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ABSTRACT2

Remote sensing measurements from multi-angle polarimeters (MAPs) contain rich aerosol3
microphysical property information, and these sensors have been used to perform retrievals4
in optically complex atmosphere and ocean systems. Previous studies have concluded that,5
generally, five moderately separated viewing angles in each spectral band provide sufficient6
accuracy for aerosol property retrievals, with performance gradually saturating as angles are7
added above that threshold. The Hyper-Angular Rainbow Polarimeter (HARP) instruments8
provide high angular sampling with a total of 90-120 unique angles across four bands, a capability9
developed mainly for liquid cloud retrievals. In practice, not all view angles are optimal for aerosol10
retrievals due to impacts of clouds, sun glint, and other impediments. The many viewing angles of11
HARP can provide resilience to these effects, if the impacted views are screened from the dataset,12
as the remaining views may be sufficient for successful analysis. In this study, we discuss how13
the number of available viewing angles impacts aerosol and ocean color retrieval uncertainties,14
as applied to two versions of the HARP instrument. AirHARP is an airborne prototype that was15
deployed in the ACEPOL field campaign, while HARP2 is an instrument in development for the16
upcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission. Based on synthetic17
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data, we find that a total of 20-30 angles across all bands (i.e. five to eight viewing angles per18
band) are sufficient to achieve good retrieval performance. Following from this result, we develop19
an adaptive multi-angle polarimetric data screening (MAPDS) approach to evaluate data quality by20
comparing measurements with their best-fitted forward model. The FastMAPOL retrieval algorithm21
is used to retrieve scene geophysical values, by matching an efficient, deep learning-based,22
radiative transfer emulator to observations. The data screening method effectively identifies and23
removes viewing angles affected by thin cirrus clouds and other anomalies, improving retrieval24
performance. This was tested with AirHARP data, and we found agreement with the High Spectral25
Resolution Lidar-2 (HSRL-2) aerosol data. The data screening approach can be applied to26
modern satellite remote sensing missions, such as PACE, where a large amount of multi-angle,27
hyperspectral, polarimetric measurements will be collected.28

Keywords: multi-angle polarimeter, aerosol remote sensing, ocean color, data screening, cloud masking, deep learning, PACE29

1 INTRODUCTION
Aerosols play a critical role in Earth’s radiative balance by directly scattering and absorbing solar radiation,30
and indirectly interacting with clouds. Due to their complex micro-physical properties and spatio-temporal31
distributions, combined with measurement and modeling difficulties, aerosol-related processes are among32
the largest uncertainties in radiative forcing of the Earth climate (Boucher et al., 2013). Remote sensing33
measurements from multi-angle polarimeters (MAPs) contain rich information on aerosol microphysical34
properties compared to other sensor types and therefore can be used to improve aerosol retrieval accuracy35
(Mishchenko and Travis, 1997; Chowdhary et al., 2001; Hasekamp and Landgraf, 2007; Knobelspiesse36
et al., 2012). Meanwhile, ocean color remote sensing, which assesses water-leaving signals to infer37
chlorophyll concentration and other biogeochemical quantities, is important in the study of phytoplankton38
dynamics, global carbon cycle, and marine ecosystems (Frouin et al., 2019; Groom et al., 2019). Accurate39
estimation of the water-leaving signal requires the quantification and removal of the aerosol path radiance40
and the ocean surface reflectance from the remote sensing measurement (Mobley et al., 2016). To advance41
both aerosol and ocean color characterization based on MAP measurements, simultaneous multi-parameter42
retrieval algorithms have been developed over both open and coastal waters (Chowdhary et al., 2005;43
Hasekamp et al., 2011; Xu et al., 2016; Stamnes et al., 2018; Gao et al., 2018; Fan et al., 2019; Gao et al.,44
2019, 2021).45

To achieve various scientific objectives on the study of aerosols and clouds, several MAP instrument46
designs are available, with different spectral bands, viewing angles, and measurement accuracies (see47
Table 1). The Polarization and Directionality of the Earth’s Reflectances (POLDER) instruments flew48
on Advanced Earth Observing Satellite missions (ADEOS-I; 1996– 1997 and ADEOS-II; 2002–2003,49
Deschamps et al. (1994)) and the Polarization and Anisotropy of Reflectances for Atmospheric Sciences50
coupled with Observations from a Lidar (PARASOL; 2004– 2013) mission (Tanré et al., 2011). They51
measured up to 14 viewing angels in nine spectral bands from visible to near infrared (NIR) with three52
polarized bands. The 3MI mission, planned to launch in 2023, improves the POLDER design with a53
total of 12 spectral bands which include nine polarized bands and an extension to shortwave infrared54
(SWIR) (Fougnie et al., 2018). Similar to POLDER with three polarized bands, the Airborne Multiangle55
SpectroPolarimetric Imager (AirMSPI, Diner et al. (2018)) and its spaceborne version MAIA (planned to56
launch in 2022, Diner et al. (2018)) conduct measurements with 8 spectral bands from visible to NIR and57
14 bands from visible to SWIR, respectively, both with a selectable number of viewing angles typically58
ranging from five to nine. The airborne Research Scanning Polarimeter (RSP) measures a much higher59
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angular resolution with 152 viewing angles in nine bands from visible to SWIR (Cairns et al., 1999); its60
space-borne analogue the Aerosol Polarimetry Sensor (APS) on NASA Glory mission (failed to reach61
orbit in 2011) would have had a total of 250 viewing angles (Mishchenko et al., 2007). The Airborne62
Hyper-Angular Rainbow Polarimeter (AirHARP) and its space-borne counterpart the HARP CubeSat63
(launched in 2020), and future HARP2 on NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission64
(planned for launch in 2023), also makes high angular resolution measurements (Martins et al., 2018;65
McBride et al., 2020). Unlike the other MAP designs, the viewing angles of the HARP polarimeters are66
slightly different for each band, with a total of 120 unique angles across the four bands for AirHARP67
and HARP CubeSat (60 angles for 670 nm band; 20 angles for each of the other three bands), and a68
total of 90 unique angles for HARP2 (60 angles for 670 nm band; 10 angles for each of the other three69
bands). The Spectro-Polarimeter for Planetary EXploration one (SPEXone) is the other MAP planned70
for PACE (Hasekamp et al., 2019). SPEXone and its airborne version (SPEX airborne,Smit et al. (2019))71
measure at five and nine viewing angles in each band, respectively, with continuous spectral sampling (40072
spectral bands, 50 polarized) mostly in visible bands. A thorough review of the MAP instruments and their73
corresponding retrieval algorithms can be found in Dubovik et al. (2019). Generally, SPEX, AirMSPI and74
MAIA, with a small number of viewing angles (5-9), are optimized for aerosol studies; POLDER and 3MI75
with up to 16 viewing angles are designed for monitoring aerosol and to some extent clouds; RSP, APS,76
and HARP instruments (AirHARP, HARP CubeSat and HARP2) with a much higher number of viewing77
angles (90-250) are capable of resolving cloud bow angular patterns and are optimized for cloud studies78
(Waquet et al., 2009; McBride et al., 2020) in addition to aerosols.79

Table 1. The number and range of the spectral bands and view angles for various MAP instruments. N
indicates the total number of measurements including both intensity and polarization.

Instruments Intensity bands Polarized bands Viewing angles N
POLDER/ADEOS I and II 9: 443-1020 3: [443, 670, 865] up to 12: ±57◦ up to 144
POLDER/PARASOL 9: 443-1020 3: [443, 670, 865] up to 16: ±57◦ up to 192
3MI/MetOp-SG 12: 410-2130 9: 410-2130 a10-14: ±57◦ 210-294
AirMSPI 8: 355-935 3: [470, 660, 865nm] b5-9: ±67◦ 55-99
MAIA 14: 365-2126 3: [444, 646, 1044] b5-9: ±58◦ 85-153
RSP 9: 410-2250 9: 410-2250 152: ±60◦ 2736
APS/Glory 9: 410-2250 9: 410-2250 250: ±60◦ 4500
AirHARP (HARP CubeSat) 4: [440, 550, 670, 870] 4: [440, 550, 670,870] c120: ±57◦ 240
HARP2/PACE 4: [440, 550, 670, 870] 4: [440, 550, 670, 870] c90: ±57◦ 180
SPEX Airborne 400: 400–800 nm 50: 400–800 nm 9: ±56◦ 4050
SPEXone/PACE 400: 385-770 nm 50: 385-770 nm 5: ±57 2250
aThe viewing angle range is ±30◦ for SWIR.
bAirMSPI and MAIA are gimballed instruments with a selectable number of viewing angles, typically five to nine.
cThis is for the total number of viewing angles across all four HARP bands.

Extensive research has studied how aerosol retrieval uncertainties depend on the viewing angles available80
from MAP measurements. Hasekamp and Landgraf (2007) discussed the trade-off between spectral81
sampling and the number of viewing angles using synthetic data with spectral bands similar to POLDER,82
and found that the retrieval errors of aerosol optical depth (AOD), refractive index, and size are only83
slightly affected when the number of viewing angles is increased at the cost of the number of spectral84
sampling points, as long as at least three viewing angles are available. Based on synthetic high accuracy85
RSP measurements with either SWIR bands included or not, Wu et al. (2015) found that five angles equally86
spaced between ±60◦ provide provide sufficient accuracy for aerosol property retrievals, with performance87
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gradually saturating as more angles are added beyond that. Similarly, Xu et al. (2017) concluded from88
AirMSPI measurements that the retrieval accuracy of AOD and single scattering albedo (SSA) do not89
improve significantly when more than around 5 viewing angles are used.90

Although five viewing angles are sufficient for aerosol studies, in practice there will be ground pixels for91
which not all angles are optimal for aerosol retrievals due to impacts by cloud, sunglint, calibration artifacts,92
etc. Gao et al. (2019) used RSP measurements from the Ship-Aircraft Bio-Optical Research (SABOR)93
field campaign and found that viewing angles impacted by cloud needed to be removed in order to obtain94
high-quality retrieval results. Gao et al. (2021) found that AirHARP pixels impacted by cirrus clouds95
during the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign produced large96
retrieval cost function values, indicative of larger deviation between the forward radiative transfer model97
and the measurements. Further, strong sunglint signals measured by both RSP and AirHARP instruments98
could not be modeled sufficiently well by the isotropic Cox and Munk (1954) model (Gao et al., 2019,99
2021). Therefore, it is likely the number of suitable viewing angles for a given scene will be lower than100
those acquired by the sensor. The abundant angular measurements from the HARP instruments are useful101
to explore data quality screening by removing potentially problematic angles while maintaining sufficient102
useful angles for retrievals.103

Due to their frequent presence, clouds are one of the major factors reducing the number of suitable104
viewing angles from multi-angular measurements (whether polarized or not) for aerosol studies. The MAP105
often observes a maximum angular range of 110 to 120 degrees (Table 1). Depending on the size and height106
of a cloud, it may obscure Earth from all view angles or only over a small angular range. To address the107
challenges in the aerosol retrieval with cloud present, three approaches are often taken:108

1. Completely remove the pixels influenced by clouds, using a cloud mask before (e.g. Garay et al.109
(2020)) and/or additional filtering after (Stap et al., 2015; Chen et al., 2020) the retrieval.110

2. Simultaneous cloud and aerosol retrievals. This assumes an optically thin cloud covers most of the111
region in the observation, or a mixing of cloudy and clear sky pixels (Hasekamp, 2010; Stap et al.,112
2016).113

3. For partially cloud-covered pixels, the angles impacted by cloud can be removed, and then a retrieval114
assuming only the presence of aerosols can be conducted (Gao et al., 2019).115

For a pixel with most or all of its angles covered by cloud the retrieval can be either discarded (approach116
1), or have both cloud and aerosol properties included in the state vector (approach 2). However, for a117
partially cloudy scene, there are open questions as to whether cloud-influenced angles can be removed118
effectively, and how much removal is practical before retrieval performance is degraded. In this study we119
focus on approach (3) and aim to answer the following three questions:120

1. How many angles are sufficient in order to retrieve aerosol properties and ocean water leaving121
reflectance from HARP instruments with sufficient accuracy?122

2. How can view angles problematic for aerosol retrievals, such as those influenced by clouds, be123
efficiently identified and removed (screened)?124

3. How does the data screening improve the performance of aerosol and ocean color retrievals?125

To understand to what extent the aerosol retrievals are still valid, we will examine the impact of the number126
of viewing angles on retrieval uncertainties using synthetic data simulated for both AirHARP and HARP2,127
which have different polarimetric uncertainties. The impacts of the scattering angle range will also be128
considered.129
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To identify the pixels impacted by water clouds, Stap et al. (2015) proposed using the retrieval cost130
function, a goodness-of-fit statistic based on how well the retrieval solution matches the observed131
measurements. Pixels whose cost function exceeded a threshold were deemed cloud-contaminated, and the132
whole pixel then discarded (approach 1 above). Building on this, we evaluate the fitting residuals (difference133
between the forward model and measurement) at each view angle. We implement a multi-angle polarimetric134
data screening (MAPDS) approach using these residuals as a metric to evaluate data quality, built upon135
the Fast Multi-Angular Polarimetric Ocean coLor (FastMAPOL) retrieval algorithm (Gao et al., 2021).136
FastMAPOL provides an efficient way to conduct aerosol and ocean color retrievals using efficient neural137
network (NN) forward models, while the data screening approach can automatically and adaptively identify138
and remove observations at view angles that cannot be well-represented by the forward model. Using139
AirHARP data, we will demonstrate the effectiveness of the data screening and how retrieval uncertainty140
changes after a portion of angles are removed.141

MAPDS requires extra retrieval iterations and therefore slows down the retrieval. Retrieval speed can142
be improved using the neural networks for MAP measurements in both inverse model (Di Noia et al.,143
2015; Di Noia and Hasekamp, 2018), as well as forward models for ocean reflectance (Fan et al., 2019;144
Mukherjee et al., 2020) and coupled atmosphere and ocean model models (Gao et al., 2021). Another way145
to compensate for the increased computational cost, and also improve the overall FastMAPOL retrieval146
speed, is to improve the calculation of the Jacobian matrix that guides retrieval to a solution. This is147
challenging in MAP inversions due to the large number of retrieval parameters. To expedite the calculation,148
linearized radiative transfer models based on forward-adjoint perturbation theory have been developed149
(Schepers et al., 2014; Spurr, 2008). However, the linearization of the radiative transfer code requires150
sophisticated algorithm development. Instead, we employ automatic differentiation (AD) based on the NN151
forward model that acts as our radiative transfer (RT) emulator (Gao et al., 2021). AD Jacobians are based152
on the chain rule of derivatives (Baydin et al., 2018) and successfully reduce computational expense.153

NASA’s PACE mission includes a hyperspectral scanning radiometer named the Ocean Color Instrument154
(OCI) and the two above-mentioned MAPs: HARP2 and SPEXone (Werdell et al., 2019). Together they155
will collect a large amount of multi-angle, hyperspectral, polarimetric measurements essential for the156
characterization of atmosphere and ocean states (Remer et al., 2019a,b; Frouin et al., 2019). To facilitate157
cross-calibration and data synergy, the measurements from all three PACE instruments will be projected158
onto a common PACE Level-1C data format with a uniform spatial grid. Aerosol and ocean color retrievals159
based on multiple instruments, with larger data volume, require even higher computational efficiency. The160
combination of FastMAPOL and data screening provide an efficient approach to analyze and process the161
large volume of measurements from PACE, either from one instrument or in combinations with others.162

The impacts of ocean color retrievals from data screening will be also discussed in this study. To derive163
ocean color signals from the MAP measurement, we conducted atmospheric correction by subtracting164
the contributions of the atmosphere and ocean surface from the spaceborne or airborne measurements165
taken at the top of atmosphere (TOA) (Mobley et al., 2016). Note that for non-polarimetric ocean color166
sensors, neural networks trained on simulated TOA reflectance have been developed to conduct atmospheric167
correction. For example, the Case 2 Regional Coast Colour (C2RCC) algorithm has been applied on ESA’s168
MEdium Resolution Imaging Spectrometer (MERIS) measurements (Doerffer and Schiller, 2007), and the169
Ocean Color - Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART) algorithm has been applied170
on NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) measurements (Fan et al., 2021).171
In this study, neural networks are trained to represent the radiative transfer forward model over coupled172
atmosphere and ocean system which is used in the inversions of both aerosol and ocean parameters (Gao et173
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al 2021). The retrieved aerosol microphysical properties are then used to conduct the atmospheric correction174
on the multi-angle measurements. This procedure also allows the application of the MAP retrieved aerosol175
properties to atmospheric correction of co-located hyperspectral measurements from other sensors, such as176
PACE OCI (Gao et al., 2020; Hannadige et al., 2021).177

This paper is organized as follow: Section 2 provides the methodology including the retrieval algorithm,178
NN forward model and AD Jacobian matrix; Section 3 describes synthetic HARP2 and AirHARP data179
retrievals to address question 1); Section 4 covers AirHARP filed data retrievals which address question 2)180
and 3); Section 5 discusses cloud mask and uncertainty analysis; Section 6 is the conclusions.181

2 METHODOLOGY

2.1 Aerosol and ocean color retrieval algorithm182

This study is based upon the efficient aerosol and ocean color retrieval algorithm FastMAPOL (Gao183
et al., 2021), which uses a NN forward model to conduct vector radiative transfer calculations for a184
coupled atmosphere and ocean system (Zhai et al., 2009, 2010). The forward model assumes a three-layer185
atmosphere: the bottom layer from ocean surface to an altitude of 2 km containing aerosols and molecules,186
a molecular layer between 2 km and the aircraft (at 20km), and an additional molecular layer above the187
aircraft.188

A total of 15 parameters are used in the forward radiative transfer simulation, as listed in Table 4 from189
Appendix A (more details in Gao et al. (2021)). The aerosol optical properties are determined by the fine190
and coarse mode complex refractive indices (total 4 parameters), and the volume densities (µm3µm−2)191
for five aerosol size submodes with each submode following a log-normal distribution. The mean radii192
and variances of the submodes are prescribed and fixed in the retrieval. The three smaller submodes in193
combination represent the fine mode, and the two larger submodes in combination represent the coarse194
mode. In this study we only consider open ocean waters modeled as a uniform layer with its bio-optical195
properties parameterized in terms of the chlorophyll-a concentration (Chla, mg ·m−3) (Gao et al., 2019).196
Complex water properties over coastal water require additional parameters in the bio-optical model (Gao197
et al., 2018) which is subject to future investigations. The ocean surface roughness is represented by the198
isotropic model parameterized by wind speed (ms−1) (Cox and Munk, 1954). As mentioned in Sec. 1, the199
sunglint signal measured by AirHARP can not be modeled well by the isotropic Cox and Munk model. In200
addition, it is challenging to accurately represent sunglint in the NN training due to its large amplitude in201
comparison with non-glint angles (Gao et al., 2021). To minimize the impacts of the sunglint, we limited202
the wind speed within 10ms−1 and excluded the view angles within 40◦ from the direction of specular203
reflection for the analysis in the next section. Larger wind speed and the associated white cap will be204
considered in future studies. Therefore, total 11 parameters are retrieved by FastMAPOL; the other four205
parameters needed by the forward model (viewing and solar zenith angle, relative azimuth angle, and ozone206
profile) are assumed to be known.207

FastMAPOL determines optimal values of state parameters by minimizing the difference between the208
measurements and the NN forward model prediction. An iterative optimization approach is used as209
summarized in Fig. 1 (a). The NN forward model computes the reflectance and degree of linear polarization210
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(DoLP), defined as211

ρt =
πLt
µ0F0

, (1)

Pt =

√
Q2
t + U2

t

Lt
, (2)

where Lt, Qt, and Ut are the Stokes parameters at the sensor altitude, F0 is the extraterrestrial solar212
irradiance, µ0 is the cosine of the solar zenith angle. The differences between measurements and model213
predictions are represented by a cost function χ2 based on Bayesian theory (Rodgers, 2000):214

χ2 (x) =
1

N

∑
i

(
[ρt(i)− ρft (x; i)]2

σ2ρ(i)
+

[Pt(i)− P ft (x; i)]2

σ2P (i)

)
(3)

where ρft and P ft are the reflectance and DoLP computed from the NN forward model. The state vector215
x contains the forward-modeled parameters described above; the subscript i stands for the index of the216
measurements (where one “measurement” is defined as a pair of reflectance and DoLP) at different viewing217
angles and wavelengths; and N is the total number of measurements used in the retrieval. The maximum218
possible N assuming all angles are available is summarized for various MAPs in Table 1, which is 240 for219
AirHARP and HARP CubeSat, and 180 for HARP2.220

The total uncertainties of the reflectance and DoLP used in the algorithm are denoted by σρ and σP ,221
respectively. These include contributions from the instrument uncertainties σins, the NN forward model222
uncertainties σNN , and the radiative transfer simulation uncertainties σRT used to train the NN:223

σ2ρ = σ2ρ,ins + σ2ρ,NN + σ2ρ,RT (4)

σ2P = σ2P,ins + σ2P,NN + σ2P,RT (5)

Table 2 summarizes the uncertainties used in this study; the values of σρ,NN and σρ,RT were determined in224
Gao et al. (2021) with the same NN models as used in this study. Note that, at present, uncertainties are225
assumed spectrally and angularly uncorrelated.226

Table 2. Uncertainties for reflectance (ρ) and DoLP (P) for both measurement and forward model used in
this study including instrument uncertainty (σins), the radiative transfer simulation uncertainty (σRT ), and
the NN uncertainty (σNN ). Different σP,ins is used for AirHARP and HARP2 but with the same σρ,ins.

Uncertainties 440nm 550nm 670nm 870nm
σρ,ins(Both) 3% 3% 3% 3%
σρ,RT 0.08% 0.07% 0.2% 0.4%
σρ,NN 0.4% 0.5% 0.6% 1.0%
σP,ins(AirHARP) 0.01 0.01 0.01 0.01
σP,ins(HARP2) 0.005 0.005 0.005 0.005
σP,RT 0.0002 0.0002 0.0005 0.0007
σP,NN 0.0016 0.0020 0.0024 0.0030

The FastMAPOL retrieval follows the flow chart in Fig. 1 (a). In each iteration, if χ2 is larger than a227
threshold, the state parameter x is updated to compute both ρft and P ft , and a new value of cost will be228
computed. The Jacobian matrix (the gradient of the cost function with respect to x) is used to determine the229
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magnitude and direction for the updated estimate of x. This process iterates until the convergence criterion230
is met:231

|χ2i − χ2i−1|
χ2i

< η (6)

where i is the iteration index in optimization, and ε is the convergence tolerance, taken as 0.01 in this study.232

The convergence of the retrievals can be examined by the cost function histogram over an ensemble of233
retrievals (more discussion in the next section). If the retrievals converge well, the normalized cost function234
histogram can be represented by the theoretical probability density function (PDF) of the χ2 distribution :235

f(χ2, k) =
(χ2)k/2−1kk/2e−χ

2k/2

2k/2Γ(k/2)
(7)

Where χ2 is the cost function (Eq. 3), k is the degree of freedom (DOF), Γ(k/2) denotes the gamma236
function (James, 2006)). The PDF is useful in understanding the behavior of the retrieval cost function237
distributions with different numbers of measurements used. After neglecting potential correlation between238
measurement uncertainties, we can approximate the DOF by the total number of measurements N, which239
shows good representation as demonstrated in the next section. Note that the DOF refers to the retrieval240
residuals in the cost function (Eq. 3), which are mostly contributed by the noise and uncertainties in the241
measurements and forward model. The DOF is likely between N and N-11, where 11 is the total number of242
retrieval parameters. The actual number of DOF can be determined from the Jacobian matrix and error243
covariance matrix (Rodgers, 2000).244

2.2 Adaptive data screening245

Based on the FastMAPOL retrieval algorithm, the MAPDS data screening approach, which conducts246
automatic data quality analysis and data screening, is summarized in the flowchart of Fig. 1 (b). After247
each converged FastMAPOL retrieval, the residuals between each measurement and the forward model248
prediction are used to evaluate the data quality under the criteria:249

|∆ρt|
σρ

< ξ,
|∆Pt|
σP

< ξ (8)

where the residuals are compared with the uncertainty model defined in the cost function of Eq. 3, and ξ is a250
threshold. When either the reflectance or DoLP does not satisfy the criteria, the corresponding measurement251
is excluded from the cost function calculation (i.e. the view angle which cannot be represented well by252
the forward model is removed), and a new FastMAPOL retrieval is performed. In practice, additional253
screening rules based on the criteria may be used depending on the data quality of the field measurements254
(illustrated with an example later in Sec.4).This process is repeated until all angles remaining satisfy Eq. 8.255
Note that the whole data screening process will include several retrieval passes, each involving multiple256
iterations until convergence. At the end of each retrieval pass based on the new forward model fittings, all257
measurements used in the retrieval are evaluated through Eq. 8 and subsequently excluded from the next258
round if they failed to pass. The data screening approach is an adaptive process, since it depends on the259
fitting at each iteration for each pixel. A threshold value of ξ = 3 is used in this study, which can be further260
tuned when more data is available. We found at most three passes of retrievals are sufficient to remove261
most of the problematic angles. Since the retrieved parameters from last retrieval can be used as the initial262
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values to the next retrieval as shown in Fig.1, the total speed to conduct data screening are usually less than263
three times of the single round retrieval.264

2.3 The NN forward model and automatic differentiation265

The MAP retrievals are often computationally expensive due to their high dimensionality and iterative266
nature, with multiple forward model and Jacobian calculations. The data screening approach developed267
here further increases the demand for CPU computations because the retrieval must be repeated several268
times. Therefore, fast forward model and Jacobian matrix calculations are advantageous for efficient269
processing, which was a motivation for the use of NN forward models for AirHARP in (Gao et al., 2021).270
In this work we further improve the efficiency through automatic differentiation to compute the Jacobian271
matrix analytically (as opposed to numerically through finite differencing), exploiting the differentiable272
properties of the NN models.273

The NN forward model developed in Gao et al. (2021) is a feed-forward neural network as defined in274
Table 3, where h0 = x is the input layer that contains all 15 forward model parameters. Two sets of weight275
matrix Wp+1 and bias vector bp+1 have been determined from the NN training process for reflectance and276
DoLP respectively (Gao et al., 2021), both with three hidden layers (k = 3) of 1024, 256 and 128 nodes.277
Correspondingly, y is the output layer for either reflectance or DoLP at the four AirHARP bands.278

For application to multi-angle measurements, the NN needs to be called to simulate y for each set of279
viewing and solar geometries for the state vector x. Elements of the Jacobian matrix are defined as follows:280

Kmij =
∂ymi
∂xmj

(9)

Here index m indicates the viewing and solar angles, index i indicates the wavelength, and index j indicates281
the state parameter. Table 3 illustrates the structure of the NN and how the Jacobian matrix is calculated282
based on the trained weights. In that table, the nonlinear activation function Φ is the LeakyReLU function,283
which is defined as284

Φ(Z)mi = max(0,Zmi) + α×min(0,Zmi). (10)

where α = 0.01 , and Z is a matrix with m and i as its indices. The derivative with respect to each element285
in Φ is defined:286

Dmi =
Φ(Z)mi

Zmi
=

{
1 if Zmi > 0

α if Zmi < 0
(11)
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Table 3. NN forward model and its Jacobian matrix computed by the forward mode and reverse mode of
automatic differentiation (AD). The arrows indicate the order of steps for each process.

Layers NN forward model AD: Forward mode AD: Reverse mode
Input h0 = x ḣ0,mij = δij Kmij = h̄0,mij

Layer 1 h1 = Φ(WT
1 h0 + b1) ḣ1,mij = D1,miW

T
1,ij h̄1,mij = h̄2,milD2,mlW

T
2,lj

Layer p+1 hp+1 = Φ(WT
p+1hp + bp+1) ḣp+1,mij = Dp+1,miW

T
p+1,ilḣp,mlj h̄p,mij = h̄p+1,milDp+1,mlW

T
p+1,lj

Output y = WT
k+1hk + bk+1 Kmij = ẏmij = WT

k+1,ilḣk,mlj ȳmij = WT
k+1,ij

∗For brevity, the summation of index l is implied following the Einstein notation.

The finite difference (FD) method was used to compute the Jacobian matrix in FastMAPOL in (Gao et al.,287
2021), where the NN forward model was called twice per input parameter under the central difference288
approximation of derivatives. To reduce the computational cost, the Jacobian matrix can be derived289
analytically from the NN forward model using AD based on the chain rule of differentiation (Baydin et al.,290
2018). Two recursive relations are obtained to compute the Jacobian matrix as shown in Table 3, where the291
forward mode indicates the evaluation sequence from the first layer to the last layer, and the reverse mode292
indicates the evaluation sequence from the last layer to the first layer. To represent the recursive relations,293
we define ḣp (tangent) and h̄p (adjoint) as follows:294

ḣp,mij =
∂hp,mi
∂xmj

, (12)

h̄p,mij =
∂ymi
∂hp,mj

(13)

Note that h is defined in Table 3 (left column) as the output from each hidden layer of the NN. The Jacobian295
matrix can be represented by AD with either the tangent or the adjoint forms as the last step in Table 3:296

Kmij = ẏmij , (14)

Kmij = h̄0,mij , (15)

where Eqs. 14 and 15 are computed from the forward and reverse mode AD, respectively. Forward and297
reverse AD produce identical results, but differ in computational efficiency due to the different sequence of298
matrix operations and NN architecture. For optimal efficiency, we implemented AD directly based on the299
formalism summarized in Table 3 using the Pytorch library (Paszke et al., 2019). The arrows in the table300
indicate the order of calculation steps. NN forward model can be computed layer by layer, with the output301
from the previous layer as the input to the next layer. The forward mode AD can be computed in the same302
sequence as the NN forward model as shown in Table 3. The reverse mode AD is computed from the last303
layer backward to the first layer. Note that AD in both modes requires the values of matrix D as defined in304
Eq. 11, which is determined by the output of the NN forward model at each layer.305

For the NN used in this study, AD in reverse mode provides the highest efficiency as investigated further306
in the next section. The AD methods are efficient and accurate in computing the Jacobian matrix, providing307
a convenient way to accelerate algorithms like FastMAPOL with a large number of retrieval parameters,308
making them more suitable for practical applications.309
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3 SYNTHETIC AIRHARP AND HARP2 DATA RETRIEVALS

3.1 Synthetic data310

We performed radiative transfer simulations to generate 1,000 sets of synthetic polarized reflectances311
for a coupled atmosphere and ocean system as discussed in Sec 2 and Gao et al. (2021). Here, we use312
a fixed solar zenith angle of 50◦ as this is approximately the solar zenith angle in the AirHARP field313
campaign data used in Sec 4. Input parameters and their range are listed in Table 4; Chla is randomly314
sampled from a log-uniform distribution, AOD at 550nm is sampled uniformly within [0,0.5], and the315
fine-mode volume fraction is sampled uniformly within [0, 1]. All the other parameters in Table 4 are316
sampled uniformly, except aerosol volume densities (which are determined by AOD and fine mode volume317
fraction). Simulations are performed with a view angle sampling of 1◦. Random noise is added to the318
measurement according to the instrument uncertainties shown in Table 2.319

In order to generate realistic viewing geometries we represent the orbit geometry as shown in Fig. 2,320
where the viewing angles (θv, φv) can be sampled according to the along-track and cross-track angles321
indicated in the figure,322

tanφv =
tan θc
tan θa

, (16)

tan θv =
tan θc
cosφv

, (17)

where θa and θc are the along-track and cross-track viewing angles. We use a set of predefined θa values323
(120 angles for AirHARP, 90 for HARP2) and then randomly sampled θc within ±47◦ according to HARP324
instrument characteristics. The resulting example geometries are shown in Fig. 3 (a). Sunglint with view325
angles within a conservative angle of 40◦ relative to the direction of specular reflection are excluded as326
indicated in Fig. 3. The simulated reflectance and DoLP are interpolated into this viewing geometry, each327
with a random value of θc. Note that Fig. 2 is a simplified PACE orbit geometry with the solar azimuth328
angle in the along-track direction; the curvature of Earth’s surface is neglected.329

To evaluate the retrieval uncertainties using different numbers of viewing angles, we reduce the number330
of available viewing angles by assuming the MAP measurements are blocked randomly by clouds. Two331
cloud configuration schemes are considered:332

1. Cloud blocking the center part of the measurements, leaving available angles on both sides. Cloud333
location can move randomly from one side to another side as shown in Fig. 3(b).334

2. Clouds blocking both sides of the measurements, leaving the middle part of cloud-free angles available335
which can also move randomly from one side to another side as shown in Fig. 3(c).336

We generate viewing geometries with the same total number of viewing angles (Nv) for both schemes337
as shown in Fig. 3(b) and (c). We chose 11 different cases with Nv of 5, 8, 10, 15, 20, 25, 30, 40, 50,338
60, and 75 for AirHARP, and similarly for HARP2 with the two largest values as 56 and 58 instead. The339
largest averaged Nv value for both AirHARP and HARP2 corresponds to the case shown in 3(a) with340
only sunglint removed and no cloud present. For the same number of Nv, scheme 1 will result in a larger341
average range of scattering angles than scheme 2. As shown in Table 1, the angular range of HARP2 and342
AirHARP measurements is 114◦, therefore the cloud angular size (as viewed from ground) used to block343
the synthetic data can be estimated as 114◦ −Nv × 114◦/90 for HARP2, and 114◦ −Nv × 114◦/120 for344
AirHARP. Their physical size depends on both their angular size and height.345
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The retrievals are conducted for both AirHARP and HARP2 with their measurement uncertainties346
summarized in Table 2. This provides a total of 44000 retrievals: 1000 (RT simulation cases) × 2 (cloud347
schemes) × 2 (HARP2 and AirHARP) × 11 (total variations in angle number). Note that the total number348
of measurements N equals 10 for the case with Nv = 5, lower than the total 11 retrieval parameters, and349
therefore for that case the inverse problem is ill-posed with non-unique solutions.350

3.2 Retrieval efficiency using FD and AD351

The performance using FD with central difference is compared with the forward mode and reverse mode352
of AD as shown in Table 3 in Sec 2. Fig. 4 compares the retrieval χ2 histogram and the retrieval time353
for the FD and AD methods. The results converge to similar χ2 distributions; the χ2 histograms change354
with respect to the available number of viewing angles, but can be well represented by the theoretical χ2355
distributions from Eq.7 with the same degree of freedom as the total number of measurements (N = 2Nv).356

Retrievals using conventional radiative transfer simulation with FD usually took one hour to converge357
on a CPU (AMD EPYC Processor). Using neural network forward models, the averaged retrieval time358
decreased to 3 s using the same FD method and CPU. With forward and reverse modes of AD, a further359
decrease to 0.6 s and 0.3 s respectively was achieved, which is an increase of speed by a factor of 5 to 10.360
With GPU processing (GeForce GTX 1060), the retrieval times were 0.08 s and 0.05 s, another factor of361
6 faster than CPU. AD in reverse mode provides the highest efficiency and will be used in the following362
discussions as the default method.363

3.3 Aerosol retrievals364

In this section, we compare the retrieval error as a function of the number of available viewing angles.365
The retrieval error (except Chla), shown in Fig. 5, is defined as the root mean square error (RMSE) between366
the retrieval results and the simulated truth. The retrieval error of Chla is represented by the Mean Averaged367
Error (MAE) in log scale which is a better metric for Chla as recommended by Seegers et al. (2018), and368
indicates the averaged ratio between the retrieval and truth values. The definition and performance of the369
retrieval error under different Chla range can be found in Gao et al. (2021). While it is well known that370
retrieval uncertainties depend on the aerosol loading (cf. Gao et al. (2021) for AirHARP data), for the371
convenience of discussion here, the retrieval errors are averaged over all cases with AOD within [0.01,372
0.5]. The cloud blocking scheme 1 (S1) generally produces smaller errors than scheme 2 (S2), which has373
a smaller range of scattering angles. However, coarse mode veff seems less sensitive to the number of374
viewing angles and does not have a clear advantage between S1 and S2. Errors for HARP2 are also smaller375
than AirHARP due to the lower expected DoLP calibration uncertainty in HARP2.376

Generally, the errors decrease rapidly as the total number of angles increases to 20 (corresponding to377
2× 20 unique measurements including both reflectance and DoLP across four HARP bands). For HARP2,378
improvement continues for AOD, SSA, mr, reff , veff up to 40-50 angles; Chla performance seems to379
plateau around 20 angles. AOD error decreases the most, by a factor of 3 from 0.06 to 0.02. The total380
SSA error also decreases by a factor of two (from 0.06 to 0.03), but for modal (either fine or coarse mode)381
SSA and mr,reff and veff , it only reduces by about 1/3 of its maximum error. Due to the removal of382
sunglint, the wind speed errors are relatively large with a value of 2 to 3 ms−1. For AirHARP data, the383
decrease of the error is less pronounced due to the larger DoLP uncertainties of this sensor (Table 4), and384
30 angles are generally needed, with marginal improvement after reaching 40 or more angles. Therefore a385
total 20-30 angles across all bands, i.e. five to eight viewing angles per band on average, seem sufficient to386
achieve good retrieval performance. As an example of having 30 continuous angles available for HARP2387
measurements, the cloud angular size can be estimated to be 76◦ following the discussion in Sec 3.1.388
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3.4 Remote sensing reflectance389

The ocean signals are represented by the remote sensing reflectance, defined as the ratio between390
upwelling water-leaving radiance and the downwelling irradiance just above the ocean surface (Mobley391
et al., 2016). Through atmospheric correction, the remote sensing reflectance can be derived as:392

Rrs =
(ρt − ρft,atmsfc

)

π

[
CBRDF

T f,+d tf,+d

]
(18)

where the reflectance contributed by the atmosphere and ocean surface (ρfatm+sfc) and the transmittance393

and BRDF corrections [CBRDF /T
f,+
d tf,+u ] can be evaluated using the NN model in Gao et al. (2021) based394

on the retrieved aerosol and ocean properties. The viewing angle closest to nadir is used to compute Rrs.395

Comparing the retrieved Rrs with the truth data computed from radiative transfer simulation with sun at396
zenith and viewing angle at nadir, The last row in Fig. 5 shows Rrs uncertainties in terms of RMSE for397
those simulations with AOD(550nm) < 0.2. Note that the Rrs uncertainties do not include the contribution398
from the additional random noise added in the synthetic data, therefore it is only used to represent the399
impacts from the aerosol and ocean surface property retrievals. For the application to PACE data, the400
calibration uncertainties for OCI is less than 0.5%, which can also be used to cross-calibrate PACE MAP401
measurements and therefore reduce the impacts of the MAP calibration uncertainties in Rrs evaluation. To402
achieve the PACE mission Rrs uncertainty goals (shown in the Fig. 5), the results suggest we need at least403
a total of 30 unique HARP angles for Rrs at 440 nm, approximately 10 to 20 angles for all other bands.404
With larger AOD in the range of [0.3,0.5], the errors increase up to 0.001 even when all angles are used405
(not shown) as accurate atmospheric correction becomes more challenging due to the increased signal from406
aerosols.407

4 AIRHARP FIELD DATA RETRIEVALS
The ACEPOL field campaign conducted aerosol and cloud measurements from the NASA high altitude408
ER-2 aircraft from October to November of 2017 over a variety of scenes including oceans, urban areas,409
intensive agriculture, forests and high desert around California, Nevada and Arizona (Knobelspiesse et al.,410
2020). The field campaign involved four MAP instruments including AirHARP, AirMSPI, SPEX airborne,411
and RSP (Table 1), as well as two lidar sensors – HSRL-2 (Burton et al., 2015) and CPL (the Cloud Physics412
Lidar) (McGill et al., 2002). Aerosol retrievals have been conducted based on the MAP measurements413
from ACEPOL (Fu et al., 2020; Puthukkudy et al., 2020; Gao et al., 2020; Hannadige et al., 2021; Gao414
et al., 2021). Simultaneous aerosol and ocean color retrievals have been performed over three AirHARP415
scenes (Gao et al., 2021). In this study we focus on AirHARP Scene 2 where cirrus clouds were reported to416
impact the aerosol retrievals. A portion of AirHARP viewing angles impacted by the water condensation417
on the instrument front lens has been removed from the dataset.418

The RGB images of AirHARP Scene 2 at three different viewing directions with θa = −20◦, 0◦, 20◦419
are shown in Fig. 7 (a1-c1). Two cloud patches are indicated in Fig. 6 as A and B. Due to the parallax420
effect (the data are geolocated to the surface while the clouds are elevated), A and B appear at different421
locations when viewed from the three angles. Since our data screening criteria are applied to each angle422
and wavelength combination, the approach is not affected by the data being geolocated to an altitude other423
than cloud top. As discussed in the next section, a multi-angle cloud mask can be developed based on data424
geolocated at the surface.425
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4.1 Adaptive data screening426

To identify and remove cloud-affected view angles, we apply the data screening approach (MAPDS) as427
explained in Fig. 1 (b). Fig. 7 provides an example comparing the measurement and fitted reflectance and428
DoLP from one pixel near cloud A after the first pass of retrievals. Here σρ and σP indicate the uncertainties429
used in the cost function, ∆ρt and ∆Pt indicate the residuals (difference between the forward model and430
measurements), and ∆ρt/σρ and ∆Pt/σP the normalized residuals as used in the cost function (Eq. 3).431

The blue shaded region was identified as cloud contaminated due to the relatively large ρt/σρ at all bands432
(with the largest at 870 nm), and the large ∆Pt/σP , at the 670 nm band. As a further buffer, we removed433
any angles within 4◦ of angles screened by either reflectance or DoLP criteria at 550 or 670 nm bands. In434
this way, both reflectance and DoLP measurements in the blue shaded region are excluded. We chose 550435
and 670nm bands as reference based on their higher data quality comparing with other bands (Gao et al.,436
2021) which can be adjusted for application to other datasets. For 440nm and 870nm bands outside of the437
blue and red shaded region, the screening criteria from Eq. 8 are still applied independently for reflectance438
and DoLP, which results in mostly DoLP angles removed. The final retrieval (at the third retrieval pass) is439
done using the remaining measurements after data screening and resulted in a value of χ2 reduced from440
4.98 to 0.6, and the retrieved total AOD reduced from 0.064 to 0.052.441

For the AirHARP data used in this study, the measurement uncertainties were larger than expected at 440442
and 870 nm (Gao et al., 2021). In that study, DoLP measurements from the 440 nm band were excluded443
manually. In this study, the adaptive screening approach is able to automatically identify and remove the444
problematic angles at 440nm band, providing an automatic data quality control mechanism.445

4.2 Retrieval results446

Fig. 8 shows retrieval results with and without the adaptive data screening. As seen in Fig 8(a1), the447
maximum number of total viewing angles is 120 around the center upper region. The elongated region448
with large χ2 values in Fig. 8(c1) is due to the impacts of the cirrus cloud (Fig. 7). Clouds can be viewed449
from a broader range of pixels in the along-track direction, which impacts the retrieval performance. The450
retrieved AOD at 550 nm in Fig. 8(d1) has a clear covariation with χ2 with the highest AOD around clouds451
A and B. The Rrs at 550 nm are mostly smooth with small variations that seems to also relate to cloud452
patterns Therefore, the maximum number of viewing angles for DoLP is around 100 as shown in Fig. 8(b1)453
(recall as discussed above DoLP at 440nm was excluded from retrievals in Fig. 8). Fig. 8 (a2-e2) applied454
the criteria of of Nv > 30 and χ2 < 2 to ensure the retrieval quality, removing most of the pixels around455
the clouds due to the large χ2 values and leaving an elongated holes in the retrieved AOD and Rrs.456

After applying the MAPDS screening process, the number of available angles around clouds are reduced457
(Fig. 8 a3 and b3) and χ2 (Fig. 8 c3) becomes much more uniform. Similarly, as seen in Fig. 8 (d3), the458
prominent large AOD regions around points A and B are reduced. Most of the cirrus cloud features for459
Rrs from Fig. 8 e1 are removed as shown in Fig. 8 e3 . There are still minor remaining artifacts for Rrs460
in Fig. 8 e3 which can be further reduced by choosing a smaller χ2 threshold in the analysis. Note that461
the data screening process also removed some of the original viewing angles closest to nadir and the new462
Rrs can be computed using an angle further away which helps reduce the impacts of cirrus cloud on Rrs.463
Future improvement may require using multiple angles to analyze Rrs. After applying the criteria of of464
Nv > 30 and χ2 < 2 in Fig. 8 (a4-e4), the pixels removed are mostly around the edge of the image due to465
the small number of available viewing angles. The Nv criterion is important to ensure a sufficient number466
of measurements used in the retrievals.467
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As shown in Fig. 8 (d2), the criteria Nv > 30 and χ2 < 2 result in many retrievals being discarded when468
all angles are used in the processing. After applying the data screening, the χ2 are greatly reduced; this469
reduction in χ2 outweighs the decrease in Nv, with the effect that most of these discarded retrievals are470
now retained (Fig. 8 (d4)). The valid retrieval pixels almost doubled after MAPDS. These pixels mostly471
have Nv larger than 50; synthetic retrievals in Fig. 5 imply an AOD retrieval uncertainty of 0.03 for AOD472
up to 0.5. For smaller AOD around 0.1, the retrieval uncertainty can be as low as 0.01 (Gao et al., 2021).473

The retrieved AirHARP AOD at 550 nm is compared with the HSRL AOD at 532 nm in Fig. 9 for two474
lines (a1-a2) across point A, and (b1-b2) across point B. The mean and standard deviation after averaging475
4x4 pixels (2.2km × 2.2km) areas are used in the comparison, and only pixels satisfying Nv > 30 and476
χ2 < 2 are considered. To mitigate the influence from atmospheric turbulence in the field measurement,477
the HSRL AOD is estimated by multiplying an assumed lidar ratio of 40sr with the aerosol backscatter478
coefficient derived from the HSRL technique, and the corresponding AOD systematic uncertainty is479
estimated to be 50% (Fu et al., 2020). An additional cirrus cloud mask, which uses thresholds of backscatter480
ratio greater than 1 (backscatter ratio is the ratio of the particulate backscatter to molecular backscatter)481
and particulate depolarization greater than 0.2 above 8 km, has been applied on the HSRL-2 data. The482
AirHARP AOD fills in the data gaps due to the cirrus cloud mask between HSRL AOD results with a483
few overlapped pixels. The retrievals with all angles in Fig. 9 (b1) show differences of 0.019 between the484
averaged AOD from AirHARP and HSRL, but after applying the data screening, these differences reduce485
to 0.005 in Fig. 9(b2). The averaged difference shown in (a1) and (a2) are similar to each other with a value486
of 0.01. However, a peak in Fig. 9 (a1) with a magnitude of 0.17 is reduced to a value of 0.07 after the487
angles influenced by cloud are removed in Fig. 9(a2). Similarly, the peaks in Fig. 9(b1) with a value up to488
0.15 is reduced to below 0.09 as shown in Fig. 9(b2).489

However, there are small variations of the retrieved AOD in the vicinity of cloud locations, which may be490
related to light scattering from the 3D structure of cloud and/or aerosol humidification effects. The small491
inhomogeneity of Rrs near clouds may be due to the artifacts from the aerosol retrievals or the presence of492
cirrus clouds. The pixels which are influenced by the cirrus cloud can be identified from the remaining493
number of measurement angles (Nv).494

5 DISCUSSION

5.1 Retrieval uncertainties and cost function495

Retrieval uncertainties can be evaluated in two ways: 1) the truth-in and truth-out studies as for the496
synthetic data in Sec 3, where the retrieval errors are evaluated by comparing the retrieval results with497
the truth data in the synthetic data; 2) Using error propagation based on the Jacobian matrix. The second498
method is effective to evaluate the retrieval uncertainties and have been used to study MAP measurements499
(Knobelspiesse et al., 2020) and more broadly in aerosol remote sensing (Sayer et al. (2020) for a review).500
However, it represents a best-case uncertainty, as it is based on various assumptions including that our501
knowledge on the uncertainty models in the cost function (Eq. 3) are accurate, that the retrievals converge502
to their global minimum, and that the forward model is close to linear near the solution (see Povey and503
Grainger (2015) for a review). Retrieval first guesses are important, as convergence to local minima when504
starting from different initial values can be a problem for high-dimensional retrievals (Gao et al., 2020)505

The histogram of χ2 for retrievals with all angles and with the adaptive screening are shown in Fig.506
10, with most probable values of 1.85 and 1.35 respectively. Because these values are larger than 1, the507
retrieval uncertainty budget for σρ and σP (Table 2) may underestimate the real total uncertainties. The total508
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number of reflectance and DoLP measurements used in the retrieval are 112 and 85 on average according509
to Figs. 8 (a1) and (b1), and Figs. 8 (a3) and (b3), respectively. The theoretical χ2 distribution from Eq.510
7 with degree of freedom of 85 can represent the histogram for MAPDS well after normalizing its most511
probable value to the same value of 1.35 as for the histogram. However, the width is slightly smaller, which512
may indicate overfitting of the data relating to the uncertainty correlation between angles. The retrieval513
results using all angles have a much wider distribution which cannot be approximated by theoretical χ2514
distribution. The fact that the histogram after adaptive screening matches the theoretical expectation more515
closely indicates that the rejected angles led to outliers as they did not fit the assumed forward model and516
(Gaussian) uncertainty assumption. To evaluate retrieval uncertainties using error propagation in future517
studies, the total uncertainties may need to be multiplied by a factor of 1.35 due to this cost mismatch. A518
further complication, not widely addressed in the remote sensing community, is that this work (and many519
others) assumes no spectral or angular correlation between measurement/forward model uncertainties, or520
between errors in nearby pixels. As discussed by Sayer et al. (2020), this has consequences in terms of521
uncertainty estimates and cost function when these correlations exist in the real world. However, these522
correlations are hard to incorporate into retrievals because their magnitudes are, in most cases, poorly523
known. The presence of correlations also complicates the theoretical χ2 distribution, and a more complex524
generalized χ2 distribution should ideally be used to determine optimal cost thresholds for data filtering, if525
correlations can be determined.526

5.2 MAPDS as a cirrus cloud mask527

The RGB images in Fig. 6 indicated two cloud patches, which can be identified and removed by MAPDS.528
In this sense the screening can serve as an angle-by-angle cloud mask for multi-angle data. Fig. 11(a1-c1)529
shows the reflectance at 670 nm for the same three viewing angles of Fig. 6, and indicates the angles530
identified by MAPDS at 670 nm, which correspond to clouds A and B very well. The lengths for cloud531
A and B in the along-track direction are estimated to be around 5 to 8 km. The displacement between532
the cloud A locations in Fig. 11 (a2) and (c2) is estimated through the cross correlation of the masked533
reflectance from Fig. 11 (a2) and (c2) in the along-track lines, which shows a change of distance (∆d) of 7534
to 9 km. With the angular span of 2× 20◦, the height of the cloud can be estimated as ctan(20◦)×∆d/2535
which is 10 to 12 km. This assumes no significant cloud motion in the along-track direction during the time536
interval between the measurements at the two viewing directions. Note that we have assumed the cloud537
is not moving during the time interval when conducting measurements at the two viewing directions. A538
more precise treatment considering cloud motion may be conducted by involving more viewing angles at539
different observing times.540

The screening could be used to generate a cloud fraction by dividing the number of viewing angles541
impacted by clouds by the total number of angles. For PACE, OCI’s viewing angle will be 20◦, and542
SPEXone viewing angles include both ±20◦ viewing angles (and other three angles), therefore a HARP2-543
derived MAPDS cloud mask could be used to complement cloud masks generated by OCI and/or SPEXone.544
This possibility will be assessed in future studies when PACE data are available.545

5.3 Data quality control546

In this study, we discussed the removal of angles for the HARP measurements by filtering out view angles547
that are problematic for aerosol retrievals to improve data quality. Analogous concepts may be applied548
to other instruments, such as in the hyperspectral rather than angular domains for OCI and SPEXone.549
The removed measurements can also be used to identify instrument artifacts or cases involving excess550
amounts of sunglint due to insufficient information on wind direction, surface slopes, and other factors551
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(Gao et al., 2019). The data with better-modeled glint characteristics can then be used for further analysis552
in simultaneous aerosol and glint retrievals (Knobelspiesse et al., 2021).553

6 CONCLUSIONS
In this study we developed and analyzed a data thinning technique to improve performance of aerosol and554
ocean color retrievals from hyper-angular MAPs by screening and removing problematic measurements555
affected by cloud and other anomalies. We investigated the impact of the number of viewing angles on556
retrieval uncertainty for the AirHARP and HARP2 instruments based on synthetic data, finding that a total557
of 20-30 unique angles across all bands (five to eight viewing angles per band in average) were sufficient558
to achieve good retrieval performance. Therefore, the total number of viewing angles of HARP2 (90)559
and AirHARP (120) allows for some screening while retaining sufficient observations for high-quality560
retrievals.561

We further developed and applied an automatic adaptive data screening approach called MAPDS to the562
AirHARP field measurements. We found that it effectively identified and removed angles influenced by thin563
cirrus clouds, increasing the level of agreement with independent AOD data from airborne HSRL-2, and564
providing an additional angle-by-angle cloud mask. We also found that this screening resulted in a better565
match of retrieval cost to theoretical χ2 distributions. To improve processing efficiency and accuracy, deep566
learning techniques including neural network and automatic differentiation are explored. The FastMAPOL567
algorithm using neural network has demonstrated a factor of 1000 speed improvement. After we replaced568
numerical calculation of Jacobians with automatic differentiation of the neural network forward model, the569
retrieval speed is improved by another factor of 10, more than compensating for the additional overhead of570
the screening process. The FastMAPOL algorithm and the adaptive screening approach provide efficient571
ways to process multi-angle polarimetric measurements for NASA’s Plankton, Aerosol, Cloud, ocean572
Ecosystem (PACE) mission, and can be applied to other modern remote sensing studies where a large573
amount of data collected.574

Appendices575

A RADIATIVE TRANSFER FORWARD MODEL
The NN forward model mentioned in Sec 2 is configured by the input parameters as summarized in Table 4.576
There are a total of 15 parameters used to specify the forward model, as in Gao et al. (2021), except for577
slight adjustments of the parameter ranges for mr and Chla.578
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Table 4. Parameters used to represent the radiative transfer of the atmosphere and ocean system. θ0 and θv
are the solar and viewing zenith angles. φv is the relative viewing azimuth angle. Vi denote the volume
densities for the five aerosol submodes. mr and mi are the real and imaginary parts of the refractive index.
Subscripts f and c refer to fine and coarse mode. Ozone column density (nO3) in the atmosphere, ocean
surface wind speed(w), and chlorophyll a concentration (Chla) are also provided. The minimum (min) and
maximum (max) values determine the parameter ranges used in the retrievals. The initial values are the
ones used in the retrieval algorithm with θ0, θv, φv and nO3 are assumed to be known from inputs.

Parameters Unit Min Max Initial
θ0

◦ 0 70 (Input)
θv

◦ 0 60 (Input)
φv

◦ 0 180 (Input)
nO3 DU 150 450 (Input)
V1 µm3µm−2 0 0.11 0.012
V2 µm3µm−2 0 0.05 0.007
V3 µm3µm−2 0 0.05 0.009
V4 µm3µm−2 0 0.19 0.017
V5 µm3µm−2 0 0.58 0.033
mr,f (None) 1.3 1.65 1.5
mr,c (None) 1.3 1.65 1.5
mi,f (None) 0 0.03 0.015
mi,c (None) 0. 0.03 0.015
w ms−1 0.5 10 5.0
Chla mg ·m−3 0.01 10 0.1

on the AirHARP data. RF, SB and MF provided and advised on the HSRL-2 data. All authors provided585
critical feedback and contributed to the final manuscript.586
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FIGURE CAPTIONS

Figure 1. Flowcharts for (a) FastMAPOL retrievals and (b) retrievals with the multi-angle polarimetric
data screening (MAPDS). In panel (a), ∆χ2 = |χ2i − χ2i−1| indicates the changes of the cost function
between two iterations with η as threshold (Eq. 6). In panel (b), ∆ρt and ∆Pt indicate the difference
between forward model and measurements for reflectance and DoLP with ξ as threshold (Eq. 8). The
dashed box in (b) represents the same retrieval process as shown in the dashed box in (a). A maximum
three passes (indicated by the loop in (b)) are used in the data screening process.
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Figure 2. The observing geometry of the instrument at Z. The direction to an arbitrary location on the
ground V can be determined by the along-track (OX direction) zenith angles θa, and the cross-track (OY
direction) zenith angle θc. The viewing zenith and azimuth angles (θv, φv) can be derived through θa and
θc as shown in Eqs. 16 and 17.

Figure 3. The sampled viewing directions (θv, φv) in the polar plot (four examples are shown with different
color lines): a) with all angles after excluding sunglint (the blue oval); b) Scheme 1: cloud blocking the
central region; c) Scheme 2: cloud blocking both sides. When the cloud sizes are smaller enough, both b)
and c) approach to a). The asterisk indicate the antisolar point.
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Figure 4. Histograms of χ2 and retrieval processing time for synthetic retrievals and varying number of
viewing angles (Nv) used. Solid lines indicate the χ2 distributions with the appropriate DOF equal to the
total number of measurements (2Nv). FD with central difference and AD with reverse mode are compared.
Viewing angles geometries are based on Scheme 2 as shown in Fig. 3(c).
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Figure 5. Retrieval errors in terms of root mean square error (RMSE) from the retrieval of 1000 cases
for AirHARP and HARP2, and with the two schemes of angle screening as shown in Fig. 3. AOD and
SSA RMSE are for the wavelength of 550 nm. Note that the retrieval errors for Chla is represented by the
MAE error of Chla in log scale as used in Gao et al. (2021), which is different from other quantities. Rrs
RMSE at all the four wavelengths with AOD(550nm) < 0.2 are shown in the last row with shaded area
indicating the PACE mission Rrs uncertainty goal. The horizontal axis, Nv, is the total number of angles
used in the retrievals, which is equivalent to the total number of unique measurements of 2Nv including
both reflectance and DoLP across four HARP bands as discussed in Sec. 3.1.

Figure 6. (a1-c1) RGB images of the AirHARP measurements at 10/23/2017 at three different along track
viewing angles(θa = −20◦, 0◦, 20◦. Two cloud patch are indicated by A and B.

This is a provisional file, not the final typeset article 26



Gao et al.

Figure 7. Fitted reflectance and DoLP (circles) and AirHARP measurements (dots) for a pixel near cloud
A after the first pass of retrievals. The blue shaded region was identified by the data screening method as
cloud-contaminated. Most DoLP measurements at 440nm and 870nm at viewing angles larger than 0◦ are
also removed. Measurements within the red shaded region were removed due to water condensation on the
instrument lens.
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Figure 8. Retrievals on the AirHARP scene over ocean without data screening (all angles, first and second
columns) and with MAPDS (third and fourth columns). Panels show the number of viewing angles (Nv)
for the reflectance (a1-a4) and DoLP (b1-b4), retrieval cost function (χ2,c1-c4), retrieved AOD (d1-d4) and
retrieved Rrs (sr−1,e1-d4). The first and third columns show all retrieved pixels; the second and the fourth
columns show pixel satisfying criteria of Nv > 30 and χ2 < 2, respectively. The HSRL AOD at 532nm is
indicated as colored dots in the AOD plots (d1-d4). Same as Fig. 6, two cloud patches are indicated by A
and B.
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Figure 9. Mean (colored dots) and standard deviation (bars) of the retrieved AirHARP AOD at 550nm
averaged over 4× 4 pixels (2.2km× 2.2km) for two along track lines across cloud patch A (line A, a1-a2)
and cloud patch B (line B, b1-b2). HSRL AODs at 532nm are indicated by circles. For the retrieval results
with all angles (a1-b1), most pixels converge into χ2 values larger than 2, but for retrievals with MAPDS
(a2-b2) most pixels converged within χ2 < 2. The χ2 value for the corresponding AirHARP AODs are
indicated by its color label in the plots.

Figure 10. Histogram of the χ2 for Figs. 8 (c1) (with all angles) and (c2) (with MAPDS) with its most
probable values of 1.85 and 1.35 respectively. The average number of measurements including both
reflectance and DoLP used in the retrievals are 112 and 85 respectively. The theoretical curve (red line) is
for 85 degrees of freedom, shifted to the same most probable value of 1.35 as the histogram.
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Figure 11. Same as Fig. 6 but for the reflectance for the red (670 nm) band after Sun glint angles are
removed (a1-c1), and the identified cloudy pixels by MAPDS (a2-c2). Two cloud patches are indicated by
A and B. The linear feature may be due to an artifact from water condensation on the instrument lens.
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