

2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis

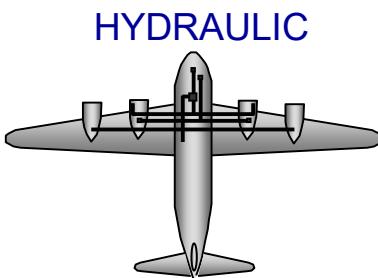
The Importance of Aerospace Power System Reliability: Keeping the Lights On

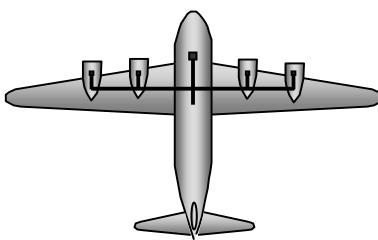
November 2021

Presenter: David Sadey (GRC/LEM)
Research and Engineering Directorate
NASA Glenn Research Center at Lewis Field

Kevin Yost (AFRL/RQQM), Joe Weimer (AFRL/RQQE), & Steve Iden (AFRL/RQVC)
Aerospace Systems Directorate
Air Force Research Laboratory

Outlined Topics

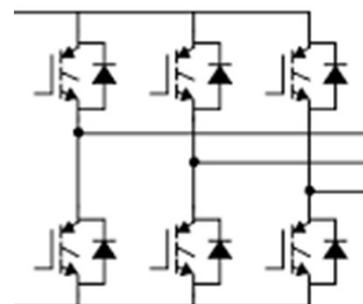

- The Past
- Today's Technical Challenges
- The Future – Requirements
- Conclusion


Historical Perspective

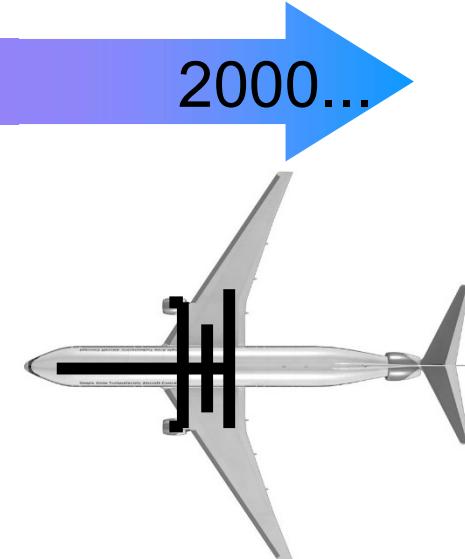
1940's

HYDRAULIC

ELECTRICAL


- 1943- XB-30 STUDIES COMPARED POWER-ASSISTED CONTROLS
- HYDRAULICS WON!

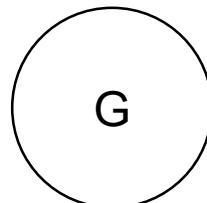
1980's


- 1984 - 85 HP (63 KW) ELECTRIC FUEL PUMP & CONTROLLER FOR F-16 (>5 ft³, >100 lbs)
- ELECTRIC DRIVE STILL INFEASIBLE

1990's

- 1992 – IGBT EFFORTS REVOLUTIONIZED POWER ELECTRONICS WEIGHT / VOLUMES
- ENABLES AIRCRAFT FLIGHT-WEIGHT ELECTRICALLY-BASED HARDWARE

2000...


- 1993 - PRESENT POWER THRUST R&D TO DEMONSTRATE A "NO HYDRAULICS" AIRCRAFT (MORE ELECTRIC, MEA)
- 787 MEA NO-BLEED SYSTEM ELIMINATED PNEUMATIC BLEED SYSTEM

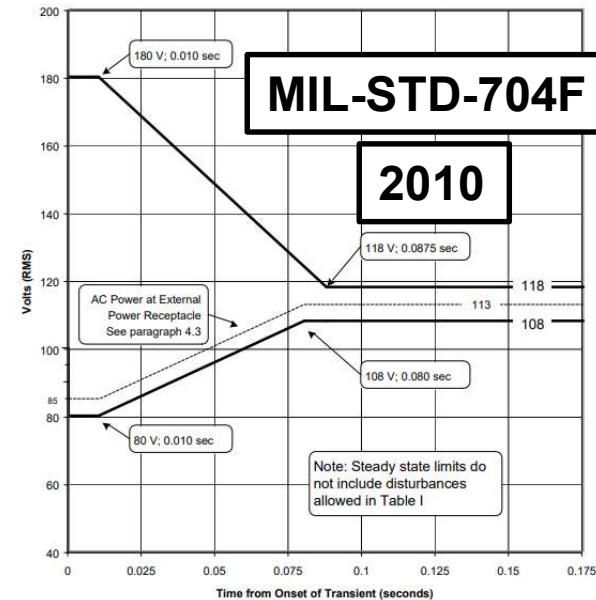
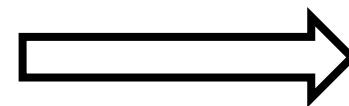
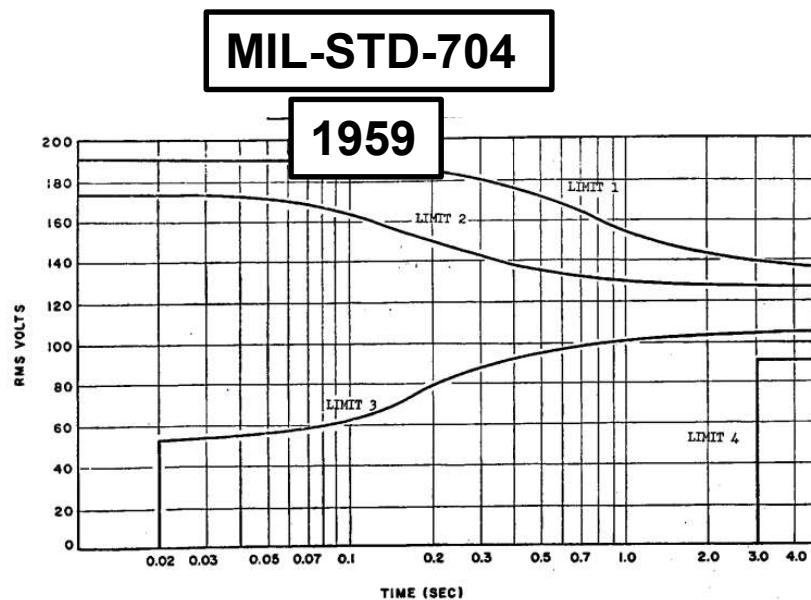
Today's Standards Based on 1940's Requirements

Today's Power Quality Standards Based on 1940's Requirements

W/in ³	
1939	2
1944	30
Today	100-500

(1944) “The output of a cubic inch of space and material has been doubled, quadrupled, and doubled again. The engine-driven generator is the best example of this progress. Almost since the beginning of modern aviation the generator designer has been confined to a space of 6 inches diameter and 14 inches length, a volume of 400 cubic inches. Until 1939 this space produced 750 Watts, less than 2 watts per cubic inch. **Today (1944) , nearly 30 Watts per cubic inch.**”

1944 AIEE – “*Aircraft Electrical Horizons*” Godsey, et al.




Today & Emerging Requirements ~ 100-500 W/in³

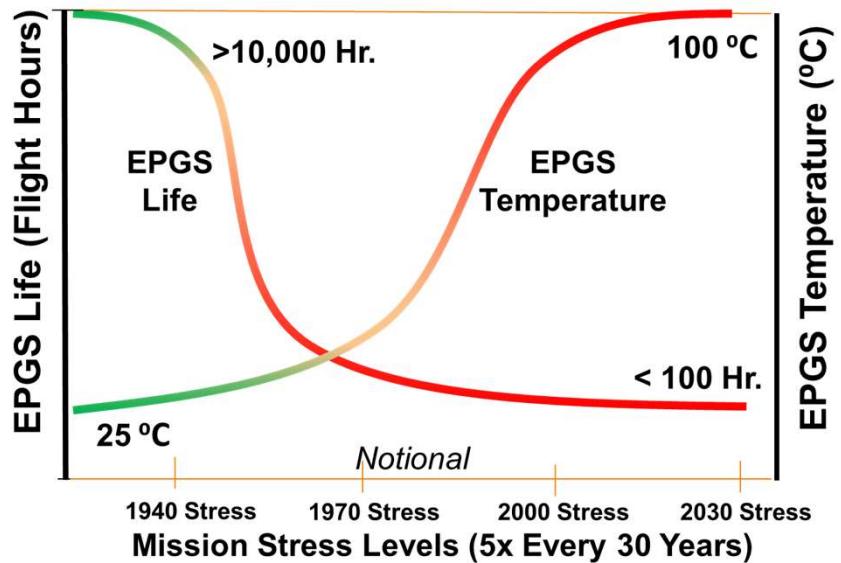
Power Quality... Arbitrary Origins & Trends Toward Relaxing the Standards

An arbitrary and already lenient PQ standard selected for legacy loads.

5,000-10,000 life hours

100 life hours...

Standards relaxation allows higher power density but impacts power quality & shortens component life


New Mission Stresses on EPS Impacts PQ, Temp & Life

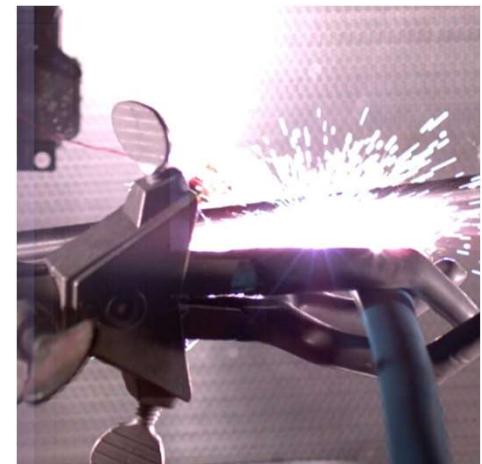
MEA Loads Stress EPS

Stress Reducing Life by >50x

Stress on System:

- Power Quality (λ distortion)
- Dynamic Loads (\uparrow $d\text{Power}/dt$)
 - \uparrow intense stress (ΔPower)
 - \uparrow frequent stress ($\downarrow \Delta\text{time}$)
 - \uparrow demanding ($\uparrow dv/dt$)
- Frequency content & distortion ($\uparrow di/dt$ & $\downarrow \Delta X_s$, neg. impedance)
- Regenerative Power
- Power Dense Design ($\uparrow \text{kW/kg}$)
 - $\uparrow \Delta X_s$ Source Impedance

Impact on System


- Thermal Heating Effects
- Power Stability Margin
- Mechanical Interactions
- Lower Life of Generator in turn

AF Experiencing “Lights Out” Electrical Systems Failure Events

- Arc fault in electrical actuation system can cause total EPS failure = Loss of vehicle control
- Feeder fault can cause EPS fire = Total loss of vehicle
- Ground fault issues can cause total EPS main channels failures during early flight testing = Mission aborts
- Generator failures can cause EPS failure = Mission aborts / Total loss of vehicles

Electrical Power Systems (EPS) are flight critical

Emerging Aircraft / Power Systems

- **High Voltage, High Power Systems**
 - Flight Critical & Primary Power
- **Historical MEA problems are only amplified**
 - Increased Fault Energy and Power System Stresses
 - Increased Safety Requirements
- **Extreme Power Densities & Efficiencies Required for Designs to Close**

There is a need to balance Power Density, Efficiency, and Reliability Simultaneously

Design Rules-of-Thumb and Standards Need Reevaluated & Understood for Emerging Requirements

Moving Towards Reliable Solutions

- Literature suggests 10^{-7} to 10^{-9} catastrophic failures per operational hour at the aircraft level
 - Mission Dependent
 - Still needs to be defined
- Standardization & Certification Requirements are required to help ensure reliability
 - In progress by Standards Bodies and FAA for HV Systems
- Research in Progress for Flight-Weight Reliable Solutions (Components & Systems)
 - Machines, Power Electronics, Cables, and associated Cooling Systems
 - Fast and Selective Fault Protection

Summary

“Keeping the Lights On”

- **Flight Critical**
 - Past - Battery & Mechanical/hydraulic systems
 - Now/Future – Electric Power System can be both mission and flight critical for Electric Propulsion
- **“Lights-out” events cause loss of missions and can cause loss of aircraft**
- **Survivability = Keeping the Lights On**
- **Standards Developed for 1940's**
 - Several iterative degradations starting in the 1960's through modern 5th gen aircraft to allow for power density
 - EPS reliability severely limited, life of a/c to 10's missions
- **Power Standards have not been established for future loads & new requirements**
 - Major Challenge from design to regulations & standards
 - Work in progress across industry, academia, govt.