
Abstract— In August 2020, SMAP released a new version of its 

soil moisture (SM) and vegetation optical depth (VOD) retrieval 

products. In this work, we review the methodology followed by the 

SMAP regularized dual-channel (DCA) retrieval algorithm. We 

show that the new implementation generates SM retrievals that 

not only satisfy the SMAP accuracy requirements but also show a 

performance comparable to the single-channel algorithm that uses 

the V polarized brightness temperature (SCA-V). Due to a lack of 

in situ measurements we cannot evaluate the accuracy of the VOD. 

In this work, we show analyses with the intention of providing an 

understanding of the VOD product. We compare the VOD results 

with those from SMOS. We also study the relation of the SMAP 

VOD with two vegetation parameters: tree height and biomass. 

Index Terms— SMAP, soil moisture retrieval, vegetation optical 

depth retrieval, dual-channel algorithm. 

I. INTRODUCTION

 The Soil Moisture Active Passive (SMAP) mission was 

designed to acquire and combine L-band radar and radiometer 

measurements for the estimation of soil moisture (SM) with an 
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average unbiased root-mean square error (ubRMSE) of no more 

than 0.04 m3/m3 volumetric accuracy in the top 5 cm of soil for 

vegetation with water content of less than 5 kg/m2 [1][2]. SMAP 

released new versions of its soil moisture (SM) and vegetation 

optical depth (VOD) products in August 2020. (Version 4 for 

the L2/3_SM_P_E product and Version 7 for the L2/3_SM_P). 

 The new implementation of the dual channel algorithm 

(DCA), which uses the two polarized brightness temperature 

measurements (H and V), generates SM retrievals, not only 

satisfying the SMAP accuracy requirements, but also showing 

a performance comparable to the single-channel algorithm that 

uses the V polarized brightness temperature (SCA-V) [2][3][4]. 

 While the accuracy of the DCA SM can be evaluated by 

comparison with in situ data, the lack of VOD in situ data raises 

concerns about the accuracy of the VOD product.  Although the 

SMAP mission does not have a requirement for the accuracy of 

the retrieved VOD, it is of great value for the SMAP team and 

the science community in general since it provides critical 

information about the water content of the aboveground 

biomass and its seasonal variations. In order to understand the 

performance of the VOD product, it is common to compare it 

to similar products from other missions and to look at it in 
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relation to other vegetation parameters such as tree height and 

biomass. 

Recent efforts to retrieve SM and VOD from SMAP L-band 

brightness temperature data have resulted in significant 

progress [5]. Reference [5] uses a multi-temporal dual channel 

algorithm (MT-DCA), which assumes that VOD changes more 

slowly than SM and can be assumed to be almost constant 

between every two consecutive overpasses. In addition, the 

MT-DCA approach allows for the retrieval of a single 

temporally constant value of the scattering albedo per pixel. 

The Soil Moisture and Ocean Salinity (SMOS) mission [6], 

produces simultaneous retrievals of SM and VOD based on 

angular information in its V- and H-pol brightness temperature 

products. Its L-band VOD retrievals have been analyzed by 

several authors [7][8][9].  SMOS-IC [10] presented an  

alternative approach to the retrieval of the SM and VOD but is 

still using angular brightness temperature information. 

 In this presented work, we detail the methodology for the 

DCA implementation in section II. In section III we present 

results of retrieved SM over Core Validation Sites (CVS) [4], 

[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], 

and the sparse network (SP) [17], [18]. We also present VOD 

results in section III. In section IV we compare the SMAP VOD 

with the vegetation parameters, including tree height and 

biomass. In section V we compare the SMAP VOD results with 

those obtained by SMOS. 

II. REGULARIZED DUAL-CHANNEL ALGORITHM

The newly implemented DCA simultaneously retrieves the 

SM and VOD (𝜏𝜃) by minimizing the cost function

𝐹𝐷(𝑆𝑀, 𝜏𝜃) = [𝑇𝐵𝑉
𝑠𝑖𝑚(𝑆𝑀, 𝜏𝜃) − 𝑇𝐵𝑉

𝑜𝑏𝑠]
2

+ [𝑇𝐵𝐻
𝑠𝑖𝑚(𝑆𝑀, 𝜏𝜃) − 𝑇𝐵𝐻

𝑜𝑏𝑠]
2

+ 𝜆2(𝜏𝜃 − 𝜏∗)2,

    (1) 

where 𝑇𝐵𝑉
𝑠𝑖𝑚 is the V-polarized simulated brightness

temperature and 𝑇𝐵𝐻
𝑠𝑖𝑚 is the H-polarized simulated brightness

temperature, λ is a regularization parameter and 𝜏∗ an initial

expected VOD value.  

To simulate the L-band emission of the soil-vegetation 

system the SMAP team uses the zero-order approximation of 

the radiative transfer equations, known as the τ-ω emission 

model [10]. The brightness temperature equation, which 

includes emission components from the soil and the overlying 

vegetation canopy, is given by 

𝑇𝐵𝑝
𝑠𝑖𝑚 = 𝑇𝑠𝑒𝑝𝑒𝑥𝑝(−𝜏𝑝 𝑠𝑒𝑐 𝜃) + 𝑇𝑐(1 − 𝜔𝑝)[1 −

𝑒𝑥𝑝(−𝜏𝑝 𝑠𝑒𝑐 𝜃)][1 + 𝑟𝑝𝑒𝑥𝑝(−𝜏𝑝 𝑠𝑒𝑐 𝜃)]

    (2) 

where the subscript p refers to polarization (V or H), Ts is the 

soil effective temperature, Tc is the vegetation temperature, p 

is the nadir vegetation opacity, p is the vegetation effective 

scattering albedo, rp is the rough soil reflectivity, ep is the rough 

soil emissivity and θ is the incidence angle. 

The surface roughness reflectivity is modeled by 

r𝑝(𝜃) = [(1 − 𝑄)r𝑝
∗ (𝜃) + 𝑄r𝑞

∗ (𝜃)]𝑒(−ℎ 𝑐𝑜𝑠𝑁(𝜃)) (3) 

(a) (b) 

Fig. 1 Climatology over Monte Buey (lat -32.91, lon -62.51) 

SMAP CVS (a). Residual obtained by subtracting the 7-day 

average and the MDCA climatology (b). The residual with 

seasonal variation removed is used to compute λ = 1/ σ. The 

NDVI climatology shown on the (a) (black curve) shows the 

selected initial guess over that CVS 

(a) 

(b) 

Fig. 2 Global map of σ (top) from the residuals as in Fig. 1. 

At the bottom the histogram of the corresponding λ. The 

histogram shows the peak value at λ=20. 

Fig. 3 Values of λ at each CVS used to evaluate RDCA- λ 



where Q (polarization decoupling factor which is related to h 

by the linear relation Q = 0.1771 h), h, and N are the roughness 

parameters and  r𝑝
∗ (𝜃) is the Fresnel reflectivity of the smooth 

surface where the index p and q (q opposite to p) account for 

the polarization V or H. The baseline SMAP implementation of 

the retrieval algorithms assumes that in Eq. (2) Ts = Tc at the 

early morning descending overpass and that p = ω and p = τ 

are polarization independent to reduce the number of algorithm 

parameters [2]. Note that in Eq. (1) 𝜏𝜃 is related to the nadir

vegetation opacity by 𝜏𝜃  = τ 𝑠𝑒𝑐 𝜃.

The implementation of Eq. (1), Eq. (2) and Eq. (3) requires 

that several parameters need to be assumed: a prior value of the 

scattering albedo based on land cover, roughness parameters as 

detailed in [3], effective soil temperature, clay fraction to 

determine the soil dielectric constant, as well as the 

regularization parameters  𝜏∗ and λ [2].

A. Selection of parameter λ

The retrieval of VOD through the DCA algorithm with λ=0 

(MDCA, modified DCA [3]) produces VOD results with high 

variability in the temporal dimension as shown in Fig. 1 (a) 

(blue curve) and also in the spatial dimension.  Fig. 1 (a) 

displays an example of the MDCA climatology at the Monte 

Buey CVS. It also shows the 7-day average and the VOD based 

on Normalized Difference Vegetation Index (NDVI) 

climatology from the Moderate-Resolution Imaging 

Spectroradiometer (MODIS). The selection of λ determines 

how much the residual noise (Fig 1 (b)) will be suppressed and 

how much freedom the optimization algorithm will have to  

converge to a solution of VOD apart from the expected value 

𝜏∗. Indeed, the value of λ=0 means no regularization and very

high values of λ will force the retrieval of VOD to converge to 

𝜏∗.

To select potential candidates of λ we considered 5 years 

(04/01/2015 - 03/31/2020) of MDCA VOD data for each 9km 

EASE-2 (Equal Area Scalable Earth Grid version 2) grid cell 

and computed its daily climatology, Fig. 1 (a). To remove the 

seasonal variation, we computed a 7-day average (red curve in 

Fig. 1 (a)) which is subtracted from the MDCA climatology 

resulting in the residual shown in Fig 1 (b).  We used the 

standard deviation (σ) of the residual to determine the amount 

of regularization needed and defined λ as 1/ σ. Fig. 2 displays a 

global map of σ (top) and the histogram of the corresponding λ 

(bottom). Fig.2 shows that σ varies across the globe and that the 

histogram peaks at λ~=20. 

We evaluated the performance of the SM retrievals 

compared to in situ SM data from 15 SMAP CVS by setting 

λ=20 fixed over all the sites and also using the local values of 

lambda over each CVS. Fig. 3 displays the values of lambda for 

each CVS. In what follows we will refer to RDCA for the 

regularized DCA algorithm with regularization parameter λ=20 

and RDCA-λ for the regularized DCA algorithm with λ 

changing spatially. 

Table I summarize the acronyms used to differentiate the 

different DCA implementations. 

Table II shows the algorithm performance metrics for SM 

retrievals. The metrics are the average of those at each CVS. 

The metrics show that even though a non-zero lambda is crucial 

to get good performance by the DCA algorithm, the selection 

of the values of λ is not relevant as long as λ is allowed to vary 

locally about the value λ=20. For this reason and considering 

the ease of the operational implementation we decided to set 

λ=20 globally. 

B. Selection of the initial guess 𝜏∗

As an initial guess 𝜏∗ , an estimate of VOD based on NDVI

climatology was selected [2]. This selection aroused concerns  

regarding how the seasonal behavior of the RDCA VOD would 

be affected.  

TABLE I 

ACRONYMS SUMMARY 

TABLE II 

RDCA,  RDCA-λ PERFORMANCE COMPARISON 

Performance analysis of soil moisture retrievals over SMAP 

CVS for λ=20 (RDCA) or the corresponding local values 

(RDCA-λ). as in Fig. 2. 



To address this, we compared the Pearson correlation of the 

daily climatology of RDCA VOD with daily climatology of 

NDVI VOD (Fig. 4 (a)) and daily climatology of MDCA VOD 

(Fig. 4 (b)). The figure shows that while the correlation between 

RDCA VOD and the NDVI VOD is moderate (mean value of 

0.51 and standard deviation of 0.51), there is a high correlation 

globally between RDCA VOD and MDCA VOD (mean value 

of 0.76 and standard deviation of 0.25) which is an indication 

that RDCA VOD follows the MDCA VOD seasonal variation 

more consistently than the seasonal variation of the NDVI 

VOD.  We also looked into the time difference (in days) 

between the NDVI 𝜏∗ peak location (in Fig. 1, black curve) and

the peak location of the RDCA VOD climatology (in Fig. 1, red 

curve) and similarly for MDCA VOD and RDCA VOD. Fig. 5 

displays the histograms of differences. We can see that while 

the differences are widespread for NDVI 𝜏∗minus RDCA VOD,

for RDCA VOD – minus MDCA VOD most of the values 

concentrate around zero. This is another indication that both 

MDCA VOD and RDCA VOD reach their maximum value at 

approximately the same time. These two tests suggest that in 

general the use of the NDVI 𝜏∗ does not affect the seasonal

variation of the MDCA VOD significantly. 

(a)

(b) 

Fig. 4 Correlation map between NDVI VOD and RDCA VOD (a) and between RDCA VOD and MDCA VOD (b). Grey areas indicate 

pixel with p-values>0.05. White areas indicate not available data 



III. ASSESSMENT

The SMAP mission validates the accuracy of the retrieved 

SM using several sources of information [15].  Among them are 

CVS which provide the ground-based data in a timely manner 

to the SMAP project, and sparse networks such as the USDA 

Soil Climate Analysis Network (SCAN) [16], the NOAA 

Climate Research Network [17] and the Oklahoma Mesonet 

[18].  

Table III shows how the SCA-V, MDCA and RDCA soil 

moisture retrievals compare at the CVS. We can see that a 

significant improvement has been reached by the 

implementation of the regularization term in the DCA 

algorithm. The table also shows that the RDCA and SCA-V are 

statistically similar. 

Table IV displays the assessment report over the sparse 

networks using 5 years of SMAP SM data (2015/01/04-

2020/03/31). The table compares the accuracy of MDCA, SCA-

V and RDCA. We display ubRMSE, bias, and correlation (R) 

for several land cover types: Evergreen needleleaf forest, Open 

shrublands, Woody savannas, Savannas, Grasslands, 

Croplands, Crop/Natural vegetation mosaic and Barren/Sparse. 
We observe again that SCA-V and RDCA present similar 

performance and that RDCA shows a significant improvement 

(a) (b) 

Fig. 5 Time differences of vegetation peak occurrence in days. (a) Difference between NDVI VOD and SMAP RDCA VOD. 

(b) Difference between SMAP RDCA VOD and MDCA VOD

TABLE III 

ASSESSMENT OF SOIL MOISTURE RETRIEVALS OVER CVS 

CVS assessment of soil moisture retrievals. 5 years (04/01/2015-03/31/2020) of data were used to compare the accuracy of MDCA with 

SCA-V and RDCA. We display the averaged RMSE(m3/m3), ubRMSE(m3/m3), Bias(m3/m3) and correlation (R) over 15 SMAP CVS. 



with respect to MDCA. A thorough analysis of the SMAP soil 

moisture performance can be found in [4] 

IV. SMAP VOD VS TREE HEIGHT AND BIOMASS

In this section we analyze the correlation between the SMAP 

RDCA VOD and two vegetation parameters: tree height in unit 

of meters (m) [13] and the aboveground biomass density of 

vegetation in units of Mg/ha [14].  Both sets of data were 

aggregated to the 9km EASE-2 to match the enhanced SMAP 

data, Fig. 6. 

Fig. 7 (a) displays the density plots of VOD vs tree height 

and Fig. 7 (b) and (c) displays VOD vs biomass. Fig. 7 also  

TABLE IV 

ASSESSMENT OF SOIL MOISTURE RETRIEVALS OVER SPARSE NETWORK 

Sparse Network assessment of soil moisture retrieval. 5 years (04/01/2015-03/31/2020) of data were used to compare the accuracy of 

MDCA (DCA with λ=0) with SCA-V (single channel algorithm with V polarization measurement of brightness temperature) and RDCA 

(DCA with λ=20). We display the averaged RMSE(m3/m3), ubRMSE(m3/m3), Bias(m3/m3) and correlation (R) over several land cover 

types. 

(a) 

(b) 

Fig. 6. (a) Tree height (meters). (b) aboveground biomass density of vegetation in units of Mg/ha 



(a) (b) (c) 

Fig. 7. Density plots and mean fitting curves. (a) SMAP RDCA VOD vs Tree height. (b) SMAP RDCA VOD vs Biomass for values of 

biomass less than 90 Mg/ha. (c) SMAP RDCA VOD vs Biomass for values of biomass greater than 90 Mg/ha and less than 300 Mg/ha. 

(a) 

(b) 

Fig. 8. Global maps of averaged SMOS VOD (a) and SMAP RDCA VOD (b) for 5 years of data (04/01/2015-03/31/2020). 



displays the mean values for several bins and the fitting curve. 

To compute the mean values, the data were binned by intervals 

of tree height of 1 m and the biomass by intervals of 10 Mg/ha. 

There is clear linearity between SMAP RDCA VOD and tree 

height spatially for values of tree height less than 20 m and the 

relationship remains fairly linear up to tree heights of ~ 35 m/ 

The slope of the fitting curve is 0.033 and the offset is -0.06. 

The spatial correlation between SMAP RDCA VOD and the 

tree height map is R = 0.81 (strong).  

The VOD vs biomass density plot (Fig.7 (b)) also shows 

linearity for values of biomass less than 90 Mg/ha. The VOD 

vs biomass (B) fitting curve for values of B between 0 and 90 

Mg/ha is given by: 

𝑣𝑜𝑑 = 0.004854 𝐵 + 0.2541 (4) 

For values of biomass greater than 90 Mg/ha and less than 150 

Mg/ha the VOD stays almost constant, this could be caused by 

a reduction in the amount of data points together with an 

increase in dispersion. Fig 7. (c) shows that after B values of 

150 Mg/ha the VOD starts increasing again and reaches 

saturation at about B values of 240 Mg/ha.  

Heterogeneity of the grid pixel could be one of the factors 

causing the scatter in the density plots. The spatial correlation 

between the SMAP VOD and the biomass map is R = 0.53 

(moderate).  

V. SMAP RDCA VOD VS SMOS VOD

 The lack of VOD in situ data makes it difficult to evaluate 

the accuracy and performance of the SMAP RDCA VOD 

product. In order to understand the performance of the VOD 

product we compare the SMAP RDCA VOD product 

(L2_SM_P_E v4 [12]) with the SMOS Level 3 VOD (  

ftp://ftp.ifremer.fr/Land_products/GRIDDED/L3SM/). For 

comparison, the SMAP RDCA VOD product was multiplied by 

cos(40𝑜) to match the SMOS VOD product at nadir.

Fig. 8 displays global maps of VOD. The SMAP data were 

aggregated to the 25km EASE-2 grid to match the SMOS data. 

We observed that the SMOS VOD has higher values of VOD. 

In fact, the mean VOD and standard deviation for the SMOS 

are 0.42 and 0.28 respectively, while for SMAP, those values  

are 0.29 and 0.26 respectively. This difference in value may be 

caused by different levels of the roughness parameters used by 

the two missions. Table V presents the mean and standard 

deviation for SMOS, SMAP and the NDVI VOD by land cover 

type following the MODIS-based IGBP (International 

Geosphere Biosphere) classification.  For the computation of 

the statistics, we considered only pixels with Gini-Simpson-

Index (GSI) less than 0.1. The GSI is commonly used in 

ecology as a measure of degree of homogeneity, where GSI = 0 

means total homogeneity and is computed as: 

𝐺𝑆𝐼 = 1 − ∑ 𝑓𝑖
2

𝑛

𝑖=1

(5) 

where 𝑓𝑖 is the fraction of the area covered by the i-th land use

classification and n is the number of land cover types. Table V 

shows that in general there is very good agreement between the 

magnitude of the SMAP RDCA VOD and the magnitude of the 

NDVI VOD. This is somehow expected due to the nature of the 

roughness parameter h implemented by the SMAP algorithm 

[3]. In the τ-ω emission model τ and h cannot be seen as 

parameter independent of each other and the magnitude of the  

Fig. 9. VOD difference for two consecutive years. 2015-2016 on top and 2016-2017 on the bottom. 

ftp://ftp.ifremer.fr/Land_products/GRIDDED/L3SM/


selected h will affect the magnitude of the retrieved τ. Since the 

values of h are obtained by a DCA type algorithm involving  

NDVI τ as an input, we expect to have retrieved values of τ of 

magnitude similar to the NDVI τ.  However, since the values of 

h are temporal invariant, the seasonality variation of τ should 

not be affected.  

Table V also shows that there is very good agreement with 

SMOS VOD over forested areas although SMOS data seem to 

have more variability. In fact, SMOS data seem to have more 

variability for all the land cover types except for Urban and 

built-up settings. For land cover types other than forest we 

observed significant discrepancies in the statistics between 

SMOS and SMAP RDCA VOD.  

Fig. 9 displays the VOD differences for two consecutive 

years: 2015-2016 and 2016-2017.  SMAP RDCA VOD tracks 

yearly changes in VOD unlike the NDVI VOD which is a ten-

year climatology. The SMOS VOD product exhibits more 

variability than the SMAP RDCA VOD. SMAP RDCA VOD 

is smoother due to the use of NDVI VOD as regularization 

TABLE V  
SMAP AND SMOS STATISTICS COMPARISON BY LAND COVER TYPE 

Statistics of SMAP, SMOS and NDVI VOD by land cover type classification. N represents the number of pixels involved in the 

computation. Pixels with GSI < 0.1 were considered. 

Fig. 10. Map of Pearson correlation between monthly averaged SMOS and SMAP RDCA VOD. Grey areas indicate pixel with p-

values>0.05. White areas indicate not available data 



parameter 𝜏∗. There are some similarities between SMOS and

SMAP but also some  

discrepancies. For example, over Australia, in Fig. 9 (top row), 

the trends seem to agree although SMOS shows greater 

differences. On the other hand, in Fig. 9 (bottom row) over the 

same region the trends are distinctly different except for a 

portion in the east-central part of the country. We also see 

discrepancies in Fig. 9 (top row) for the east coast of the United 

States.  

     Fig. 10 displays the Pearson correlation (R) between SMAP 

and SMOS VOD. The aggregated SMAP RDCA VOD and the 

SMOS VOD were averaged monthly, thus obtaining two data 

sets of dimensions (1388,584,60) and then for each grid cell the 

temporal correlation was obtained. We observed that the 

correlation varies along the globe with a mean value of 0.344 

(weak correlation) and standard deviation of 0.33. If we only 

consider correlation with p-values < 0.05 then the mean 

correlation value is 0.542 (moderate correlation) and the 

standard deviation is 0.26. It is noticeable that the correlation is 

mostly positive indicating a degree of agreement in trends. 

Table VI displays the correlation by land cover types using only 

pixels with significant correlation, p-value < 0.05. We observed 

mostly moderate correlation, with the exception of Permanent 

wetlands (PW) where the correlation is strong and Evergreen 

needleleaf forest (ENF), Evergreen broadleaf forest (EBF), 

Closed shrublands (CS) and Barren/Sparse (BS) where the 

correlation is weak. Fig. 11 displays the monthly average of 

VOD at five different regions. From top to bottom the regions 

are: 

1) Peruvian Amazonia [-4.5 -4 -75 -74.5], land cover type:

Evergreen broadleaf forest. The SMOS-SMAP

correlation is very week R = 0.148 and p-value > 0.05.

2) Angola [-12.5 -12 17 17.5], land cover type: Woody

savannas. The SMOS-SMAP correlation is strong R =

0.806 and p-value < 0.05.

3) South Fork, Iowa [42 42.5 -93.5 -93], land cover type:

Croplands. The SMOS-SMAP correlation is strong R =

0.873 and p-value < 0.05.

4) Zambia [-14.5 -14 24 24.5], land cover type: Woody

savannas. The SMOS-SMAP correlation is moderate R

= 0.435 and p-value < 0.05.

5) Chaco, Argentina [-25.5 -25 -62.5 -62], land cover

type: Deciduous broadleaf forest. The SMOS-SMAP

correlation is strong R = 0.747 and p-value < 0.05.

We see that in all the cases the SMOS and SMAP have 

consistent trends while NDVI VOD trends only agree with 

SMAP and SMOS over Chaco and South Fork. There is a big 

difference in the VOD magnitude over the Peruvian Amazonia 

TABLE VI 

SMAP VS SMOS VOD CORRELATION BY LAND COVER 

SMAP RDCA VOD vs SMOS VOD monthly timeseries Pearson correlation by land cover types as defined by the IGBP land cover 

classification (land cover abbreviations from Table 4).  The analysis was performed only for pixels with significant correlation p-

value<0.05 

Fig. 11. Sixty months (04/2015-03/2020) of averaged VOD (SMAP, SMOS and NDVI) for 5 different regions. From top to bottom: 

Peruvian Amazonia, Angola, South Fork (Iowa), Zambia and Chaco (Argentina). 



and very weak correlation caused by the low seasonal change 

of VOD combined with the differences in short term variability. 

The correlation is not significant according to the p-value (we 

consider a correlation to be significant if the p-value is < 0.05). 

We also observed that the SMOS VOD has more variability 

which may be the cause of low correlation in some locations, as 

can be seen in the Zambia case, Fig. 11 second from the bottom. 

 The spatial correlation between SMOS VOD and SMAP 

RDCA VOD as shown in Fig. 8 is R = 0.83 (strong). 

VI. CONCLUSION

In this work, we have shown that the regularized DCA 

algorithm (RDCA along this paper) implemented in the new 

release (R17) allows for an accurate retrieval of SM and a 

reliable VOD (τ). Indeed, we showed that the DCA SM not only 

satisfies the SMAP requirements but also showed accuracy 

levels comparable to the SMAP SCA-V baseline. We compared 

the SMAP RDCA VOD with the SMOS VOD. We showed that 

even though there are differences in magnitude they have, in 

general, consistent temporal behavior tracking seasonal 

changes and strong spatial correlation.  

Comparison of the SMAP RDCA VOD with tree height 

showed strong correlation and a linear relation especially for 

tree height less than 20 meters. 

Comparison of the SMAP RDCA VOD with vegetation 

biomass showed moderate correlation. We also observed linear 

correlation for biomass less than 90 Mg/ha. 

The magnitude of the SMAP RDCA VOD is comparable to 

the magnitude of the NDVI VOD due to the nature of the 

selection of the roughness parameter h. However, since the 

values of h are temporal invariant, the seasonality variation of 

the retrieved VOD should not be affected.  

The application of temporal variant roughness parameter h 

should be explored for further improvement of the retrieved 

VOD. 
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