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Fig. 1 Schematic representations of (a) overall construction of Flow Boiling Module (FBM),
(b) construction of heating slabs, and (c) substrate temperature measurement.
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Fig. 2 Schematic diagram of experimental two-phase flow loop.



CHF- CHF Transient CHF+

Flow
G = 1600 kg/m23s
Pin = 130.3 kPa
ATsub,in =4.6°C
Xe,in =-0.062
q"CHF = 36.74 W/cm?2

!
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Fig. 3 Sequential images during CHF—, CHF transient, and CHF+ for G = 1600 kg/m?s, p;, = 130.3 kPa,
ATypin=4.6°C, x5, = -0.062, and q"cyr= 36.74 W/cm? with single-sided heating. The interval
between successive images in all sequences is 1.5 ms.



CHF- CHF Transient CHF+

Flow
G = 3200 kg/m3s
Pin = 138.6 kPa
ATgypin =7.4°C
Xe.in =-0.100
q"CHF =41 73 W/Cm2
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Fig. 4 Sequential images during CHF—, CHF transient, and CHF+ for G = 3200 kg/m?s, p;, = 138.6 kPa,
ATpin=1.4°C, x5, = -0.100, and q"cyr=41.73 W/cm? with single-sided heating. The interval
between successive images in all sequences is 1.5 ms.



CHF- CHF Transient CHF+

Flow
G = 1600 kg/m23s
p,  =153.3kPa
ATsub,in - 8.2°C
Xe,in =-0.113
q"CHF = 37.80 W/cm?
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Fig. 5 Sequential images during CHF—, CHF transient, and CHF+ for G = 1600 kg/m?s, p;, = 153.3 kPa,
ATy, in = 8.2°C, Xein =-0.113, and q"cpr= 37.80 W/cm? with double-sided heating. The interval

between successive images in all sequences is 1.5 ms.
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Flow
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(2) Images 1.5 ms apart (b) Images 1.5 ms apart © Images 200 ms apart (d) Images 37 ms apart

Fig. 6 Sequential images of CHF transient for G = 200 kg/m?’s and heating configurations of a) highly
subcooled single-sided, b) highly subcooled double-sided, ¢) near-saturated single-sided, and d) near-
saturated double sided. Time interval between successive images is indicated below each sequence.
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Fig. 7 MST Experimental CHF results for (a) single-sided heating and (b) double sided heating.
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Fig. 8 Experimental CHF results for a subset of the consolidated database for (a) single-sided

heating and (b) double sided heating.
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Fig. 9  Separated flow modelling of single-sided heating configuration: (a) control volumes of length Az,
(b) momentum terms for individual layers, and (c) force terms for individual layers.
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Fig. 10 Separated flow modelling of double-sided heating configuration: (a) control volumes of length Az,
(b) momentum terms for individual layers, and (c) force terms for individual layers.
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Fig. 11 Schematics of the (a) idealized formation of wavy liquid-vapor interface and (b) modeled
interface used in instability analysis in a terrestrial environment.
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