the earth, including the 461 
water cycle, laid out in the Decadal Survey (National Academies of Science Engineering and 462 
Medicine), encouraging the community to engage across disciplines. Instead of pushing for a 463 
single water cycle observing mission, the ESO maximizes science returns by prioritizing overlap 464 
of the mission lifetimes (St. Germain, 2021). Combined with other forthcoming missions such as 465 
SWOT, the ESO enables analysis of interdisciplinary science questions. To mention just one 466 
example, atmospheric measurements of aerosols combined with measurements of snow albedo 467 
(which respond to deposition of aerosols on the snow surface (Skiles et al., 2018) ) could enable 468 
the community to further probe dynamics of snowmelt responses to aeolian forcing. We 469 



recommend that as ESO missions mature, funding be made available for the community to 470 
explore interdisciplinary science questions. 471 

Second, as remote sensing of hydrology continues to mature, more subfields will be able 472 
to take advantage of the “constellation approach” to measurement currently employed by GPM 473 
as discussed in section 2. The constellation approach can be achieved in multiple ways: the 474 
“core” satellite(s) could be complemented either with SmallSats or other datastreams from 475 
existing available remote sensing datasets. Fusing data from core sensors with SmallSat 476 
retrievals and/or ground observations is not trivial and requires supported investigations, but has 477 
the potential to substantially improve the scale and accuracy of measurement. For example, 478 
SmallSats can be used to improve temporal resolution, even if precision is less than what would 479 
be expected for a core satellite (Houborg & McCabe, 2018). The constellation approach may 480 
enable a quantity of interest to be better measured, and it may also help a particular mission 481 
provide information on parts of the water cycle outside the originally envisioned scope. 482 

Third, the community would be well-served to move towards wide adoption of a 483 
common, flexible, science-oriented analytical software environment for data analysis and data 484 
assimilation problems. While community software for data assimilation problems has been 485 
developed such as the Land Information System (Kumar et al., 2006), most assimilation 486 
problems are still solved using ad hoc code created by individual research groups. There are 487 
tangible benefits to moving towards a more common computational framework as discovered by 488 
the OpenFOAM community (Chen et al., 2014).  The OpenFOAM environment has let scientific 489 
curiosity drive innovation and creativity, resulting in significant advances in modeling 490 
capabilities (Chen et al., 2014). Widespread community adoption of a data assimilation software 491 
environment broadly modeled on the strengths of OpenFOAM could be transformative. The 492 
envisioned software environment needs to include capabilities for a wide range of data 493 
assimilation problems and must be flexible enough to enable new research problems with 494 
minimal architecture changes. Regular training and abundant resources must be available to 495 
lower the bar for new users to spin up. We encourage further adoption of the “Hackweek” 496 
approach to lower the bar to users working with multiple datasets and bringing them together 497 
with data assimilation tools (Huppenkothen et al., 2018). As noted earlier, many innovations 498 
following new satellites are unexpected, resulting from ingenious applications of new 499 
datastreams. Adoption of a common assimilation framework can position the community to take 500 
advantage of new datasets when they arrive. 501 

We believe that scientific breakthroughs in hydrology will be driven by both improved 502 
capabilities to measure the various states and fluxes, and from integrating knowledge among the 503 
various remote sensing of hydrology subfields along with models, to better understand the 504 
dynamics of the global water cycle. This commentary has described a path towards new 505 
hydrologic science from remote sensing using multiple sensors and interdisciplinary work. We 506 
have recommended possible steps along this path: programmatic changes to combine missions 507 
into coherent programs at the level of space agencies, moving towards the “constellation” 508 
approach to measurement, adoption of a common community data assimilation framework, and 509 
creation of a new organization focused on remote sensing of hydrology. We hope that these and 510 
other steps will speed the breaking down of silos, enabling new hydrologic discovery. 511 
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