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There is currently renewed interest in robotic and crewed landers for a return to the lunar 
surface. Advanced guidance and navigation algorithms are essential to accurately delivering 
cargo and crew safely to the moon successfully. This paper reports the overall performance of 
an integrated set of navigation and guidance algorithms flown on a terrestrial suborbital 
rocket up to an altitude of approximately 100km. The navigation algorithm consists of an 
onboard extended Kalman Filter (EKF) that ingests multiple sensor measurements, one of 
which is the output from a terrain relative navigation (TRN) algorithm that cross-references 
camera images to on-board satellite imagery to perform feature correlation within the camera 
image. The guidance algorithm solves for a 6-degree-of-freedom (DoF) optimal trajectory 
using a successive convexification method during powered descent. The altitude range as well 
as the landing dynamics experienced during this test flight are realistic for an extraterrestrial 
landing and provide an invaluable data set to gauge the current development of these landing 
algorithms in an effort to advance the overall software readiness levels (SRL). This paper will 
delve into different aspects of each algorithm and present an analysis of the in-flight 
performance of the algorithms. This flight was conducted under the National Aeronautics and 
Space Administration (NASA) Safe and Precise Landing Integrated Capabilities Evolution 
(SPLICE) project focused on technology advancement for landing applications.  

 
Nomenclature 

• Bold face variables represent vector and matrix quantities 
• 𝑥 (without any kind of accent) represents the truth value of a particular state or the known value of a state, 
such as the time difference between two inertial measurement unit (IMU) measurements 
• 𝑥" represents an EKF estimated state or quantity derived from an estimated state 
• 𝑥!/#$  defines a variable x that is defined as reference frame A origin with respect to (w.r.t.) reference frame B 
origin provided in reference frame C 
• Subscript “k” denote the current time step while “k-n” denotes the nth time step prior to the current time step 
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• Prior notation (state prior to an update) is represented by a negative sign, 𝑥%!, while posterior notation (state 
after an update) is represented by a positive sign, 𝑥%" 
• 𝒒$ the tilde denotes a dual quaternion 
• 𝒙&	 the bar denotes that it is a reference variable based on a previous iteration (can apply to state, control, and 
time variables) 

I. Introduction 

 The Safe and Precise Landing Integrated Capabilities Evolution (SPLICE) project is a continuation of various 
programs that have studied and worked to advance various lander technologies over the years [1]. The roots of the 
SPLICE project can be traced back to the Autonomous Landing Hazard Avoidance Technology (ALHAT) project 
which was eventually incorporated into and flown as part of the Morpheus project [2] [3]. After multiple successive 
Morpheus campaigns, additional lander technologies advancement efforts were targeted as part of the COBALT 
project. Additional technology advancement was identified after the Cooperative Blending of Autonomous Landing 
Technologies (COBALT) project which led to the initiation of the SPLICE project [4]. The SPLICE project has 
successfully demonstrated its baseline terrain relative navigation (TRN) technology on the Masten Xodiac vehicle up 
to an altitude of 500 meters [5]. All of these efforts to date have involved aircraft and terrestrial lander applications 
with limited altitude ranges not exceeding 500m. While these applications have allowed for valuable closed-loop 
testing and algorithm validation near landing, none of these applications have been able to fully test the algorithms 
over the entire operational range of a representative lunar descent trajectory. In order to expand this operational test 
envelope, the SPLICE project was able to secure a multi-flight test campaign as a payload on the Blue Origin New 
Shepard suborbital launch vehicle. This launch vehicle provides the capability to test technologies of interest up to an 
altitude of 100km, which corresponds to the altitude of a baseline lunar orbit prior to initiation of the deorbit insertion 
and descent of several proposed lunar landers.    
 
Each of the aforementioned programs (ALHAT, Morpheus, COBALT) had a slightly different navigation algorithm 
implemented to support testing and performance analysis of the technologies being developed. The ALHAT 
navigation filter utilized hazard relative navigation, navigation Doppler LiDAR (NDL) measurements and a laser 
altimeter coupled with IMU measurements to provide relative state navigation [2]. The Morpheus project implemented 
an inertial navigation filter with integrated GPS capabilities that provided accurate state knowledge to ensure 
successful objective completion for the mission [3]. The COBALT navigation algorithm utilized TRN and NDL range 
and velocity measurements along with IMU measurements to provide a state estimate as part of its open-loop test 
campaigns on the Masten Xodiac vehicle [4]. The SPLICE TRN flight test on the Masten vehicle utilized an onboard 
Multi-State Constraint Kalman Filter utilizing IMU, barometer and TRN measurements to provide open-loop state 
estimates [5]. The navigation approach presented in this paper uses a similar navigation scheme as the COBALT 
project to emulate expected navigation algorithms that will be available for non-terrestrial landers. While this paper 
will delve into the navigation algorithm implemented for this test flight, expanding the operational test range for the 
targeted sensor technology and collecting the data was the primary objective of this test flight. This paper will provide 
insight into the performance of the navigation algorithm utilizing post flight recreation tooling to incorporate necessary 
corrections to onboard parameter settings that were unable to be incorporated for flight due to schedule restrictions. 
 
For powered descent guidance, the first look into the capability naturally began with the Apollo program. The interest 
in spaceflight fueled new research and development, which eventually resulted in the first rocket-powered landing by 
Surveyor I on a celestial body [6]. This incredible feat has inspired future generations to continue pushing the 
boundaries of powered descent guidance. Although optimal guidance had already been studied during the Apollo 
program, Apollo guidance was not optimal [7]. It was also a 3-degree-of-freedom (DoF) translational guidance 
algorithm for which attitude commands were computed separately. The desire for optimal powered descent guidance 
became apparent for robotic Martian landers. Improvements to guidance optimality would mean efficient propellant 
usage and would directly correlate to allowing for a larger science payload. D’Souza was able to show an analytical 
guidance law that minimizes acceleration as a function of time-to-go [8]. 
 
The 6-DoF guidance problem has continued to evolve in complexity. In order to have the capability of reaching 
scientifically interesting locations, guidance algorithms need to be capable of enforcing complex constraints in order 
to precisely land in potentially hazardous terrain. An alternative solution to the guidance problem emerged that 
formulated the problem to leverage convex programming [9] [10] [11]. These contributions have continued to receive 



3 
 

attention and have evolved from 3-DoF implementations using Cartesian coordinates to 6-DoF implementations 
expressing state information in a dual quaternion form. It has been shown that expressing state information in a dual 
quaternion form can transform coupled translational and attitude state constraints into a convex form. In addition a 
Dual Quaternion Guidance (DQG) algorithm has been shown to also be capable of handling non-convex constraints 
through successive convexification techniques [12]. This capability of determining optimal guidance solutions that 
also maintain mission, vehicle, and trajectory constraints can become fruitful for future robotic and human landers.   

II. Navigation Algorithm 

The navigation algorithm is based on a discretized extended Kalman filter (EKF) formulation with the UDU 
decomposition of the error state used for filter stability and computational benefits. The filter design is based on an 
inertial state filter approach. Using this approach, the translational states are represented in an Earch Centered Inertial 
(ECI) reference frame with the rotational states defined relative to the inertial reference frame. The filter 
implementation consists of 10 dynamic states (describing states governed by equations of motion) and 31 parameter 
states (unknown sensor specific states whose evolution is controlled through a set of parameters). These states are 
stacked into a single state vector to give a 41 state filter, as shown in Eq. (II-1) – Eq. (II-3) where 𝒓𝒊 is the ECI position, 
𝒗𝒊 is the ECI velocity, and 𝒒𝒊𝒊𝒎𝒖 is the ECI to IMU case attitude quaternion. For the bias parameter states in Eq. (II-2), 
the 𝒃𝑽𝚫 is the IMU delta velocity bias, 𝒃𝚫𝜽 is the IMU delta angle bias, 𝒃𝝆𝒏𝒅𝒍 and 𝒃𝒗𝒏𝒅𝒍 are the NDL range and velocity 
biases (three for each beam), 𝝓𝒄𝒂𝒎

𝒊𝒎𝒖
 is the TRN camera case reference frame to IMU case reference frame misalignment, 

𝑏.+, 𝑏.,, 𝑏/+, and 𝑏/, are the camera biases for the X / Y focal length and X / Y principal point respectively, and 𝒓𝒇𝒌
𝒆𝒄𝒆𝒇 

is the three-dimensional world coordinates of the kth TRN feature.. 

𝒙𝒅 = .𝒓𝒊			𝒗𝒊			𝒒𝒊𝒊𝒎𝒖/ (II-1) 

𝒙𝒑 =	 0	𝒃𝑽𝚫			𝒃𝚫𝜽			𝒃𝝆𝒏𝒅𝒍 			𝒃𝒗𝒏𝒅𝒍 		𝝓𝒄𝒂𝒎
𝒊𝒎𝒖

		𝑏.+ 		𝑏., 		𝑏/+ 		𝑏/, 		𝒓𝒇𝟏
𝒆𝒄𝒆𝒇		𝒓𝒇𝟐

𝒆𝒄𝒆𝒇		𝒓𝒇𝟑
𝒆𝒄𝒆𝒇		𝒓𝒇𝟒

𝒆𝒄𝒆𝒇1 (II-2) 

𝒙 = .𝒙𝒅			𝒙𝒑/ (II-3) 

The error states represent the onboard uncertainty of the navigation state. There is an almost one-to-one mapping 
between filter states and filter error states except for the attitude state. While represented as a four-component 
quaternion in the filter state, the attitude error is represented by a three-component modified Rodrigues parameter in 
the filter error state. As a result, the current implementation consists of 40 filter error states, as shown in Eq. (II-4) – 
Eq. (II-6). 

𝜹𝒙𝒅 = .𝜹𝒓𝒊			𝜹𝒗𝒊			𝜹𝜽𝒊𝒊𝒎𝒖/ (II-4) 

𝜹𝒙𝒑 =	 0	𝜹𝒃𝚫𝑽			𝜹𝒃𝚫𝜽			𝜹𝒃𝝆𝒏𝒅𝒍 			𝜹𝒃𝒗𝒏𝒅𝒍 		𝜹𝝓𝒄𝒂𝒎
𝒊𝒎𝒖

		𝛿𝑏.+ 		𝛿𝑏., 		𝛿𝑏/+ 		𝛿𝑏/, 		𝟎𝟏𝟐×𝟏1 (II-5) 

𝜹𝒙 = .𝜹𝒙𝒅			𝜹𝒙𝒑/ (II-6) 

The navigation filter is broken into two flight software (FSW) applications scheduled at different rates: a high-rate 
propagation application and a low-rate state and error state update application. The propagation application uses IMU 
measurements coupled with onboard dynamics to propagate the vehicle state. The state update application updates the 
state correction vector and error states using measurements from sensors, correcting these states based on the residual 
between the sensor measurement and an onboard prediction of the measurement.  

A. Propagation Application 
 The propagation application is scheduled at 50Hz and its primary purpose is to propagate the vehicle state by an 
elapsed time based on the time difference between two successive IMU measurements as received from the IMU 
interface application. In addition, the propagation application also performs the following:  
 

• Vehicle state initialization based on table parameters loaded prior to flight (I-load parameters) 
• Estimated state correction based on error state correction vector from the update application 
• IMU error state compensation 
• IMU measurement buffering required by the update application 



4 
 

• Navigation state outputs customized for downstream application use 
 

The state estimate is propagated using an onboard linear dynamics approximation while using model replacement 
techniques to substitute IMU measurements for onboard models of non-gravitational accelerations and rotational rates 
of the vehicle. While IMU measurements are used to replace the non-gravitational and rotational disturbances in the 
onboard dynamics model, the gravitational forces must still be approximated using an onboard model. The initial state 
of the suborbital launch vehicle is well known and is stored as an I-load parameter. The I-load parameters are relative 
to the WGS-84 ellipsoid for the position data and relative to the Earth Centered Earth Fixed (ECEF) rotating reference 
frame for the attitude data. The state is constantly reinitialized at a 0.2Hz rate within the propagation application based 
on the I-load parameters opposed to performing a ground state update through the EKF. 
The estimated state correction is calculated at a 5Hz rate by the update application but applied within one of the 50Hz 
propagation calls. Eq. (II-7) is a simplification of the state update logic as some attitude state updates are multiplicative 
and not additive.  This approach is necessary given that the propagation and update logic are executed at different 
rates. The incoming state correction vector is valid at time tk-1, while the current state vector is valid at time tk. As a 
result, the state transition matrix is used to propagate the state correction vector to the current time, at which point it 
is used to update the current estimated state in the propagation application. As for the error state, it cannot be reset to 
zero as traditionally done but instead must be updated as shown in Eq (II-8) [13].  
 

𝒙6𝒌: = 𝒙6𝒌; + 𝒙68𝜹𝒙(𝒌;𝟏):9 (II-7) 
𝜹𝒙𝒌; ← 	𝜹𝒙𝒌; − 	𝜹𝒙(𝒌;𝟏): (II-8) 

B. Update Application 
 The update application executes at 5Hz with the primary role of providing a state correction vector based on the 
processing of sensor measurements. The state correction vector is computed using a typical EKF approach that is 
reliant on an error state covariance. The update application is responsible for the following activities.  
 

• Initialization of error state covariance 
• Fault detection and residual editing checks for accepting/rejecting NDL and TRN sensor measurements 
• Error state covariance propagation 
• State correction vector reset 
• State propagation to time of measurement 
• State correction calculation, error state covariance update based on NDL and TRN sensor measurements 
• Measurement underweighting utilizing Lear’s method [14] 
• Output construction for use by propagation application 

 
The error state implementation used throughout the update application is consistent with the UDU implementation for 
the error state covariance [15]. Using this approach, the traditional covariance can be represented as an upper diagonal 
matrix combined with a diagonal matrix using the Cholesky decomposition. As a result, the covariance Pk is 
represented in terms of Uk and Dk as shown in Eq. (II-9). 

𝑷𝒌 = 𝑼𝒌𝑫𝒌𝑼𝒌𝑻 (II-9) 

The UDU implementation of the covariance is advantageous in that it is a more stable form of the covariance compared 
to other alternatives and when implemented correctly, is more computationally efficient as the user can take advantage 
of the diagonal property and upper triangular formulation of the matrices [15]. The error state covariance propagation 
is handled in the update application opposed to the propagation application to optimize execution speed since the 
covariance is only used within the update application. The error state covariance propagation can be broken into the 
following four different processes: 1) IMU buffer processing, 2) state matrix definition, 3) error state covariance 
propagation and 4) state correction vector propagate and reset. 

Covariance propagation is handled via a combined modified Gram Schmidt algorithm and an Agee-Turner Rank One 
update algorithm derived from various factorization methods [16] [17]. The state transition matrix is used to propagate 
the error state vector with the reset handled by Eqn (II-8).  Covariance propagation and state resetting are precursors 
to the primary functionality of the update application: state correction based on processed measurements. Both the 
error state covariance as well as the error state are updated with each measurement processed. Once the measurement 
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equation and subsequent sensitivity matrix have been derived, the resultant equations are plugged into the 
measurement update logic, which can be broken into the following steps: 1) compute the measurement sensitivity 
matrix using the current estimated state, 2) perform measurement underweighting if necessary, 3) compute the Kalman 
gain based on the measurement sensitivity, error state covariance and measurement noise matrices, 4) compute the 
predicted measurement based on the current estimated state, 5) compute the measurement residual, 6) perform residual 
editing, and 7) compute the updated error state covariance and state correction vector using the Kalman gain. 
 
For the results presented in this paper, the filter is configured to process measurements from the NDL and an onboard 
TRN algorithm. The NDL sensor provides range and velocities along three beams similar to the package flown on the 
COBALT test flights [4]. The TRN algorithm processes real-time imagery from an onboard camera and provides pixel 
location in the image corresponding to features that were matched with features in an onboard database [5]. These 
measurements are then fused together to provide an update to the state [18]. For each measurement, the state estimate, 
error state and covariance are propagated to the time of the measurements prior to the above steps being completed. 
Once the steps are completed, these quantities are then propagated back to the time corresponding to the latest IMU 
time in the buffer received by the update application. 

III.  Dual Quaternion Guidance Algorithm 

The guidance algorithm used for this application is based on previous work completed on a DQG algorithm at the 
University of Washington [19] [20]. In order to support the overall goal of Precision Landing and Hazard Avoidance 
(PL&HA), the implemented guidance algorithm must be able to reliably produce a trajectory solution that does not 
violate imposed constraints. These constraints may vary from safe landing trajectory considerations, to sensor 
considerations and constraints imposed by the available hardware. The DQG algorithm aims to formulate the vehicle 
dynamics along with these constraints into a convex form, which allows a Second Order Cone Program (SOCP) to 
optimize on the problem.  

It is common for some vehicle constraints to be coupled in both attitude and translation, which results in constraint 
equations that are non-convex. To derive a convex form of these constraints, the attitude and translational position of 
the vehicle can be expressed in a dual quaternion form. The velocity and attitude rate of the vehicle can also be 
expressed this way. This allows for both translational and rotational state information to be expressed by a single term, 
which transforms some of these non-convex constraint equations into convex equations.  

Eq. (III-1) describes the typical formulation of a dual quaternion, where 𝒒𝟏 and 𝒒𝟐 are ordinary quaternions and 𝜀 is 
the dual unit, which satisfies	𝜀? = 0. This creates the eight-dimensional term 𝒒$. The dual quaternion can be used to 
express both translational and rotational information. This is derived by defining a position quaternion  𝒓𝑰 =
[𝑥	𝑦	𝑧	0]A, which is a pure quaternion representing the position vector of the origin of the SPLICE guidance body 
frame with respect to the landing site origin in the East, North, Up (ENU) frame. The final result of the position 
quaternion is shown in Eq. (III-2), where 𝒒 is the ordinary attitude unit quaternion and ⨂ denotes the quaternion 
product. The velocity components can also be represented by a dual quaternion by allowing the angular velocity and 
velocity components to be represented by pure quaternions. The dual velocity quaternion is shown in Eq. (III-3), where 
𝝎𝑩 is the pure quaternion defining the angular velocity vector in the body frame, and 𝒗𝑩 is the pure quaternion defining 
the velocity in the body frame. 

𝒒$ = 𝒒𝟏 + 𝜺𝒒𝟐 (III-1) 

𝒒$ = 𝒒 +
𝜺
𝟐𝒓𝑰	⨂	𝒒 (III-2) 

𝝎$ = 𝝎𝑩 + 𝜺𝒗𝑩 (III-3) 

The kinematics are computed by taking the derivative of Eq. (III-2), for which the result is shown in Eq. (III-4). The 
rigid body dynamics are formulated in Cartesian form for a 6-DoF rocket problem utilizing a single gimbaled main 
engine in Cartesian form. The equations are shown below as Eq. (III-5) – Eq. (III-9), where 𝑚 is the vehicle mass, 𝒖𝑩 
is the engine thrust vector in the body frame, 𝝉𝑩 is the external torque commands in the body frame, 𝑱𝒗𝒆𝒉 is the moment 
of inertia matrix, and 𝑭, 𝑻 are the total force and torque imparted on the vehicle respectively. 
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𝒒$̇ =
𝟏
𝟐𝒒$	⨂	𝝎$  (III-4) 

𝒅𝑚
𝒅𝒕 = −𝛼‖𝒖𝑩‖𝟐 (III-5) 

𝒅
𝒅𝒕
(𝑚𝒗𝑩) = 𝑚�̇�𝑩 +𝝎𝑩

×(𝑚𝒗𝑩) = 𝑭 (III-6) 

𝒅
𝒅𝒕
(𝑱𝝎𝑩) = 𝑱𝒗𝒆𝒉�̇�𝑩 +𝝎𝑩

×(𝑱𝒗𝒆𝒉𝝎𝑩) = 𝑻 (III-7) 

𝑻 = 𝒓𝒖×𝒖𝑩 + 𝝉𝑩  (III-8) 

𝑭 = 𝒖𝑩 +𝑚𝒈𝑩 (III-9) 

Eq. (III-5) – Eq. (III-9) can then be formulated using dual quaternions instead of Cartesian vectors. This formulation 
is shown in Eq. (III-10) where 𝑱 is shown in Eq. (III-11), 𝑭X is shown in Eq. (III-12), ⦸ is the dual quaternion cross 
product, and 𝒈$𝑩 is shown in Eq. (III-13). Eq. (III-14) describes 𝒈𝑩 as the acceleration quaternion due to gravity in 
the body frame, which is derived from the pure quaternion  𝒈𝑰 that represents the inertial gravitational acceleration 
vector [20]. 

𝑱𝝎$̇ + 𝝎$ ⦸ 𝑱𝝎$ = 𝑭X + 𝒈$𝑩 (III-10) 

𝑱 = 	 Z

0 𝟎𝟏×𝟑 𝑚𝑰𝟑×𝟑 𝟎𝟑×𝟏
𝟎𝟑×𝟏 𝟎𝟑×𝟑 𝟎𝟏×E 1
𝑱𝒗𝒆𝒉 𝟎𝟑×𝟏 𝟎𝟑×𝟑 𝟎𝟑×𝟏
𝟎𝟏×𝟑 1 𝟎𝟏×𝟑 0

]

𝟖×𝟖

 (III-11) 

𝑭X = Z

𝑭
0
𝑻
0

]

𝟖×𝟏

 (III-12) 

𝒈$𝑩 = ^
𝑚𝒈𝑩
𝟎G×𝟏_𝟖×𝟏

 (III-13) 

𝒈𝑩 = 𝒒∗⨂	𝒈𝑰⨂	𝒒 (III-14) 

A.  Dual Quaternion Guidance Architecture 
The DQG application executes at 0.2 Hz and receives the vehicle state data from the navigation propagation 

application. Given this state update, the DQG application iteratively constructs the guidance problem, including 
vehicle and trajectory constraints, into a convex form to be solved by a Custom SOCP (CSOCP). CSOCP is a convex 
optimization solver algorithm that was generated offline by the Behçet SOCP (BSOCP) which was provided by the 
University of Washington [21]. A high-level operational flow of the application is highlighted in Figure 1. 

B. Enforced Constraints 
 Multiple vehicle and trajectory constraints are implemented within the DQG application. These constraints were 
programmed with the provided Custom Parser (CPRS) from the University of Washington [19], which allows for 
intuitive programming of these constraints without the need to parse and program them by hand. These constraints 
were all enforced by the algorithm in flight and during playback analysis. 
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Figure 1: Dual Quaternion Guidance Application Architecture 

 
1. Maximum Engine Thrust Magnitude 
This constraint defines the maximum thrust magnitude that the vehicle’s main engine can provide and is constructed 
into a convex form shown in Eq. (III-15) [19]. 
 

‖𝒖𝒌‖? ≤ 𝑢I!J (III-15) 

 
2. Minimum Engine Thrust Magnitude 
This constraint defines the minimum thrust magnitude that the vehicle’s main engine can provide once it has been 
ignited. This constraint is naturally non-convex, but a first order Taylor series approximation is applied to convexify 
the constraint. This convex constraint is shown in Eq. (III-16) [19]. 
 

𝑢IKL −
𝒖&𝑻𝒌
‖𝒖&𝒌‖?

𝒖𝒌 ≤ 0 (III-16) 

 
3. Maximum Torque Capability 
This constraint defines the maximum external torque capability that the vehicle’s attitude control system can provide. 
The convex constraints can be shown in Eq. (III-17). This constraint is applied on a per-axis basis with each body 
frame axis constrained by the same torque magnitude limitation. 
 

−𝜏I!J ≤ 𝜏J2 ≤ 𝜏I!J 

−𝜏I!J ≤ 𝜏M2 ≤ 𝜏I!J 

−𝜏I!J ≤ 𝜏N2 ≤ 𝜏I!J 

(III-17) 
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4. Maximum Engine Thrust Rate 
This constraint defines the maximum thrust magnitude rate that the engine can provide. This convex constraint is 
shown in Eq. (III-18) and Eq. (III-19), where 𝑢N2 represents the thrust in the z-axis direction for the kth node where a 
node is a discretized point along the DQG solution, 𝑁 represents the total number of nodes, 𝜎 is the burn time, and 
�̇�I!J represents the maximum engine thrust rate. 
 

(𝑢N2 − 𝑢N2!3)(𝑁 − 1) ≤ �̇�I!J𝜎 (III-18) 

(𝑢N2 − 𝑢N2!3)(𝑁 − 1) ≥ −�̇�I!J𝜎 (III-19) 

 
5. Maximum Engine Gimbal Angle Deflection 
This constraint defines the maximum deflection angle that the main engine gimbal thrust vector control (TVC) system 
can accomplish. This convex constraint is shown in Eq. (III-20), where 𝒛𝑩 represents the unit vector pointing in the 
vehicle body z-axis for which the TVC is deflecting, 𝒖𝒙𝒚𝒌 represents the two dimensional thrust vector in the body 
frame x and y axis of the kth node, and 𝛿I!J is the maximum gimbal angle deflection. 
 

g𝒖𝒙𝒚𝒌g? ≤ tan(𝛿I!J) 𝒛𝑩 ∙ 𝒖𝒌 (III-20) 

 
6. Maximum Engine Gimbal Angular Rate Deflection 
This constraint defines the maximum deflection rate that the main engine gimbal TVC system is capable of. When the 
time of flight variable is a solution variable, the constraint is non-convex. Thus, a first order Taylor series 
approximation about the reference solution is used to convexify the constraint. This convexified constraint is shown 
in Eq. (III-21) where �̇�I!J is the maximum gimbal angular rate magnitude. 
 

g(𝒖𝒙𝒚𝒌 − 𝒖𝒙𝒚𝒌!𝟏)g?(𝑁 − 1) ≤ �̇�I!J.𝜎l𝑢N2 + 𝑢lN2(𝜎 − 𝜎l)/ (III-21) 

 
7. Maximum Vehicle Angular Rate 
This constraint defines the maximum angular rate that the vehicle can experience during flight. This convex constraint 
is constructed in Eq. (III-22) [12], where 𝜔I!J represents the maximum angular rate magnitude. This constraint is 
applied on a per-axis basis with each body frame axis constrained by the same angular rate limitation. 
 

−𝜔I!J ≤ 𝜔J2 ≤ 𝜔I!J 

−𝜔I!J ≤ 𝜔M2 ≤ 𝜔I!J 

−𝜔I!J ≤ 𝜔N2 ≤ 𝜔I!J 

(III-22) 

 
8. Maximum Vehicle Tilt Angle 
This constraint defines the maximum vertical tilt angle that the vehicle can experience during flight. This convex 
constraint is constructed in Eq. (III-23) and Eq. (III-24) where 𝜃I!J is the maximum tilt angle and 𝐳𝐈 is the unit vector 
representing the vertical axis of the target landing site adhering the quaternion products outlined by Reynolds [12]. 
 

𝒒$𝑻𝑀A𝒒$ + cos(𝜃I!J) − 1 ≤ 0 (III-23) 

𝑀A = 0
[𝒛𝑰]⨂[𝒛𝑩]⨂∗ 0G×G

0G×G 0G×G
1 (III-24) 

  

9. Maximum Glide Slope 
This constraint defines the maximum angle of the vehicle approach cone to the landing site. This angle is measured 
between the vertical axis of the landing site and the vehicle’s position vector. This constraint is non-convex, so a first 
order Taylor series approximation is used to convexify the constraint. The constructed convex equation is shown in 
Eq. (III-25) through Eq. (III-28) [19], when 𝒒𝒌 is the dual quaternion for position and attitude, 𝛾I!J is maximum glide 
slope and 𝒛𝑰 is the Up-axis of the ENU reference frame. 
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−𝒒$%
𝑻𝑀S𝒒$% + ‖2𝐸T𝒒$%‖ cos(𝛾UVW) +

𝜕𝑓S
𝜕𝒒$ y𝒒YZ

8𝒒$% − 𝒒$&%9 ≤ 0 (III-25) 

𝜕𝑓S
𝜕𝒒$ y𝒒YZ

= −2𝑀S𝒒$&% + 2
𝐸T𝒒$&%
g𝐸T𝒒$&%g

cos(𝛾I!J) 
(III-26) 

 

𝑀S = z
0G×G [𝒛𝑰]⨂A

[𝒛𝑰]⨂ 0G×G
{ (III-27) 

𝐸T = 00G×G 0G×G
0G×G 𝐼G×G

1 (III-28) 

 

10. Initial Condition Constraints 
This set of constraints define the initial vehicle state conditions at the start of each DQG FSW application cycle. The 
initial vehicle mass is set to the initial mass of the vehicle in Eq. (III-29). The initial attitude of the vehicle is fixed to 
the initial attitude provided by navigation, shown in Eq. (III-30). The initial position quaternion is free within a 
bounded magnitude in the East and North plane, shown in Eq. (III-31) and (III-32). The miss distance is represented 
by 𝜹𝒓, which is the position relative to the initial vehicle position expressed as a pure quaternion. This is done to allow 
for the creation of a final miss distance tolerance. Incorporating a free final position bounded in the East and North 
plane as a terminal condition is not convex. However, a free initial position bound can be implemented with an offset 
applied to the position after a solution has been found. When applying this tolerance as an initial condition, it becomes 
convex since the initial attitude is fixed. The velocity and angular rate constraints are set to basic equality constraints, 
shown in Eq. (III-33) and (III-34). 
 

𝑚\ = 𝑚]^ (III-29) 

𝒒𝟎 = 𝒒𝑰𝑪 (III-30) 

𝒒𝒓𝟎 +	
1
2
[𝒒𝑰𝑪]⊗∗ 𝜹𝒓 =

1
2𝒓𝑰𝑰𝑪	⨂	𝒒𝑰𝑪 (III-31) 

‖𝜹𝑬𝑵‖𝟐 ≤ ∆𝒓, 𝜹𝑼 = 0 (III-32) 

𝒗𝑩𝟎 = 𝒗𝑰𝑪 (III-33) 

𝝎𝑩𝟎 =	𝝎𝑰𝑪 (III-34) 

11. Final Condition Constraints 
This set of constraints defines the desired vehicle target conditions. The final vehicle mass is constrained to be larger 
than the vehicle dry mass,	𝑚TeM, shown in Eq. (III-35). The final attitude of the vehicle is governed by a vehicle tilt 
angle constraint set by 𝜃f and shown in Eq. (III-36). The final position quaternion is set to an equality constraint in 
Eq. (III-37), where the right hand side represents a predetermined final position target as a function of the final vehicle 
attitude. The final velocity magnitude is constrained to be less than or equal to the set final velocity limit, shown in 
Eq. (III-38). Finally, Eq. (III-39) defines the final vehicle angular rate as an equality constraint.  
 

𝑚g ≥ 𝑚TeM (III-35) 

𝒒$𝑻g𝑴𝑻𝒒$g + cos(𝜃f) − 1 ≤ 0 (III-36) 

𝒒𝒓𝑵 =
1
2𝒓𝑰𝑭	⨂	𝒒𝑵 (III-37) 

‖𝒗𝑵‖? ≤ 𝒗𝑭 (III-38) 

𝝎i =	𝝎𝑭 (III-39) 
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IV. Suborbital Flight Hardware   

The SPLICE project provided hardware for this test flight included the following: a descent and landing computer 
(DLC) engineering development unit (EDU), an commercial-of-the-shelf (COTS) IMU, an NDL developed by NASA 
Langley and a low-cost COTS monochrome camera used for TRN. The navigation and guidance algorithms are 
executed on the DLC with the sensor measurements passed through a field programmable gate array (FPGA) interface 
to provide accurate time stamping of the measurements. The DLC EDU surrogate includes the Xilinx UltraScale+ 
Multi-Processor System on a Chip (MPSoC) [22] [23]. A rendered image of the DLC EDU is shown in Figure 2.  

 

Figure 2: SPLICE DLC Surrogate Flight Computer 

The sensor hardware was mounted separately from the DLC EDU surrogate for the test flight as part of the line of 
sight requirements of the TRN camera and NDL optical heads. To consolidate  the SPLICE related IMU and TRN 
camera in a single location, a mounting bracket (shown in Figure 3a) was designed and fabricated to ensure viewing 
constraints were met. The NDL electronics chassis was mounted in a separate location on the propulsion module while 
the optical heads were mounted directly below the SPLICE camera and IMU bracket shown in Figure 3b to satisfy 
line of sight constraints.  

 
a) SPLICE IMU, TRN Camera Mounting Bracket 

 
b) NDL Optical Head Mounting Bracket 

Figure 3: SPLICE Sensor Mounting Brackets 

V.  Flight Operations Overview 

The SPLICE hardware was externally mounted to the propulsion module of a Blue Origin New Shepard launch vehicle 
and launched from the Blue Origin Launch Site One near Van Horn, Texas [24]. Utilizing the New Shepard flight 
profile (shown in Figure 4 and Figure 5) allows for analysis of navigation performance over an ascent and of more 
interest, a descent trajectory while the dynamic landing of the booster on a landing pad using the rocket engine provides 
an ideal use case for the DQG algorithm emulating a powered descent trajectory.  Vertical motion dominates the 
trajectory therefore only the vertical channels are shown. As can be seen in Figure 4, the trajectory surpasses 100km 
in altitude while horizontally, the maximum motion is less than 5km total.  
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Figure 4: Vertical Flight Profile 

The roll attitude of the booster is shown in Figure 5. The roll attitude remains fairly constant during ascent before 
beginning to roll shortly after main engine cutoff (MECO). This roll persists until it is arrested prior to the powered 
descent portion of flight. Due to this, the TRN algorithm exercised the majority of its onboard database and the flight 
test assessed the robustness of the algorithm to various lighting conditions, terrain relief, feature motion across 
successive images, and other operational constraints.   
 

 
Figure 5: Roll Attitude Flight Profile 

Day of launch operations had initial checkouts of the SPLICE hardware components and guidance, navigation and 
TRN (GNT) algorithms occurring approximately five hours prior to launch. Upon initial bootup, all sensor hardware 
and GNT algorithms passed their automated checks. All SPLICE components were then powered down and remained 
unpowered until two hours prior to flight. Around two hours prior to launch, the SPLICE hardware was rebooted in 
preparation for the flight test. While all SPLICE software components continued to operate nominally, NDL anomalies 
were identified. The anomalies were investigated prior to flight with multiple attempts to clear the anomalies executed 
without success. Ultimately, it was decided to proceed with the launch without an operational NDL. While NDL 
remained powered throughout flight, the sensor did not output valid navigation measurements and was therefore 
rejected by the navigation algorithm via its built-in fault protection logic. As a result, the only active sensors onboard 
for the flight test were the IMU and TRN camera.  
 
The test flight lasted approximately 7 minutes from liftoff to touchdown. The navigation algorithm was operational 
prior to and throughout the entirety of the flight. The DQG algorithm was activated shortly before the start of the 
powered descent phase and solved for a solution once every 5 seconds. This flight was meant to serve as an operational 
test of the integrated GNT software in an open-loop configuration, therefore the vehicle did not respond to any of the 
generated guidance commands. Post-flight, all data and imagery was downloaded for post flight analysis.  
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VI. Results 
This section will cover the post flight analysis performed based on data collected during the flight. As previously 

stated in Section V, the NDL provided invalid navigation measurements during flight. For the post flight analysis 
performed, the team was able to simulate NDL measurements using a realistic simulation model of the NDL sensor 
during flight playback analysis. The results shown in this section include this simulated NDL sensor with a maximum 
operational slant range of 4.5km.  
 
Navigation errors computed in this section are a result of a comparison of the SPLICE navigation solution with the 
launch vehicle navigation state. The launch vehicle used a GPS-aided navigation filter to generate their vehicle state 
estimate. Since a best-estimate trajectory from the launch provider was unavailable when transcribing this paper, the 
launch vehicle navigation state was accepted to be truth for the purpose of this analysis. Post flight data smoothing 
was performed on the launch vehicle navigation state to remove additional noise in the solution for the trajectory truth 
generation from the host vehicle navigation state. It is important to recognize that the launch vehicle navigation 
solution used an IMU that was independent from the IMU used by the SPLICE navigation system therefore noise 
characteristics between the navigation states varied.  

A. Navigation Performance 
The SPLICE navigation algorithm performed as expected based on the flight playback analysis shown in this 

section. All figures within this section include colored regions that indicate various sensor measurements that were 
incorporated in the navigation solution for the provided windows with an ‘r’ prefix indicating flight recorded 
measurements and ‘s’ prefix indicating simulated measurements. 
 

• Yellow: rIMU + sNDL 
• Green: rIMU + sNDL + rTRN 
• Blue: rIMU + rTRN 

 
Figure 6 provides the inertial position error along with the onboard 3s standard deviation computed by the SPLICE 
navigation algorithm. Figure 7 provides the inertial velocity error along with the onboard 3s standard deviation 
computed by the SPLICE navigation algorithm. Even though TRN measurements are received throughout flight, the 
growth seen up through descent is expected as the accuracy of TRN measurements decrease as altitude increases due 
to the resolution of the onboard maps and imagery at higher altitude. Once apogee is achieved (and the FSW mode 
switches to DESCENT around L+240 seconds), the velocity standard deviation begins to slowly decrease. The 
position and velocity errors begin to more sharply decrease once the vehicle begins to encounter the atmosphere where 
aerobraking is performed during descent around L+300 seconds.  As descent continues, errors continue to decrease 
until the simulated NDL is activated providing more insight into the position and velocity states.  

 

 
Figure 6: Inertial Position Navigation Error 

 
Figure 7: Inertial Velocity Navigation Error 

The body attitude error is shown in Figure 8. Note the excursion of the error and general convergence back to zero 
near launch for the pitch and yaw channels. This is driven by uncertainty in the navigation state of the launch vehicle 
and not the SPLICE navigation algorithm. Secondly, note the apparent noisiness and error excursions of the signal 
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near landing. A highly dynamic flight phase coupled with differing IMU noise characteristics and data smoothing of 
the truth trajectory contributes to the calculated error. The attitude error remains bounded by the 3s standard deviation 
outside of these two regions. Both the NDL and TRN measurements strongly affect the attitude estimate made evident 
by the tighter standard deviation bounds in Figure 8 compared to Figure 6 and Figure 7.  
 

 
Figure 8: Body Attitude Navigation Error 

Figure 9 provides insight into the TRN measurement update logic in the update application. The measurement from 
the TRN algorithm is in the form of a feature location in the 2-D pixel space of the image. The top two plots show the 
filter-computed measurement based on the navigation state compared to the actual measurement returned by the TRN 
algorithm.  A 1440x1080 pixel camera was used for this flight, hence the varying y-axis limits and measurements 
when comparing the two plots. The top two plots represent one of four features that was processed at any given time 
by the navigation algorithm. These four features change throughout flight dependent on the correlated features 
returned by the TRN algorithm. Therefore, large jumps between successive measurements is indicative of a new 
feature being tracked while small, linear motion indicates the same feature being tracked across successive images for 
multiple frames.  The bottom plots in Figure 9 show the residual as computed by the filter. The residuals start off a 
little larger before converging indicating state corrections have appropriately adjusted the navigation state based on 
the TRN measurements. Near the end of flight, the residuals trend larger due to a combination of a highly dynamic 
phase of flight coupled with foreign object debris on the lens due to environmental conditions present on the day of 
the flight. The constant values seen near landing on all the plots in Figure 9 are due to the TRN processing logic not 
executing and therefore the last valid measurement is reported in telemetry. 
 

 
Figure 9: TRN Measurement Processing 
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B. Dual Quaternion Guidance Performance 
During the flight, DQG successfully operated and converged on guidance solutions within 3 seconds. However, it 

was only executed for three guidance cycles, so playback sensor data was then used to allow for additional testing 
post-flight. This allowed for minor parameter modifications to extend the operational range of DQG to occur earlier 
in flight.  
 
For this application, DQG was designed to operate in two flight modes: POWERED DESCENT and TERMINAL 
DESCENT modes. The same vehicle constraints were enforced for both modes. However, during the POWERED 
DESCENT mode, the algorithm targeted a point above the landing pad. This target shifted to the landing pad itself 
once the vehicle transitioned into TERMINAL DESCENT. Thus, cycles 0 through 3 in the plots presented in this 
section are solutions found during POWERED DESCENT, while cycles 4 and 5 are solutions found during 
TERMINAL DESCENT. 
 
Once the POWERED DESCENT mode began, the DQG FSW executed at a 0.2 Hz rate. The navigation application 
provided all of the vehicle state information as input to DQG, including a mass estimate of the vehicle. The DQG 
algorithm proceeded with computing a new solution every DQG FSW application cycle. This was completed in an 
open-loop fashion, thus there were no applications receiving input from the DQG application. Since all cycles were 
solved within 3 seconds, the DQG application successfully completed its computation within the budgeted 5 second 
window. To meet the timing and accuracy requirements, the DQG algorithm operated with 10 discrete trajectory 
nodes. Thus, the algorithm discretized the solution into 10 nodes and enforced the dynamics, control commands, and 
constraints at each node. A first order hold was utilized for commands, and the state information in between nodes 
was generated using Runge-Kutta propagation techniques. 
 
Figure 10a depicts the final target position of the vehicle in the East North plane along with the final velocity 
magnitude.  The final position was constrained to be within the red circle that represents the miss distance magnitude 
limit with many solutions terminating near this limit. It is important to note that although DQG is targeting the origin 
of this plane, it has freedom to move the final position anywhere within a threshold in order to minimize the cost 
function.   The final velocity of the vehicle was constrained to be less than a specified limit to meet landing 
requirements. Figure 10b also shows that by the end of the DQG-generated trajectory, the vehicle’s final velocity 
remains below this constraint.  
 

  
a) Touchdown Position 

 
a) Velocity Magnitude vs. Remaining Burn Time 

Figure 10: DQG Trajectory Solutions & Constrained Final Position 

 
The resulting vehicle angular rates for the body yaw, pitch, and roll axis are shown in Figure 11. Each axis was 
constrained to be within the positive and negative angular rate maximum. The final boundary constraint was also set 
such that all angular rates were to be nulled by the time the vehicle reached the desired target. The plots show that 
these constraints were properly enforced during all DQG cycles.  
 
Additional trajectory constraints such as maximum vehicle tilt angle and glide slope angle are shown in Figure 12 
with respect to remaining burn time. The tilt angle constraint is enforced both as a total maximum limit as well as a 
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maximum limit at the final boundary condition. This is outlined with the red limit for the former, and the green limit 
for the latter. The results show that the upper maximum limit was not tested on any DQG cycle, however the maximum 
limit on the final tilt angle was tested on three DQG cycles. The maximum glide slope constraint was enforced as an 
upper limit throughout the entire trajectory, and the solution remained within the limit.  
 
 

 
a) Yaw Rate vs. Remaining Burn Time 

 
b) Pitch Rate vs. Remaining Burn Time 

 

 
c) Roll Rate vs. Remaining Burn Time 

Figure 11: DQG Constrained Angular Rates 

 

 
a) Tilt Angle vs. Remaining Burn Time 

 
b) Glide Slope vs. Remaining Burn Time 

Figure 12: DQG Constrained Tilt & Glide Slope Angles 
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The vehicle control constraints also performed as expected. Figure 13 shows the provided DQG thrust magnitude and 
thrust rates as a function of remaining burn time. These are the thrust commands generated by DQG to actuate the 
vehicle to the desired trajectory. The algorithm enforced a maximum and minimum bound for both thrust magnitude 
and thrust rate. The results show that the provided commands did maintain these set limits. Similarly, the main engine 
gimbal deflection and deflection rate were also constrained and are shown in Figure 14 followed by the generated 
torque commands are shown in Figure 15. 
 
 

 
a) Thrust Magnitude vs. Remaining Burn Time 

 
c) Thrust Rate vs. Remaining Burn Time 

 

Figure 13: DQG Constrained Thrust Magnitude & Thrust Rate 

 
 

 
a) Gimbal Deflection vs. Remaining Burn Time 

 
d) Gimbal Deflection Rate vs. Remaining Burn 

Time 

Figure 14: DQG Constrained Gimbal Deflection & Gimbal Deflection Rate  

 
It is clear that all of the enforced control constraints were properly enforced by the DQG algorithm. The thrust 
minimum and maximum magnitude limits were both tested in these results, but the DQG algorithm did not allow the 
solution to break these limitations. This can also be observed in the gimbal angle deflection results. The yaw & pitch 
axes torque commands were tame compared to the roll axis torque commands. This was expected since the main 
engine has little to no dynamic effect on controlling the roll rates experienced by the vehicle. DQG heavily utilized 
the roll torque commanding capability to null the roll rates experienced on cycle 3.  
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a) Yaw Torque vs. Remaining Burn Time 

 
b) Pitch Torque vs. Remaining Burn Time 

 

 
c) Roll Torque vs. Remaining Burn Time 

 
Figure 15: DQG Constrained Torque Commands 

VII. Conclusion / Future Work 
The navigation algorithm performed as expected during flight and in post-flight playback analysis. Noise visible in 

navigation error, specifically the attitude error near landing, is expected to be improved upon receipt of a best-estimate 
trajectory from the launch vehicle provider. Although computationally expensive, DQG successfully solved for 
multiple optimal solutions both during flight and in post-flight playback analysis within the execution time allotted. 
All generated solutions were within the designed constraint limitations.  
 
Future work is required to incorporate ground state information as part of the navigation update application as well as 
expand the navigation algorithm to incorporate inputs from additional landing sensors. Computational loading needs 
to be further reduced to increase the rate at which the DQG application can execute on the DLC EDU, eventually 
targeting of 0.5Hz execution rate. In addition, an outer closed loop control style architecture needs to be developed to 
allow for intermediate updates to the DQG generated guidance commands to provide higher rate commands for closed 
loop flights. Future terrestrial test flights will focus on the fusion of additional landing sensors and added algorithmic 
capability to both navigation and DQG algorithms with a goal of closed-loop feedback of the guidance commands for 
use by the launch vehicle (closed loop flight test).  
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