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Resources

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Things you’ll need for the hands-on exercises
– Pencil and paper (or tablet or other writing mechanism)
– A Web browser

• Getting an early start now to save time later
– Bring up the tutorial slides so you can refer back to earlier material when necessary 

(instructions behind your badge)
– Bring up Quirk (https://algassert.com/quirk) in a Web browser and click on the Edit 

Circuit button
• Don’t forget to complete the tutorial survey at the end of the day
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Agenda

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks
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NASA constantly confronting 
massively challenging 
computational problems
• Computational capacity limits 

mission scope and aims

NASA’s Pleiades
One of the top 25 fastest 
supercomputers in the 
world

NASA QuAIL mandate: 
Determine the potential for 
quantum computation to enable 
more ambitious NASA missions 
in the future

Quantum-enhanced 
applications

QC programming

Fundamental quantum 
physics mechanisms

Analytical methodsSimulation tools

NASA Ames QuAIL team

NASA’s Stake in Quantum Computing

Quantum, hybrid quantum-
classical, and  physics-
inspired classical algorithms

15-Nov-2021 3



Birth of Quantum Computing

15-Nov-2021

• Feynman and Manin recognized in the early 
1980s that certain quantum phenomena 
could not be simulated efficiently by a 
computer
– Phenomena related to quantum entanglement; 

Bell’s inequality
• Perhaps these quantum phenomena could 

be used to speed up more general  
computation?
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Computers as Classical Mechanical Machines

15-Nov-2021

• Babbage’s analytical engine was a 
classical mechanical machine

• Turing machines
– The abstraction that underlies complexity 

theory and universal computing machines
– Firmly rooted in classical mechanics
– Described in classical mechanical terms

• Abstraction allowed us ignore how 
classical computers are implemented 
physically
– When we program we don’t think about the 

fundamental physics

• How do different models of physics 
affect how quickly we can compute? 
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Computers as Quantum Mechanical Machines?

15-Nov-2021

Fundamental questions

• How do different models of physics affect how quickly we can 
compute? 
– Suggests new computation-based physics principles 

• How would basing computation on a quantum mechanical model rather 
than a classical mechanical model change our notions of computing? 
– Quantum physics is the physics of our universe

• How quickly does nature allow us to compute? 
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What a Quantum Computer is Not

15-Nov-2021

• Just because a computer uses quantum effects, does not mean it is a 
quantum computer
– All the computers in this building make use of quantum effects
– The fundamental unit of computation, the bit, and the algorithms we design for 

computers did not change when quantum effects were used
• A quantum computer has a fundamentally different way of encoding and 

processing information
– Quantum computers are quantum information processing devices
– They process qubits instead of bits
– They use quantum operations instead of logic gates

• Also, just because a piece of hardware has a certain number of qubits, it 
isn’t necessarily a quantum computer
– A set of light switches, even a very large set, is not a classical computer
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Certainty and Randomness in Quantum Computation 

15-Nov-2021

• Any computation a classical computer can do, a quantum computer can 
do with roughly the same efficiency
– With the same probability of the outcome
– If the classical computation is non-probabilistic, so is the quantum one

• Like classical algorithms, some quantum algorithms are inherently 
probabilistic and others are not
– First quantum algorithms were not probabilistic

• E.g. Deutsch-Jozsa algorithm solves problem with certainty that classical algorithms, of 
equivalent efficiency, could solve only with high probability

– Shor’s algorithms are probabilistic
– Grover’s is not intrinsically probabilistic

• initial search algorithm was probabilistic, but 
• slight variants, which preserve the speed up, are non-probabilistic
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Quantum 
computing can do 
everything a 
classical 
computer can do

and
Provable 
quantum 
advantage known
for a few dozen 
quantum 
algorithms

Unknown quantum advantage
for everything else
Status of classical algorithms
• Provable bounds hard to obtain

– Analysis is just too difficult
• Best classical algorithm not known for most 

problems
• Empirical evaluation required
• Ongoing development of classical heuristic 

approaches 
– Analyzed empirically: ran and see what happens
– E.g. SAT, planning, machine learning, etc. 

competitions

• NISQ era supports unprecedented means 
for empirical analysis of quantum 
algorithms 
– Quantum heuristics come into their own

A handful of 
proven 
limitations 
on quantum 
computing

Conjecture: Quantum Heuristics will significantly broaden 
applications of quantum computing

Current Status of Quantum Algorithms

15-Nov-2021 9



General Purpose:
Universal quantum processors

Google Rigetti

Special Purpose:
E.g. Quantum 
annealers

D-Wave

Noisy 
Intermediate-

Scale 
Quantum 
(NISQ)
devices

Superconducting processors
- Google, IBM, Rigetti, Intel, …

Trapped ion processors
- IonQ, Honeywell, …

Other approaches
- Optical
- Electron spins in silicon 
- Topological, anyon based quantum computing

Number of qubits alone is not a good measure
- Analogy: billions of switches do not a classical computer 

make

Other key factors
- precision, speed, and generality of the control

- particularly operations involving multiple qubits
- how long quantum coherence can be maintained
- stability over time
- speed with which processors can be calibrated

Quantum Hardware

15-Nov-2021 10



… but not useful quantum supremacy.
• Currently too small to be useful for solving 

practical problems
• Early application to certified random number 

generation, but other applications require larger, 
more capable devices

Uses of these still limited, quantum devices? 

(1) Unprecedented opportunity to explore and 
evaluate algorithms, both quantum and hybrid 
quantum-classical heuristic algorithms

(2) Investigate quantum mechanisms that may be 
harnessed for computational purposes

Insights gained feed into next generation
• quantum algorithms
• quantum hardware

One early target: Optimization
Other early targets: ML, Chem & Materials Simulation

Quantum supremacy has been achieved!
• Perform computations not possible 

on even the largest supercomputers
in a reasonable amount of time

Cover article, 
Nature, 24 Oct 
2019

Google, NASA, ORNL collaboration

https://www.nature.com/articles/s4158
6-019-1666-5
https://www.nasa.gov/feature/ames/qu
antum-supremacy

Quantum Computing has Entered the NISQ Era

15-Nov-2021 11



AQO (Adiabatic Q Opt)
• Evolution under

• Slowly enough to 
stay in the ground 
subspace 

QA (Q. Annealing)
• Evolution under

• Many quick runs, 
thermal effect 
contribute

QAOA
• Alternate application 

of  and  
• For p alterations, the 

parameters are  
times/angles

𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻" 𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻"

Quantum Optimization Algs.: QA, AQO, QAOA

15-Nov-2021

• Common elements:
– Cost function: C(z)
– Phase separation operator tied to the cost function,

• Usually based on , but often including “penalty terms” to enforce constraints
– Driver/Mixing operator 

• Most frequently, though we will see reasons to use other mixers

12



Three Group Exercises

15-Nov-2021

• Before going on to a more technical part introducing the fundamentals 
of quantum computation
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Exercise 1

15-Nov-2021

• Which of the following best describes the current status of quantum 
algorithms?
a) Quantum algorithms can beat classical algorithms on every problem, we just need 

to build quantum computers on which to run them!
b) Quantum algorithms have been studied since the early 1990s, and pretty much 

everything is known by now.
c) While there are only a few dozen quantum algorithms known, quantum algorithms 

continue to be discovered, with many more algorithms likely to be identified as 
larger processors are built, enabling the evaluation of quantum heuristics. 

d) Quantum mechanics is the physics of the universe. Every algorithm is a quantum 
algorithm! 
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Exercise 2

15-Nov-2021

• Which statement best describes “quantum supremacy”?
a) “Quantum supremacy” was already achieved in the 1990s by Shor’s algorithm, 

since it is a polynomial time algorithm whereas the best classical algorithms are 
superpolynomial time algorithms.

b) It is well-known that quantum computers can beat classical computers, even 
supercomputers, at everything. “Quantum supremacy” is just a quick way of saying 
that.

c) A quantum processor would demonstrate “Quantum supremacy” if it could perform 
in a practical amount of time a computation that could not be performed on even 
the world’s largest supercomputers in a practical amount of time. It would be 
achieved even if it was demonstrated for only one computation and that 
computation was useless.

d) “Quantum supremacy” will be achieved when quantum computers can run Shor’s 
algorithm on cryptographically relevant numbers.  
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Exercise 3

15-Nov-2021

• Which statement best describes the relation between uncertainty and 
quantum algorithms?
a) Quantum mechanics is by nature uncertain—think the quantum uncertainty 

principle—so unlike classical algorithms, quantum algorithms are inherently 
probabilistic

b) Classical algorithms can be translated to a form that can be run on quantum 
computers, so translations of classical algorithms that answer with certainty, still 
answer with certainty, but if an algorithm makes use of truly quantum effects, it 
cannot provide an answer with certainty

c) Like classical algorithms, quantum algorithms fall in two categories, algorithms that 
provide an answer with certainty and probabilistic algorithms 

d) All algorithms, both quantum and classical, cannot provide a result with certainty—
life is inherently uncertain.
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Agenda

15-Nov-2021

• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks

17



A Simple Experiment: Photon Polarization
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Mathematically Representing Photon Polarization

15-Nov-2021 21

Photon Polarization

Polarization state of a photon

can be represented as a 2-dimensional vector of unit length

Taking horizontal |!i and vertical |"i polarizations as a basis, an arbitrary
polarization can be expressed as a superposition

| i = a|"i+ b|!i

with |a|2 + |b|2 = 1

(Allowing a and b to be complex numbers enables this formalism to
describe circular polarization as well)

|vi is Dirac’s notation for vectors. Means the same thing as ~v or v, with v

being the label for the vector

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 11 / 18



Measurement of Polarization

15-Nov-2021 22

Measurement of polarization

Polarization filters are quantum measuring devices

Quantum measurements always occur w.r.t. an orthogonal subspace
decomposition associated with the measuring device

For a horizontal polarization filter, the basis in which it measures is |!i,
together with its perpendicular |"i

A photon with polarization a|"i+ b|!i is measured by a horizontal filter
as |"i (absorbed) with probability |a|2, and

|!i (passed) with probability |b|2

Any photon that has passed through the filter now has polarization |!i.

Polarization filters at other angles work in a similar way

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 12 / 18



The Photon Polarization Experiment Revisited
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The Photon Polarization Experiment Revisited
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Qubits (Quantum Bits)

15-Nov-2021 26

Quantum bits, or qubits

Think polarization states of a photon!

Any 2-dimensional quantum system can be viewed as the fundamental unit
of quantum computation, a quantum bit or qubit.
Qubit state space is a 2-dimensional complex vector space

A computational basis is chosen, denoted |0i and |1i, and used to encode
classical bit values 0 and 1

Possible qubit values a|0i+ b|1i, for complex a, b with |a|2 + |b|2 = 1.

Unlike classical bits, qubits can be in superposition states such as
1p
2
(|0i+ |1i) or 1p

2
(|0i � i |1i)

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 13 / 18



Measurement of Single Qubits

15-Nov-2021 27

Measurement of Single Qubits

Measuring qubit a|0〉+ b|1〉 in the computational basis {|0〉, |1〉}
returns 0 with probability |a|2

returns 1 with probability |b|2

projects to state to the basis state corresponding to the measurement
result

A qubit can be measured with respect to any orthogonal basis for its
2-dimensional state space

Only one classical bit of information can be extracted from one qubit

No cloning theorem: An unknown quantum state cannot be reliably copied

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 24 / 28



Multiple Qubits 

15-Nov-2021 28

• Qubits combine like quantum particles not classical objects
• Quantum states combine via tensor products not direct products
• The quantum state space, the space of possible states of n 

quantum particles, is exponentially larger than that of n classical 
objects

• 2n instead of 2n
• Entangled states make up the bulk of this space
• No classical analog: The state of entangled multiple particle systems 

cannot be described in terms of the states of the individual particles



High-level View of How State Spaces Combine

15-Nov-2021 29

How State Spaces Combine

Let X be a vector space with basis {|↵1i, . . . , |↵ni} and Y be a vector
space with basis {|�1i, . . . , |�mi}

Classical state spaces combine via
the Cartesian product

X ⇥ Y has basis
{|↵1i, . . . , |↵ni, |�1i, . . . , |�mi}

dim(X ⇥ Y ) = dim(X ) + dim(Y )

= n +m

Quantum state spaces combine via
the tensor product

X ⌦ Y has basis
{|↵1i⌦ |�1i, |↵1i⌦ |�2i, . . . , |↵ni⌦ |�mi}

dim(X ⌦ Y ) = dim(X ) ⇤ dim(Y )

= n ⇤m

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 15 / 18

Scott will go over the mathematics and notation here in more detail in the next 
segment of the tutorial.
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Exponential State Space

15-Nov-2021 31

Exponential State Space

The quantum state of an n qubit system is a vector in a 2
n
-dimensional

space

If B is the state space of a single qubit spanned by {|0i, |1i}, then a

2-qubit system B ⌦ B has basis

{|0i ⌦ |0i, |0i ⌦ |1i, |1i ⌦ |0i, |1i ⌦ |1i},

often written

{|00i, |01i, |10i, |11i},

The standard computational basis for the 2
n
-dimensional complex vector

space B ⌦ B . . .B ⌦ B of an n qubit system is

{|00 . . . 00i, |00 . . . 01i, . . . , |11 . . . 10i, |11 . . . 11i}

We’ll use the notation |5i = |101i when n is understood.

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 26 / 28



Entangled States

15-Nov-2021 32

Entangled states

Entangled states cannot be written as tensor product of independent qubits

Example: An EPR pair 1p
2
(|00i+ |11i)

(a0|0i+ b0|1i)⌦ (a1|0i+ b1|1i)
= a0a1|00i+ a0b1|01i+ b0a1|10i+ b0b1|11i
6= a0a1|00i+ 0|01i+ 0|10i+ b0b1|11i

=
1p
2
(|00i+ |11i)

Measurement of the first qubit yields either |0i or |1i
Measurement changes state to either |00i or |11i
Measurement of second qubit gives same result as first

Similar results when measuring in other bases

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 17 / 18



Entanglement

15-Nov-2021 33

Non-classical behavior
•Two people see completely random results 
from coin tosses

•Completely correlated results!

•But no way to communicate

•Different relativistic frames disagree about who 
flipped the coin first



Quantum Computer (Circuit Model)
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Quantum Computation (Circuit Model)

A quantum computation consists of

initialization of n-qubit register (| i)
quantum state transformation of register

sequence of primitive (1- or 2-qubit) operations (gates) Ui that

collectively perform the transformation of the register

measurement of some or all of the qubits of the register

classical control throughout to

program which quantum steps to carry out

interpret results of quantum measurement

(I ⌦ I ⌦ U4)(U2 ⌦ I ⌦ U3)(I ⌦ U1 ⌦ I )| i
U2

U3

U1
U4

NASA Ames and LANL Introduction to Quantum Computing 17-Nov-2019 28 / 28
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Agenda

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Part I: Quantum-computing fundamentals
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– Qubits, multi-qubit states, and quantum measurement

Morning break
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– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks
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Tensor Products

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• The tensor product, ⊗, multiplies two vectors to produce a longer 
vector or two matrices to produce a larger matrix
– Unlike dot products or matrix multiplication, the two arguments do not have to have 

compatible dimensions
• Operational semantics (loosely specified)

– Multiply each scalar on the left-hand-side vector/matrix by the entire right-hand-side 
vector/matrix

• Vector example

– 𝑎
𝑏 ⊗ 𝑐

𝑑 =

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

,    e.g., 12 ⊗ 3
4 =

1 ⋅ 3
1 ⋅ 4
2 ⋅ 3
2 ⋅ 4

=

3
4
6
8

• Matrix example

– 𝑎 𝑏
𝑐 𝑑 ⊗ 𝑒 𝑓

𝑔 ℎ =

𝑎𝑒 𝑎𝑓 𝑏𝑒 𝑏𝑓
𝑎𝑔 𝑎ℎ 𝑏𝑔 𝑏ℎ
𝑐𝑒 𝑐𝑓 𝑑𝑒 𝑑𝑓
𝑐𝑔 𝑐ℎ 𝑑𝑔 𝑑ℎ

,    e.g., 1 2
2 1 ⊗ 3 1

1 4 =

3 1 6 2
1 4 2 8
6 2 3 1
2 8 1 4
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Basics of Dirac (a.k.a. Bra-Ket) Notation

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Two components: bras and kets

• The label (e.g., “𝜓”) is merely a name and has no 
inherent meaning

• However, some conventions exist:

4

Paul Dirac
1902–1984

⟨𝜓| |𝜓⟩
“Bra” “Ket”

Row vector (adjoint) Column vector

0 ≡ 1
0 1 ≡ 0

1 + ≡
1
2
1
1 − ≡

1
2

1
−1

• Bra times ket: ⟨𝝍|𝝓⟩
– Inner product
– Returns a scalar

• Ket times bra: |𝝓⟩⟨𝝍|
– Outer product
– Returns a matrix

Hence, e.g.,

⟨−| ≡
1
2
1 −1



More on Dirac Notation

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Ket-kets and bra-bras
– 𝑎 |𝑏⟩ includes an implicit tensor product: 𝑎 ⊗ |𝑏⟩
– We routinely simplify this even further to just |𝑎𝑏⟩

– Example: Given that 0 ≡ 1
0 and 1 ≡ 0

1 , then 01 = 0 ⊗ 1 =

0
1
0
0

• Simple cases
– Given two orthogonal kets ↑ and ↓ that are each normalized (this is typical),
– ↑ ↑⟩ = ⟨↓ ↓ = 1 and ↑ ↓ = ↓ ↑ = 0

• Convenient way to reason above linear transformations
– |out⟩⟨in| is an operator that maps |in⟩ to |out⟩ (i.e., by left multiplication) and anything 

orthogonal to |in⟩ to a zero vector: out ⟨in|in⟩ = |out⟩; out ⟨in|out⟩ = 𝟎
• Distributive properties

– Example: assuming 𝑥 ⊥ |𝑦⟩ and ∥ 𝑥 ∥ = ∥ 𝑦 ∥= 1,
– ( 𝑥 ⟨𝑦| − 𝑖|𝑦⟩⟨𝑥|) 𝑥 = 𝑥 ⟨𝑦|𝑥⟩ − 𝑖 𝑦 ⟨𝑥|𝑥⟩ = 𝑥 ⋅ 0 − 𝑖 𝑦 ⋅ 1 = −𝑖|𝑦⟩
– Also, |𝑎⟩⟨𝑏| ⊗ |𝑐⟩⟨𝑑| = |𝑎𝑐⟩⟨𝑏𝑑|

5



Why Use Dirac Notation?

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Dirac notation makes it easier to reason about state transformations 
and probability amplitudes than it is when working with matrices

• Example
– What are the eigenvectors (quantum states) of the matrix

𝑀 ≡

1
4

3
4

3
4

3
4

– that correspond to non-zero eigenvalues (probability amplitudes)?  That is, what 
vector is taken to itself by left-multiplying by that matrix?

– This is a much easier problem when written with bras and kets:

Let 𝑤 ≡ !
"
0 + #

"
1 and 𝑀 ≡ 𝑤 𝑤

– Clearly, |𝑤〉 itself is the eigenvector we’re looking for because 𝑤 〈𝑤| maps |𝑤〉 to 
itself with probability amplitude 1: 𝑤 𝑤 𝑤〉 = 𝑤 ⋅ 1 = |𝑤〉

6



Notation Exercises

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• For the following exercises,
– Define 𝑤 ≡ !

" 0 + #
" 1 , as on the previous slide

– Please work with Dirac notation—don’t convert to explicit vectors/matrices
• Exercise 1: Evaluate 〈𝒘|𝒘〉

– Remember: This is an inner product so you should wind up with a scalar value
• Exercise 2: Expand |𝒘〉〈𝒘|

– Remember: This is an outer product so you should wind up with a matrix 
(represented as a sum of ket-bras)

• Exercise 3: Apply |𝒘〉〈𝒘| to |𝒘〉
– Remember: This is a matrix times a vector so you should wind up with a vector

• Exercise 4: Expand |𝒘𝒘〉
– Remember: |𝑤𝑤〉 ≡ |𝑤〉|𝑤〉 ≡ |𝑤〉 ⊗ |𝑤〉 so you should wind up with a vector

• Challenge exercise:
– Which of the following two states is entangled and which is separable?

!
" |00〉 + |01〉 + |10〉 − |11〉 vs.   !" |00〉 − |01〉 − |10〉 + |11〉

– Remember: Entangled states cannot be written as 𝑎$|0 + 𝑎!|1〉) ⊗ 𝑏$|0 + 𝑏!|1〉)
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Notation Exercises: Solutions

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Exercise 1: Evaluate 〈𝒘|𝒘〉
– 𝑤|𝑤 = !

" 〈0| +
#
" 〈1|

!
" |0〉 +

#
" |1〉 = !

% 0|0 + #
% 0|1 + #

% 1|0 + #
% 1|1 = !

% ⋅ 1 +
#
% ⋅ 0 +

#
% ⋅ 0 +

#
% ⋅ 1 = 1

• Exercise 2: Expand |𝒘〉〈𝒘|

– |𝑤〉〈𝑤| = !
"
|0〉 + #

"
|1〉 !

"
〈0| + #

"
〈1| = !

%
|0〉 0| + #

%
|0 1| + #

%
|1 0| + #

%
|1 〈1|

• Exercise 3: Apply |𝒘〉〈𝒘| to |𝒘〉
– Hard way: |𝑤〉〈𝑤| |𝑤〉 = !

% |0〉 0| +
#
% |0 1| + #

% |1 0| + #
% |1 〈1| !

" |0〉 +
#
" |1〉 =

!
& |0〉 + 0 +

#
& |1〉 + 0 + 0 + #

& |0〉 + 0 +
# #
& |1〉 = !

" |0〉 +
#
" |1〉

– Easy way: |𝑤〉 𝑤|𝑤 = |𝑤〉 ⋅ 1 = |𝑤〉 = !
"
|0〉 + #

"
|1〉

• Exercise 4: Expand |𝒘𝒘〉
– |𝑤𝑤〉 = !

" |0〉 +
#
" |1〉

!
" |0〉 +

#
" |1〉 = !

% |00〉 +
#
% |01〉 +

#
% |10〉 +

#
% |11〉
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Notation Exercises: Solutions (cont.)

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Challenge exercise: Entangled or separable?
• First state

– Can we express !
"
|00〉 + |01〉 + |10〉 − |11〉 as 𝑎$|0 + 𝑎!|1〉) ⊗ 𝑏$|0 + 𝑏!|1〉)?

– Multiplying out the latter gives us 𝑎$𝑏$|00〉 + 𝑎$𝑏!|01〉 + 𝑎!𝑏$|10〉 + 𝑎!𝑏!|11〉
– Goal is therefore to solve {𝑎$𝑏$ = 1, 𝑎$𝑏! = 1, 𝑎!𝑏$ = 1, 𝑎!𝑏! = −1} for {𝑎$, 𝑎!, 𝑏$, 𝑏!}
– Let’s express all variables in terms of 𝑎$.  By the first equation, 𝑏$ =

!
'!

.  By the 
second equation, 𝑏! =

!
'!

.  By the third equation, 𝑎! =
!
(!
= 𝑎$.  But by the fourth 

equation, 𝑏! =
)!
'"
= )!

'!
.  Because !

'!
cannot equal )!

'!
, we cannot express the state as 

𝑎$|0 + 𝑎!|1〉) ⊗ 𝑏$|0 + 𝑏!|1〉) and it is therefore entangled.
• Second state

– Can we express !
"
|00〉 − |01〉 − |10〉 + |11〉 as 𝑎$|0 + 𝑎!|1〉) ⊗ 𝑏$|0 + 𝑏!|1〉)?

– Goal is to solve {𝑎$𝑏$ = 1, 𝑎$𝑏! = −1, 𝑎!𝑏$ = −1, 𝑎!𝑏! = 1} for {𝑎$, 𝑎!, 𝑏$, 𝑏!}
– Let’s express all variables in terms of 𝑎$.  By the first equation, 𝑏$ =

!
'!

.  By the 
second equation, 𝑏! =

)!
'!

.  By the third equation, 𝑎! =
)!
(!
= −𝑎$.  The fourth equation 

confirms that 𝑎! =
!
("
= −𝑎$.  Hence, 𝑎$, 𝑎!, 𝑏$, 𝑏! = {1,−1,1, −1} (remember: 

𝑎* ", 𝑏* " ∈ [0,1]) and the state is therefore separable.

9



The Circuit Model of Quantum Computing
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• A labelled box represents single-qubit operators (2×2 matrix)
• Symbol–vertical line–symbol represents a two-qubit operator (4×4 matrix)
• A quantum circuit is really just a piecewise representation of an enormous 

unitary matrix (2n×2n for an n-qubit system)

– Above: 𝐶𝑁𝑂𝑇 𝐻⊗ 𝑌 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

!
"
1 1
1 −1 ⊗ 0 −𝑖

𝑖 0 = !
"

0 −𝑖 0 −𝑖
𝑖 0 𝑖 0
𝑖 0 −𝑖 0
0 −𝑖 0 𝑖

H

Y

|0⟩

|0⟩

Time

Q
ub

it 
nu

m
be

r



Mathematical Forms Commonly Encountered in QC
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• Magnitude of a complex number, | ⋅ |
– 𝑎 + 𝑏𝑖 ≡ 𝑎" + 𝑏"

• Vector and matrix adjoint, 𝑨!
– Complex-conjugate transpose

– 𝑎 + 𝑏𝑖
𝑐 + 𝑑𝑖

+
≡ 𝑎 − 𝑏𝑖 𝑐 − 𝑑𝑖

– 𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
𝑒 + 𝑓𝑖 𝑔 + ℎ𝑖

+
≡ 𝑎 − 𝑏𝑖 𝑒 − 𝑓𝑖

𝑐 − 𝑑𝑖 𝑔 − ℎ𝑖
• Matrix types

– Hermitian: 𝐴 = 𝐴+

– Unitary: 𝐴+𝐴 = 𝐴𝐴+ = 𝐼
• Matrix exponentials

– For square matrix 𝐴,

– In the above, 𝐴$ ≡ 𝐼 for the 𝐼 with the same dimensions as 𝐴

11

𝑒, =Y
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.
1
𝑘!
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The Circuit Model
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• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks



Reminders
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• Unit of information
– Classical: Single bit, 𝑏

– Quantum: Complex 2-vector, 𝜓 =
𝛼
𝛽

• Measurement
– Measuring a qubit forces it to either 0 or 1

• Superposition
– If qubit 𝜓 =

𝛼
𝛽 = 𝛼 1

0 + 𝛽 0
1 = 𝛼 0 + 𝛽|1⟩, then it will be measured as 0 with 

probability 𝛼 ! and as 1 with probability 𝛽 !

• Multiple-qubit representation
– A two-qubit state is a complex 4-vector 𝑝𝑞 = 𝛼 00 + 𝛽 01 + 𝛾 10 + 𝛿|11⟩
– An n-qubit state is a complex 2n-vector

• Entanglement
– The qubits in a two-qubit state are entangled if they can’t be factored into 𝑝 ⊗ |𝑞⟩

– Example: "
! 1 −1 1 −1 # can be factored into "

!
1
1 ⊗ "

!
1
−1 (∴ not 

entangled), but "! 0 1 1 0 # cannot be factored (∴ entangled)

!
"𝑏

Either
0 or 1

How much 
“0-ness”

How much 
“1-ness”

vs.

bit
(𝑏 ∈ 𝔹)

qubit
(𝛼, 𝛽 ∈ ℂ)

=

𝛼
𝛽
𝛾
𝛿

00

01

10

11



Basic Circuit-Model Concepts

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Analogy to classical, digital circuits

• Differences
– Quantum circuits must be reversible (implication: same number of inputs 

and outputs for each gate and for the circuit as a whole)
– Only combinational, not sequential, logic

• Key point
– Abstract model of the operators to be applied—software not hardware

• A qubit’s state can be considered a point on the unit sphere
• Programmers manually control quantum effects

– Superposition: This qubit should be rotated by this amount in this direction
– Entanglement (loosely): This qubit should conditionally rotate that qubit

T
S

T†T
T†

H

Bi
ts

Q
ub

its

Time Time



Manipulating Quantum States
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• Apply operators (a.k.a. quantum gates)
– Unitary matrices (corollary: all operations are 

reversible)
– 2×2 for single-qubit gates, 4×4 for double-, 

8×8 for triple-, etc.
• Examples of single-qubit gates

– X, a.k.a. Pauli x, a.k.a. σx, a.k.a. NOT rotates 
by π radians around the x axis; it flips 0 ↔ |1⟩

– Y, a.k.a. Pauli y, a.k.a. σy rotates by π radians 
around the y axis

– Z, a.k.a. Pauli z, a.k.a. σz rotates by π radians 
around the z axis

– Note that 𝑋𝑋 = 𝑌𝑌 = 𝑍𝑍 = 𝐼
• A rotation in any direction by any 

amount is a gate
– Example: NOT rotates by π/2 radians around 

the x axis

Pauli x gate

Pauli y gate

Pauli z gate

0 1
1 0

0 −𝑖
𝑖 0

1 0
0 −1



Manipulating Quantum States (cont.)
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• An important single-qubit gate
– H, a.k.a. Hadamard rotates by π radians 

around the diagonal pointing towards 
(+x, +z); it puts each of |0⟩ and |1⟩ into a 
perfect superposition of |0⟩ and |1⟩
• |0⟩ → !

"
(|0⟩ + |1⟩), a.k.a. |+⟩

• |1⟩ → !
"
(|0⟩ − |1⟩), a.k.a. |−⟩

– Measurement of perfect superposition 
returns 0 and 1 with equal probability

– Surprise: applying a Hadamard gate to a 
perfect superposition returns 0 or 1 with 
certainty (because 𝐻𝐻 = 𝐼)

• Examples of two-qubit gates

– SWAP:  
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

– Swaps the values of the two qubits 
(i.e., maps ab → ba )

– CNOT: 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

– Flips the second qubit if and only if the 
first qubit is 1 [“if a then b ← ¬b”] 
(essentially an XOR: 𝑎𝑏 → 𝑎 |𝑎 ⊕ 𝑏⟩)

– Side effect of entangling the two 
qubits

Hadamard gate

1
2
1 1
1 −1

H



A Useful Three-Qubit Gate
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• Toffoli gate
– A.k.a. controlled-controlled-not or CCNOT

– CCNOT: 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

– Flips the third qubit if and only if both of the first two qubits are 1
– Maps 𝑎𝑏𝑐 → 𝑎 𝑏 |𝑐 ⊕ 𝑎𝑏⟩

• Universal gate
– Can implement any classical Boolean function using only CCNOTs
– AND: CCNOT(x, y, 0) → (x, y, x∧y)
– NOT: CCNOT(1, 1, x) → (1, 1, ¬x)
– OR: CCNOT(1, 1, CCNOT(CCNOT(1, 1, x), CCNOT(1, 1, y), 0)) → (1, 1, ¬x, ¬y, x∨y)
– NAND: CCNOT(x, y, 1) → (x, y, ¬(x∧y))

Input Output

|000⟩ |000⟩

|001⟩ |001⟩

|010⟩ |010⟩

|011⟩ |011⟩

|100⟩ |100⟩

|101⟩ |101⟩

|110⟩ |111⟩

|111⟩ |110⟩



Constructing a Gate from First Principles
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• What matrix implements a Pauli X (NOT) gate?
– We assume the standard basis, 0 ≡ 1

0 and 1 ≡ 0
1

• Start with a truth table mapping inputs to outputs

• Define a corresponding operator
– One term per row, which maps input to output and all else to the zero vector
– 𝑋 = |1⟩⟨0| + |0⟩⟨1|

– In matrix form, this would be 𝑋 = 0
1 1 0 + 1

0 0 1 = 0 1
1 0

• Although defined using basis vectors, this works on superpositions, too

– Example: If 𝜓 ≡ "
$
0 − %

$
|1⟩, then 𝑋 𝜓 = − %

$
0 + "

$
|1⟩

Input Output
|0⟩ |1⟩
|1⟩ |0⟩



Constructing a Larger Gate from First Principles
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• What operator/matrix implements a SWAP gate?
– This is a two-qubit gate with the semantics 𝑎𝑏 → |𝑏𝑎⟩

• The corresponding truth table is shown at right
• Construct an operator (same process as before but 

with more terms)
– 𝑆𝑊𝐴𝑃 = |00⟩⟨00| + |10⟩⟨01| + |01⟩⟨10| + |11⟩⟨11|

Input Output
|00⟩ |00⟩
|01⟩ |10⟩
|10⟩ |01⟩
|11⟩ |11⟩

– =

1
0
0
0

1 0 0 0 +

0
0
1
0

0 1 0 0 +

0
1
0
0

0 0 1 0 +

0
0
0
1

0 0 0 1

– =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Let’s Create a Quantum Circuit
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• We’ll use the Quirk gate-model simulator for this task
– Go to https://algassert.com/quirk and click Edit Circuit
– Easy to use; lots of features; runs entirely within a Web browser

For now, we’ll 
focus on just the 
most basic gates

https://algassert.com/quirk


Let’s Create a Quantum Circuit (cont.)
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• What state are we in initially?
– The |00⟩ state
– Place a Chance display on qubit 0 then 

extend it downwards to cover qubit 1, which 
shows all two-qubit probabilities

• What if we add a CNOT from 0 to 1?
– So far, nothing happens ( 00 → |00⟩)

• What if we put an X before the control?
– The state changes from |00⟩ to |11⟩

• What if change the X to an H?
– We’re now in the state 00 + |11⟩
– Because qubit 0 is now equally |0⟩ and |1⟩, it 

both flips and doesn’t flip qubit 1



Let’s Create a Quantum Circuit (cont.)
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• What if we double the H?
– We’re back in the |00⟩ state
– H-H = I so qubit 0 is 0 and we therefore don’t flip 

qubit 1

• What if we move one of the Hs after the 
CNOT control?
– We’re in the 00 + 01 + 10 − |11⟩ state



Whoa!  What Just Happened?
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• Why does H-H-CNOT produce such a different result from H-CNOT-H?
– Let’s step through the two cases slowly to see what each circuit does…

• The H-H-CNOT case
– Timeline illustration (unnormalized):

• The H-CNOT-H case
– Timeline illustration (unnormalized):

|00⟩
|00⟩

|01⟩
|00⟩ |00⟩

𝐻! 𝐶𝑁𝑂𝑇!→#

|00⟩
|00⟩

|01⟩

|00⟩
|00⟩

𝐻!
𝐻!

𝐶𝑁𝑂𝑇!→#

|11⟩

|01⟩

|10⟩

−|11⟩

Input Output

|0⟩ |+〉 = 0 + |1⟩

|1⟩ |−〉 = 0 − |1⟩

The H gate
(unnormalized)

|00⟩𝐻!

|01⟩

|00⟩

−|01⟩

+
+

+

+

+ +

+

+

+



Whoa!  What Just Happened? (cont.)
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• Formal explanation of the H-CNOT-H case
– Our circuit represents 𝐼 ⊗ 𝐻 𝐶𝑁𝑂𝑇 𝐼 ⊗𝐻 applied to the input |00⟩

– 𝐼 ⊗ 𝐻 = |0⟩⟨0| + 1 ⟨1| ⊗ "
! |0⟩⟨0| + |1⟩⟨0| + |0⟩⟨1| − |1⟩⟨1| = "

!
(

)
|00⟩⟨00| +

|01⟩⟨00| + |00⟩⟨01| − |01⟩⟨01| + |10⟩⟨10| + |11⟩⟨10| + |10⟩⟨11| − |11⟩⟨11|
– 𝐶𝑁𝑂𝑇 = |00⟩⟨00| + |11⟩⟨01| + |10⟩⟨10| + |01⟩⟨11|

– ∴ 𝐼 ⊗𝐻 00 = "
! 00 + |01⟩

– ∴ (𝐶𝑁𝑂𝑇) 𝐼 ⊗ 𝐻 00 = "
!

00 + |11⟩

– ∴ (𝐼 ⊗ 𝐻)(𝐶𝑁𝑂𝑇) 𝐼 ⊗ 𝐻 00 = "
! 00 + 01 + 10 − |11⟩

• Or, if you prefer a matrix formulation,

– 𝐼 ⊗ 𝐻 = "
!

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

; CNOT =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

; and 00 =

1
0
0
0

– So we get "
!

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

"
!

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

1
0
0
0

= "
!

1
1
1
−1

Different from what we 
showed on an earlier 
slide because we 
swapped the order of the 
control and target qubits



Hands-On Exercise: Construct a 4-Qubit GHZ State
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• Greenberger–Horne–Zeilinger (GHZ) state
– Entangled state, equally likely to be all zeros or all ones but never anything else

• For this exercise, we’ll construct a 4-qubit GHZ state in Quirk
– That is, we want to create a circuit that produces "

!
0000 + |1111⟩

– Here’s what your solution should look like (and note that we extended the Chance 
display to cover four qubits):

• We’ll provide hints every few minutes to help you keep making progress

?



Difficult Hands-On Exercise: a 2-bit Adder
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• Skip this exercise unless you’ve already completed the previous 
exercise and want a bigger challenge

• With only 4 qubits, implement a 2-bit adder modulo 4
– 𝑐"𝑐& ← 𝑎"𝑎& + 𝑏"𝑏& mod 4
– Input {𝑎", 𝑎&, 𝑏", 𝑏&} and output {𝑐", 𝑐&, 𝑥, 𝑦} (where 𝑥 and 𝑦 are “don’t cares”)

• Hint #1
– This can be implemented with exactly two CNOTs plus one Toffoli (CCNOT) gate

• Hint #2
– CNOT flips the target bit iff the control bit is 1 (i.e., 𝑐𝑡 → 𝑐 |𝑐 ⊕ 𝑡⟩)
– CCNOT flips the target bit iff both control bits are 1 (i.e., 𝑐"𝑐&𝑡 → 𝑐" 𝑐& |𝑐"𝑐&⊕ 𝑡⟩)

• Hint #3
– From Digital Circuits 101,

𝑎" 𝑎&
+ 𝑏" 𝑏&

𝑎"⊕𝑏"⊕𝑎&𝑏& 𝑎&⊕𝑏&



4-Qubit GHZ State: Hint #1
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• How would you create a 1-qubit GHZ state?
– That is, "! 0 + |1⟩ (a.k.a. |+〉), a state that’s equally likely to be |0⟩ or |1⟩

– What gate have we seen that does this?
• Solution format

– Quirk requires a minimum of two qubits so just leave qubit 1 alone

– Technically, the above represents "
!

00 + |01⟩

?



4-Qubit GHZ State: Hint #2
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• Solution to Hint #1: Creating a 1-qubit GHZ state
– All we need is an H gate to transform state |00⟩ into state "! 00 + |01⟩

• Hint #2: How would you create a 2-qubit GHZ state?
– That is, "

!
00 + |11⟩ , a state that’s equally likely to be |00⟩ or |11⟩

– Start from the Hint #1 state, "! 00 + |01⟩

– How can we leave |00⟩ alone but replace |01⟩ with |11⟩?
• Solution format

?



4-Qubit GHZ State: Hint #2′
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• Hint #2: How would you create a 2-qubit GHZ state?
– That is, "! 00 + |11⟩ , a state that’s equally likely to be |00⟩ or |11⟩

– Start from the Hint #1 state, "! 00 + |01⟩

– How can we leave |00⟩ alone but replace |01⟩ with |11⟩?
• Hint #2′: What single 2-qubit gate performs the preceding mapping?

– Given 𝑎𝑏 , negate 𝑎 if and only if 𝑏 is 1



4-Qubit GHZ State: Hint #3
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• Solution to Hint #2: Creating a 2-qubit GHZ state
– A CNOT gate performs the requisite mapping from "! 00 + |01⟩ to "! 00 + |11⟩

– “If qubit 0 is 1, flip qubit 1” (from 0 to 1 in this case)

• Hint #3: How would you create a 3-qubit GHZ state?
– Extend the above to 3 qubits: Given "! 000 + |011⟩ , produce "! 000 + |111⟩

• Solution format

?



4-Qubit GHZ State: Hint #4
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• Solution to Hint #3: Creating a 3-qubit GHZ state
– We simply repeat what we did for Hint #2
– A CNOT from qubit 0 to qubit 2 implements “If qubit 0 is 1, flip qubit 2”

– Maps "! 000 + |011⟩ to "! 000 + |111⟩

• Hint #4: What’s the pattern?  How can we scale up from a 3-qubit GHZ 
state to to a 4-qubit GHZ state?



4-Qubit GHZ State: Solution
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• Solution to Hint #4: Scaling up
– We can keep applying CNOTs to copy qubit 0 to each subsequent qubit in turn to 

produce a circuit for the desired 4-qubit GHZ state



4-Qubit GHZ State: Solution (cont.)
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• Note how much easier it is to specify a quantum circuit gate-by-gate 
than to specify the complete unitary matrix to which it corresponds:

• Such matrices grow large quickly
– The above is a 16×16 matrix; producing a 5-qubit GHZ would require a 32×32 matrix



2-bit Adder: Solution
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• Problem
– With only 4 qubits, implement a 2-bit adder modulo 4: 𝑐"𝑐& ← 𝑎"𝑎& + 𝑏"𝑏& mod 4

• Solution (explained by time step)
1. 𝑎", 𝑎&, 𝑏", 𝑏&
2. 𝑎"⊕𝑏", 𝑎&, 𝑏", 𝑏&
3. 𝑎"⊕𝑏"⊕𝑎&𝑏&, 𝑎&, 𝑏", 𝑏&
4. 𝑎"⊕𝑏"⊕𝑎&𝑏&, 𝑎&⊕𝑏&, 𝑏", 𝑏&
– = 𝑐", 𝑐&, 𝑏", 𝑏&

𝑎"

𝑏&
𝑏"
𝑎&

𝑐"

𝑏&
𝑏"
𝑐&



Agenda
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• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks



Grover’s Algorithm
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• Which box contains the prize?

– Classically, must open all 8 boxes in the worst case
• Let’s see how we can use quantum effects to do better than that…
• Given

– A power-of-two number of boxes
– A guarantee that exactly one box contains the prize
– An operator 𝑈' that, given a box number |𝑥⟩, negates the probability amplitude iff the 

box contains the prize (i.e., 𝑈' 𝑥 = −|𝑥⟩ for 𝑥 = 𝜔 and 𝑈' 𝑥 = |𝑥⟩ for 𝑥 ≠ 𝜔)
• Define the Grover diffusion operator as follows

– 𝑠 ≡ "
(
∑)*&(+" |𝑥⟩ (i.e., the equal superposition of all states)

– 𝑈, ≡ 2|𝑠⟩⟨𝑠| − 𝐼 (the Grover diffusion operator)

0 1 2 3 4 5 6 7



Grover’s Algorithm (cont.)
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• The basic algorithm is fairly straightforward to apply:
– Put each of the n qubits in a superposition of |0⟩ and |1⟩
– For 2- iterations

• Apply 𝑈# to the state
• Apply 𝑈$ to the state

• How does that work?
– Gradually shifts the probability amplitude to qubit ω from all the other qubits
– When we measure, we’ll get a result of ω with near certainty
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Shor’s Algorithm
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• Factor 1,274,093,332,123,426,680,869 into a product of two primes
– Okay, it’s 135,763,451,261×9,384,656,329

• Observations
– Given that N is the product of two primes, p and q
– Given some a that is divisible by neither p nor q
– Then the sequence {a1 mod N, a2 mod N, a3 mod N, a4 mod N, a5 mod N, …} will 

repeat every r elements (the sequence’s period)
– As Euler discovered (ca. 1760), r always divides (p−1) (q−1)

• Example
– Let a be 2 and N be 15 (=3×5)
– Then ax mod N = {2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1 …} so r is 4
– Lo and behold, 4 divides (3−1) (5−1)=8

• Approach
– Once we know the period, r, it’s not too hard to find N’s prime factors p and q
– Unfortunately, finding r is extremely time-consuming…for a classical computer



Shor’s Algorithm (cont.)
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• Use a quantum Fourier transform
(QFT) to find the period
– Applied to superposition of all inputs

• All else is classical
• Randomized algorithm with proof 

of timely termination

Choose a
random a < N

gcd(a, N)=1?

a and N/a are
factors of N

r odd?

ar/2 ≡ 0 mod N?

gcd(ar/2+1, N) and gcd(ar/2-1, N) are factors of N

N is the number
to factor

Find r, the period of f(x) = ax mod N

NY

Y

N
Y

N



Quantum Annealing
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Agenda
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• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks



Simulated Annealing
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• Classical (and classic) optimization approach
• Find the coordinates of the minimum value in an energy landscape
• Conceptual approach

– Drop a bunch of rubber balls on the landscape, evaluating the function wherever 
they hit

– Hope that one of the balls will bounce and roll downhill to the global minimum
• Challenge: Commonly get stuck in a local minimum
• Solution: Quantum tunneling

– A quantum annealer can tunnel through narrow energy barriers, regardless of height



Quantum Annealing
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• A quantum annealer solves only a single, parameterized, problem
• Find the minimum energy (value) of a given, “problem” Hamiltonian

• What the hardware does
– Find the 𝜎! ∈ {−1,+1} that minimize ℋ given coefficients ℎ! ∈ ℝ and 𝐽!,# ∈ ℝ
– In other words, a quantum-annealing program is merely a list of ℎ! and 𝐽!,# values

• This is a classical problem with a classical solution
– Quantum effects are used internally to work towards the goal

ℋ = #
!"#

$%&

ℎ!𝜎! + #
!"#

$%'

#
("!)&

$%&

𝐽!,(𝜎!𝜎(



How Quantum Annealing Works
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• The hardware combines our problem Hamiltonian with an initial
Hamiltonian as follows to produce a time-dependent Hamiltonian:

• Start in a trivial energy landscape
– Qubits initialized to the solution to this known, trivial problem

• Gradually transition to the problem state
– Decrease transverse-field strength
– Increase longitudinal-field strength

• Premise (adiabatic theorem)
– Sufficiently gradual transition → qubits remain in solution state

ℋ 𝑠 = −
Δ 𝑠
2 #

!"#

$%&

𝜎!+ +
𝜀 𝑠
2 #

!"#

$%&

ℎ!𝜎!, + #
!"#

$%'

#
("!)&

$%&

𝐽!,(𝜎!,𝜎(,
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Problem Generality
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• Are there really that many problems that can be expressed as 
𝐚𝐫𝐠 𝐦𝐢𝐧𝝈𝓗(𝝈) = ∑𝒊"𝟎𝑵%𝟏𝒉𝒊𝝈𝒊 + ∑𝒊"𝟎𝑵%𝟐∑𝒋"𝒊)𝟏𝑵%𝟏 𝑱𝒊,𝒋𝝈𝒊𝝈𝒋?

• Yes!
• Any polynomial cost function over discrete variables with polynomial 

constraints can be mapped to this form
• Examples abound

– List taken from Andrew Lucas, “Ising formulations of many NP problems”, DOI 
10.3389/fphy.2014.00005

• Number 
partitioning

• Graph partitioning
• Cliques
• Binary integer 

linear 
programming

• Exact cover
• Set packing

• Vertex cover
• Satisfiability
• Minimal maximal 

matching
• Set cover
• Knapsack with 

integer weights
• Graph coloring
• Clique cover

• Job sequencing 
with integer 
weights

• Hamiltonian cycles 
and paths

• Traveling 
salesman

• Minimal spanning 
tree with a 
maximal degree 

constraint
• Steiner trees
• Directed and 

undirected 
feedback vertex 
sets

• Feedback edge 
set

• Graph 
isomorphisms



Alternative Problem Formulations
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• Physics version
– Minimize the energy of a 2-local Ising-

model Hamiltonian function
– ℋ(𝜎) = ∑!+,-./ℎ!𝜎! + ∑!+,-.0∑#+!1/-./ 𝐽!,#𝜎!𝜎#
– with ℎ! ∈ ℝ, 𝐽!,# ∈ ℝ, and 𝜎! ∈ {−1,+1}
– We’ll call this version “Ising” for short

• Operations Research version
– Minimize the value of a quadratic 

pseudo-Boolean objective function
– 𝑂𝑏𝑗 𝑥 = ∑!+,-./𝑎!𝑥! + ∑!+,-.0∑#+!1/-./ 𝑏!,#𝑥!𝑥#
– with 𝑎! ∈ ℝ, 𝑏!,# ∈ ℝ, and 𝑥! ∈ {0, 1}
– Known as a quadratic unconstrained 

binary optimization (QUBO) or an 
unconstrained binary quadratic 
programming (UBQP) problem

– Sometimes expressed in matrix form:
– 𝑂𝑏𝑗 𝑥 = 𝑥2𝑄𝑥
– for either symmetric or upper-triangular 

matrix 𝑄 with the 𝑎! on the diagonal and 
the 𝑏!,# on the off-diagonals

• Conversion between the two versions requires only a linear transformation
– Substitute 𝑥! = (𝜎! + 1)/2 or 𝜎! = 2𝑥! − 1

• Some problems are more natural to express with one formulation than the 
other



Setting up a Trivial Problem
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• Goal: Define a two-variable function that is minimized when 𝑨 = 𝑩
– That is, we want a quantum annealer to return either {TRUE, TRUE} or {FALSE, FALSE} 

but not {TRUE, FALSE} or {FALSE, TRUE}
• Approach #1 (Ising)

– Set up and solve a system of inequalities with valid solutions evaluating to some 
arbitrary value 𝑘 and invalid solutions evaluating to any value > 𝑘

– One possibility: ℋ 𝜎3, 𝜎4 = −𝜎3𝜎4 (i.e., ℎ3 = ℎ4 = 0 and 𝐽3,4 = −1), with 𝑘 = −1
– Not unique; in this case, any 𝐽3,4 < 0 will do

𝝈𝑨 𝝈𝑩 𝒉𝑨𝝈𝑨 + 𝒉𝑩𝝈𝑩 + 𝑱𝑨,𝑩𝝈𝑨𝝈𝑩 Must be
−1 −1 −ℎ6 − ℎ7 + 𝐽6,7 = 𝑘
−1 +1 −ℎ6 + ℎ7 − 𝐽6,7 > 𝑘
+1 −1 +ℎ6 − ℎ7 − 𝐽6,7 > 𝑘
+1 +1 +ℎ6 + ℎ7 + 𝐽6,7 = 𝑘



Setting up a Trivial Problem (cont.)

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Approach #2 (QUBO)
– Add one penalty term for each invalid solution
– Penalty terms evaluate to a positive number when given a specific invalid solution or 

zero when given any other solution

– One possibility: 𝑂𝑏𝑗 𝑥3, 𝑥4 = 1 − 𝑥3 𝑥4 + 𝑥3 1 − 𝑥4 = 𝑥3 + 𝑥4 − 2𝑥3𝑥4
– Not unique; scaling by any positive value will also work

𝒙𝑨 𝒙𝑩 Penalty
0 0 0
0 1 1 − 𝑥6 𝑥7
1 0 𝑥6(1 − 𝑥7)
1 1 0



A Convenient Property
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• Both Ising and QUBO expressions are additive
• That is ℋ𝟏 +ℋ𝟐 is minimized at the intersection of the set of values that 

minimize ℋ𝟏 and the set of values that minimize ℋ𝟐

• Likewise for 𝑶𝒃𝒋𝟏 and 𝑶𝒃𝒋𝟐
• If the intersection is empty, the result can be hard to reason about

– A quantum annealer always returns an answer because every Ising
Hamiltonian/QUBO has a minimum value

• Example
– Define a four-variable function that is minimized when 𝐴 = 𝐵 = 𝐶 = 𝐷
– Approach: Add multiple two-variable function instances from the previous slides
– Ising solution: ℋ5 𝜎3, 𝜎4, 𝜎6 , 𝜎7 = ℋ0 𝜎3, 𝜎4 +ℋ0 𝜎4, 𝜎6 +ℋ0 𝜎6 , 𝜎7 = −𝜎3𝜎4 −
𝜎4𝜎6 − 𝜎6𝜎7

– QUBO solution: 𝑂𝑏𝑗5 𝑥3, 𝑥4, 𝑥6 , 𝑥7 = 𝑂𝑏𝑗0 𝑥3, 𝑥4 + 𝑂𝑏𝑗0 𝑥4, 𝑥6 + 𝑂𝑏𝑗0 𝑥6 , 𝑥7 =
𝑥3 + 2𝑥4 + 2𝑥6 + 𝑥7 − 2𝑥3𝑥4 − 2𝑥4𝑥6 − 2𝑥6𝑥7



One Way to Program a Quantum Annealer
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• Constructing an ℋ𝟒 from multiple instances of an ℋ𝟐 suggests a more 
general programming methodology
– Break down a problem into a set of repeated subproblems (“building blocks”)
– Solve the subproblems by hand in the reverse direction from what the quantum 

annealer would do: Given the variables (𝜎! or 𝑥!), solve for the coefficients (ℎ!/𝐽!,# or 
𝑎!/𝑏!,#)

– Combine the subproblems into a complete problem
– Solve the complete problem on the quantum annealer in the forward direction: Given 

the coefficients, solve for the variables

Big, complicated problem Break down into 
repeated subproblems

Solve simple subproblem 
by hand then combine to 
solve complicated problem



Example of Decomposing a Problem
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• Problem
– Configure five lights, labeled A–E, such that 

exactly one of A, B, and C is on, exactly one of 
B, C, and D is on, and exactly one of C, D, and 
E is on

• Subproblem to solve
– Exactly 1 of 3 lights must be on—will apply to 

{A, B, C}, {B, C, D}, and {C, D, E}

A B C D E



Ising Solution
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𝝈𝟎 𝝈𝟏 𝝈𝟐 #
!"#

$%&

ℎ!𝜎! + #
!"#

$%'

#
("!)&

$%&

𝐽!,(𝜎!𝜎( Must be

−1 −1 −1 −ℎ# − ℎ& − ℎ' + 𝐽#,& + 𝐽#,' + 𝐽&,' > 𝑘
−1 −1 +1 −ℎ# − ℎ& + ℎ' + 𝐽#,& − 𝐽#,' − 𝐽&,' = 𝑘
−1 +1 −1 −ℎ# + ℎ& − ℎ' − 𝐽#,& + 𝐽#,' − 𝐽&,' = 𝑘
−1 +1 +1 −ℎ# + ℎ& + ℎ' − 𝐽#,& − 𝐽#,' + 𝐽&,' > 𝑘
+1 −1 −1 +ℎ# − ℎ& − ℎ' − 𝐽#,& − 𝐽#,' + 𝐽&,' = 𝑘
+1 −1 +1 +ℎ# − ℎ& + ℎ' − 𝐽#,& + 𝐽#,' − 𝐽&,' > 𝑘
+1 +1 −1 +ℎ# + ℎ& − ℎ' + 𝐽#,& − 𝐽#,' − 𝐽&,' > 𝑘
+1 +1 +1 +ℎ# + ℎ& + ℎ' + 𝐽#,& + 𝐽#,' + 𝐽&,' > 𝑘

One solution: ℋ&9:; 𝜎#, 𝜎&, 𝜎' = 𝜎# + 𝜎& + 𝜎' + 𝜎#𝜎& + 𝜎#𝜎' + 𝜎&𝜎', with 𝑘 = −2



QUBO Solution
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𝒙𝟎 𝒙𝟏 𝒙𝟐 Penalty
0 0 0 (1 − 𝑥#)(1 − 𝑥&)(1 − 𝑥')
0 0 1 0
0 1 0 0
0 1 1 1 − 𝑥# 𝑥&𝑥'
1 0 0 0
1 0 1 𝑥# 1 − 𝑥& 𝑥'
1 1 0 𝑥#𝑥&(1 − 𝑥')
1 1 1 4𝑥#𝑥&𝑥'

𝑂𝑏𝑗 𝑥 = −3𝑥#𝑥&𝑥' + 2𝑥#𝑥& + 2𝑥#𝑥' + 2𝑥&𝑥' − 𝑥# − 𝑥& − 𝑥' + 1

Uh oh!  Cubic terms aren’t allowed in a quadratic
unconstrained binary optimization problem.



Corrected QUBO Solution
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𝒙𝟎 𝒙𝟏 𝒙𝟐 Penalty
0 0 0 (1 − 𝑥#)(1 − 𝑥&)(1 − 𝑥')
0 0 1 0
0 1 0 0
0 1 1 1 − 𝑥# 𝑥&𝑥'
1 0 0 0
1 0 1 𝑥# 1 − 𝑥& 𝑥'
1 1 0 𝑥#𝑥&(1 − 𝑥')
1 1 1 4𝑥#𝑥&𝑥'

𝑂𝑏𝑗 𝑥 = −3𝑥#𝑥&𝑥' + 2𝑥#𝑥& + 2𝑥#𝑥' + 2𝑥&𝑥' − 𝑥# − 𝑥& − 𝑥' + 1

Offset four coefficients of −1 with one coefficient of +4

Constants can be discarded, as they don’t 
affect the values of 𝑥 that minimize 𝑂𝑏𝑗(𝑥)



Constructing the Full Problem
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• Given the solution to the subproblem,
– ℋ/89: 𝜎,, 𝜎/, 𝜎0 = 𝜎, + 𝜎/ + 𝜎0 + 𝜎,𝜎/ + 𝜎,𝜎0 + 𝜎/𝜎0 (Ising-model formulation)

• we can simply add instances of that to define our full problem:
– ℋ 𝐴,𝐵, 𝐶, 𝐷, 𝐸 = ℋ/89: 𝐴, 𝐵, 𝐶 +ℋ/89: 𝐵, 𝐶, 𝐷 +ℋ/89:(𝐶, 𝐷, 𝐸)

which expands to
– ℋ 𝐴,𝐵, 𝐶, 𝐷, 𝐸 = 𝐴 + 2𝐵 + 3𝐶 + 2𝐷 + 𝐸 + 𝐴𝐵 + 𝐴𝐶 + 2𝐵𝐶 + 𝐵𝐷 + 2𝐶𝐷 + 𝐶𝐸 + 𝐷𝐸

• This can be passed to a quantum annealer system for solution
– Hint: There exist three valid solutions out of 32 possible configurations of the five 

lights

A B C D E



Frustration
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• One can think of the role of a 
quantum annealer as a 
constraint-satisfaction engine

• So far, we’ve seen a few 
examples of constraints:
– Constrain 𝐴 = 𝐵
– Constrain exactly one of three 

variables to be “on”
– Constrain exactly one of A, B, and C, 

exactly one of B, C, and D, and 
exactly one of C, D, and E to be “on”

• Consider another trivial 
constraint: 𝑨 ≠ 𝑩
– ℋ; 𝜎3, 𝜎4 = 𝜎3𝜎4

or
– 𝑂𝑏𝑗; 𝑥3, 𝑥4 = −𝑥3 − 𝑥4 + 2𝑥3𝑥4

• What will a quantum annealer do 
when presented the following?
– ℋ 𝐴,𝐵, 𝐶 = ℋ; 𝐴, 𝐵 +ℋ; 𝐵, 𝐶 +
ℋ;(𝐶, 𝐴)

– That is, 𝐴 ≠ 𝐵, 𝐵 ≠ 𝐶, and 𝐶 ≠ 𝐴

• This is known as a frustrated 
system
– Cannot satisfy all constraints

• A quantum annealer will satisfy 
as much as it can
– “No solution” is not a possibility—it’s 

minimizing, not solving, ℋ
– Key to a quantum annealer’s power

A

B C

≠≠

≠
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D E

A

B C

D E

Exploiting Frustration
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• Example: Find the maximum cut of a graph
– Goal is to divide the vertices of an undirected graph into two partitions to maximize 

the number of edges that span partitions
– This is an NP-hard problem

A

B C

D E

A

B C

D E

A example graph Partitioning leading to 
a cut of size 3 (not 
maximal)

Partitioning leading to a 
cut of size 5 (maximal)

A

B C

D E



Maximum Cut on a Quantum Annealer
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• Maximizing the number of edges that 
span partitions = maximizing the 
number of adjacent vertices with 
different colors

• Approach: Specify 𝝈𝒊 ≠ 𝝈𝒋 for all 
adjacent vertices 𝝈𝒊 and 𝝈𝒋

• These may not all be satisfiable, but 
the quantum annealer will satisfy as 
many as possible, as this is what 
minimizes ℋ
– For example, in the graph shown to the 

right we have ℋ −1,−1,+1,+1,−1 =
−1 −1 + −1 +1 + −1 +1 +
−1 +1 + +1 −1 + +1 −1 = −4

– An example of a very poor partitioning is 
ℋ +1,+1,+1,+1,+1,+1 = +1 +1 +
+1 +1 + +1 +1 + +1 +1 +
+1 +1 + +1 +1 = +6

A

B C

D E

ℋ 𝐴,𝐵, 𝐶, 𝐷, 𝐸
= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 + 𝐵𝐷 + 𝐶𝐸 + 𝐷𝐸



Hands-On Exercise: Circuit Satisfiability
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• Given a digital circuit (Boolean 
expression), what inputs, if any, 
produce a TRUE output?
– NP-complete problem
– Requires 𝑂(2<) function evaluations 

in the worst case for an arbitrary 
circuit

– Generally approached with heuristic 
approximations

• Let’s program a quantum 
annealer to propose solutions to 
the circuit shown to the right
– Still approximate—quantum 

annealers do not guarantee correct 
solutions

A
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C

Yp
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t

u

𝑌 = 𝐴 ∨ ¬𝐶 ∧ ¬𝐵 ∨ ¬𝐶 ∧ (𝐵 ∨ 𝐶)



Hands-On Exercise: Circuit Satisfiability (cont.)
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• Split the problem into 
subproblems

– Goal is for the quantum annealer to 
satisfy all of those constraints

A

B

C

Yp

q

r

s

t

u

𝑌 = 𝐴 ∨ ¬𝐶 ∧ ¬𝐵 ∨ ¬𝐶 ∧ (𝐵 ∨ 𝐶)

𝑝 = ¬𝐵
𝑞 = ¬𝐶
𝑟 = 𝐴 ∨ 𝑞
𝑠 = 𝑝 ∨ 𝑞

𝑡 = 𝐵 ∨ 𝐶
𝑢 = 𝑟 ∧ 𝑠
𝑌 = 𝑢 ∧ 𝑡
𝑌 = ⊤

• Identify the building blocks we need to define to implement the above
– 𝑂𝑏𝑗¬ 𝑥,, 𝑥/ , minimized when 𝑥, ≠ 𝑥/
– 𝑂𝑏𝑗∨(𝑥,, 𝑥/, 𝑥0), minimized when 𝑥0 = 𝑥, ∨ 𝑥/ (i.e., 𝑥0 = 1 if at least one of 𝑥, or 𝑥/ is 1)
– 𝑂𝑏𝑗∧ (𝑥,, 𝑥/, 𝑥0), minimized when 𝑥0 = 𝑥, ∧ 𝑥/ (i.e., 𝑥0 = 1 only if both 𝑥, and 𝑥/ are 1)
– 𝑂𝑏𝑗@(𝑥,), minimized when 𝑥, = 1

• Combine subproblems into a complete problem for a quantum annealer
– 𝑂𝑏𝑗 𝐴, 𝐵, 𝐶, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑌 = 𝑂𝑏𝑗¬ 𝐵, 𝑝 + 𝑂𝑏𝑗¬ 𝐶, 𝑞 + 𝑂𝑏𝑗∨ 𝐴, 𝑞, 𝑟 + 𝑂𝑏𝑗∨ 𝑝, 𝑞, 𝑠 +
𝑂𝑏𝑗∨ 𝐵, 𝐶, 𝑡 + 𝑂𝑏𝑗∧ 𝑟, 𝑠, 𝑢 + 𝑂𝑏𝑗∧ 𝑢, 𝑡, 𝑌 + 𝑂𝑏𝑗@(𝑌)



• QUBO #3 (OR) and QUBO #4 (AND)

Hands-On Exercise: Circuit Satisfiability (cont.)

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Your task
– Implement—with pen and paper—as many of the four building blocks as time permits

• QUBO #1 (TRUE)

• QUBO #2 (NOT)

𝒙𝟎 Penalty
0
1

𝑂𝑏𝑗< 𝑥# =

𝒙𝟎 𝒙𝟏 Penalty
0 0
0 1
1 0
1 1

𝑂𝑏𝑗¬ 𝑥#, 𝑥& =

𝒙𝟎 𝒙𝟏 𝒙𝟐 PenaltyOR PenaltyAND

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

𝑂𝑏𝑗∨ 𝑥#, 𝑥&, 𝑥' =
𝑂𝑏𝑗∧ 𝑥#, 𝑥&, 𝑥' =



Circuit Satisfiability: Hint #1

15-Nov-2021Los Alamos National Laboratory and NASA Ames

• Penalty column should be a function of the input columns
• For all four QUBOs, we don’t want to penalize valid rows at all

– Assign a penalty of 0 (technically, a constant function returning 0) to all valid rows
• For all four QUBOs, we want to penalize invalid rows

– Assign a function that maps that row’s inputs to a positive number and all other inputs 
to zero

➔What pattern can we use to generate such functions?
– Look over the previous QUBO examples in this slide deck
– Answer in next hint

• Once you’ve defined all the per-row functions, add them up to get the 
final objective function



Circuit Satisfiability: Hint #2
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• Hint #1 asked how we should define 
our penalty functions

• Remember that all inputs 𝒙𝒊 to a 
QUBO are binary (0 or 1)

• Expression to penalize a single input
– Goal is to have 𝑓 valid = 0 and 
𝑓 invalid > 0

– If we want 𝑥, = 0 and want to penalize 
𝑥, = 1, a penalty function of 𝑓 𝑥 = 𝑥
honors both 𝑓 0 = 0 and 𝑓 1 > 0

– If we want 𝑥, = 1 and want to penalize 
𝑥, = 0, a penalty function of 𝑓 𝑥 = 1 − 𝑥
honors both 𝑓 1 = 0 and 𝑓 0 > 0

𝒙𝟎 𝒙𝟏 𝒙𝟐 Penalty

0 0 0 1 − 𝑥, 1 − 𝑥/ 1 − 𝑥0
0 0 1 1 − 𝑥, 1 − 𝑥/ 𝑥0
0 1 0 1 − 𝑥, 𝑥/ 1 − 𝑥0
0 1 1 1 − 𝑥, 𝑥/𝑥0
1 0 0 𝑥, 1 − 𝑥/ 1 − 𝑥0
1 0 1 𝑥/ 1 − 𝑥0 𝑥:
1 1 0 𝑥,𝑥/(1 − 𝑥0)

1 1 1 𝑥,𝑥/𝑥0

• Expression to penalize multiple inputs
– Take the product of all single-input expressions
– Table to the right shows how to penalize any three-variable input
– Note that each row evaluates to a penalty of 0 if given any input other than the row’s 

associated 𝑥,, 𝑥/, 𝑥0 values



Circuit Satisfiability: Solution to the TRUE and NOT QUBOs
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• Here’s how one can define 𝑶𝒃𝒋< and 𝑶𝒃𝒋¬:

• Note that we the omitted the constant term (1) in both cases
– Doesn’t affect the property that all valid rows have the same value (in both cases, 
− 1)

– Doesn’t affect the property that all invalid rows evaluate to larger objective values (in 
both cases, 0) than any valid row

𝒙𝟎 Penalty
0 1 − 𝑥#
1 0

𝑂𝑏𝑗< 𝑥# = −𝑥#

𝒙𝟎 𝒙𝟏 Penalty
0 0 (1 − 𝑥#)(1 − 𝑥&)
0 1 0
1 0 0
1 1 𝑥#𝑥&

𝑂𝑏𝑗¬ 𝑥#, 𝑥& = 2𝑥#𝑥& − 𝑥# − 𝑥&

QUBO #1: TRUE QUBO #2: NOT



Circuit Satisfiability: Hint #3
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• For QUBO #3 (OR), can you produce an initial set of penalty functions?
• Why can’t the corresponding objective function be run as is on a 

quantum annealer?



Circuit Satisfiability: Hint #4
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• Hint #3 asked for an initial 
version of QUBO #3 (OR)

• The list of initial penalty 
functions is shown to the right

• The objective function can’t be 
run as is on a quantum annealer 
because it’s not a quadratic 
function (∴ not a QUBO)

• To complete QUBO #3 we need 
to get rid of the cubic term

• We can multiply a penalty 
function by any positive number

➔What factors should we use for 
each of the four invalid rows?
– Find each row’s cubic coefficient and 

scale the rows such that ∑positive + 
∑negative = 0

𝒙𝟎 𝒙𝟏 𝒙𝟐 Penalty
0 0 0 0
0 0 1 1 − 𝑥# 1 − 𝑥& 𝑥'
0 1 0 1 − 𝑥# 𝑥&(1 − 𝑥')
0 1 1 0
1 0 0 𝑥#(1 − 𝑥&)(1 − 𝑥')
1 0 1 0
1 1 0 𝑥#𝑥& 1 − 𝑥'
1 1 1 0

𝑂𝑏𝑗∨ 𝑥#, 𝑥&, 𝑥'
= 2𝑥#𝑥&𝑥' − 𝑥#𝑥& − 2𝑥#𝑥' − 2𝑥&𝑥' + 𝑥#
+ 𝑥& + 𝑥'

QUBO #3: OR



Circuit Satisfiability: Solution to the OR QUBO
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• What factor should we use for each of the four invalid rows?
– Find each row’s cubic coefficient and scale the rows such that ∑positive + 

∑negative = 0

𝒙𝟎 𝒙𝟏 𝒙𝟐 Hint #4 penalty Cubic coefficient Final penalty 𝑶𝒃𝒋∨
0 0 0 0 0 0 0
0 0 1 1 − 𝑥# 1 − 𝑥& 𝑥' −1 ⋅ −1 ⋅ +1 = +1 1 − 𝑥# 1 − 𝑥& 𝑥' 1
0 1 0 1 − 𝑥# 𝑥&(1 − 𝑥') −1 ⋅ +1 ⋅ −1 = +1 1 − 𝑥# 𝑥&(1 − 𝑥') 1
0 1 1 0 0 0 0
1 0 0 𝑥#(1 − 𝑥&)(1 − 𝑥') +1 ⋅ −1 ⋅ −1 = +1 𝑥#(1 − 𝑥&)(1 − 𝑥') 1
1 0 1 0 0 0 0
1 1 0 𝑥#𝑥& 1 − 𝑥' +1 ⋅ +1 ⋅ −1 = −1 3𝑥#𝑥& 1 − 𝑥' 3
1 1 1 0 0 0 0
𝑂𝑏𝑗∨ 𝑥#, 𝑥&, 𝑥' = 𝑥#𝑥& − 2𝑥#𝑥' − 2𝑥&𝑥' + 𝑥# + 𝑥& + 𝑥'

QUBO #3: OR



Circuit Satisfiability: Solution to the AND QUBO
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• Solving AND follows exactly the same pattern as solving OR
– Find each row’s cubic coefficient and scale the rows such that ∑positive + 

∑negative = 0

𝒙𝟎 𝒙𝟏 𝒙𝟐 Initial penalty Cubic coefficient Final penalty 𝑶𝒃𝒋∧
0 0 0 0 0 0 0
0 0 1 1 − 𝑥# 1 − 𝑥& 𝑥' −1 ⋅ −1 ⋅ +1 = +1 3 1 − 𝑥# 1 − 𝑥& 𝑥' 3
0 1 0 0 0 0 0
0 1 1 1 − 𝑥# 𝑥&𝑥' −1 ⋅ +1 ⋅ +1 = −1 1 − 𝑥# 𝑥&𝑥' 1
1 0 0 0 0 0 0
1 0 1 𝑥# 1 − 𝑥& 𝑥' +1 ⋅ −1 ⋅ +1 = −1 𝑥# 1 − 𝑥& 𝑥' 1
1 1 0 𝑥#𝑥&(1 − 𝑥') +1 ⋅ +1 ⋅ −1 = −1 𝑥#𝑥&(1 − 𝑥') 1
1 1 1 0 0 0 0
𝑂𝑏𝑗∧ 𝑥#, 𝑥&, 𝑥' = 𝑥#𝑥& − 2𝑥#𝑥' − 2𝑥&𝑥' + 3𝑥'

QUBO #4: AND



Two Models of Quantum Computing
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• Circuit-model quantum computing and annealing-
model quantum computing seem to have nothing 
in common

• What’s the connection?
A B C• Let’s revisit our problem Hamiltonian for “1 of 3”:

ℋ/89: 𝜎,, 𝜎/, 𝜎0 = 𝜎, + 𝜎/ + 𝜎0 + 𝜎,𝜎/ + 𝜎,𝜎0 + 𝜎/𝜎0
• Treat each term of ℋ&9:; as implicitly being of the form 𝑎#⊗𝑎&⊗𝑎'

where 𝑎#, 𝑎&, 𝑎' ∈ {𝐼, 𝑍}
– Each explicit 𝜎! in ℋ/89: replaced by a 𝑍 and each implicit 𝜎! replaced by an 𝐼:
ℋ!"#$ = 𝑍⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝑍⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝑍 + 𝑍⊗ 𝑍⊗ 𝐼 + 𝑍⊗ 𝐼 ⊗ 𝑍 + (𝐼 ⊗ 𝑍⊗ 𝑍)
– Implication is that ℋ/89: is an 8×8 matrix

Reminder: 𝐼 = 1 0
0 1 and 𝑍 = 1 0

0 −1



Two Models of Quantum Computing (cont.)
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• From the previous slide,
ℋ!%&$ = 𝑍⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝑍⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝑍 + 𝑍⊗ 𝑍⊗ 𝐼 + 𝑍⊗ 𝐼 ⊗ 𝑍 + (𝐼 ⊗ 𝑍⊗ 𝑍)

• Because both 𝐼 and 𝑍 are diagonal matrices, ℋ𝟏𝐨𝐟𝟑 is a diagonal matrix:

ℋ/89: =

6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0

• This matrix’s minimal elements lie exactly on the “1 of 3” rows!
• But how can we use ℋ𝟏𝐨𝐟𝟑 in a quantum circuit that actually finds those 

minimal elements?
èEmploy a general-purpose quantum optimization algorithm

– And this is the subject of the next section of the tutorial…

111
110
101
100
011
010
001
000



Further Quantum Algorithms
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Agenda

15-Nov-2021

• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks
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Target for NISQ Evaluation: Quantum Optimization 
Heuristics

15-Nov-2021

• Instances of combinatorial optimization problems
– Current approach: classical heuristics algorithms
– NISQ hardware provides means to evaluate quantum heuristic algorithms

• Quantum heuristics
– Combine cost-function-based operator with a mixing operator
– AQO, QA, QAOA
– Other ideas welcome!

• Evaluation techniques
– Analytic, numerical, experimenting on NISQ hardware

One strategy: Try the simplest algorithm that might work!
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Target for NISQ Evaluation: Quantum Optimization 
Heuristics

15-Nov-2021

• Diverse optimization goals
– Exact optimization with guarantees
– Approximate opt. with guarantees
– Good heuristic, without guarantees
– Fair sampling; portfolio sampling

• Sampling goals, e.g. for machine learning (ML)
– Sampling thermal distribution corresponding to cost function (sampling from 

Boltzmann distributions used in ML)
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AQO
• Evolution under

• Slowly enough to 
stay in the ground 
subspace 

QA
• Evolution under

• Many quick runs, 
thermal effect 
contribute

QAOA
• Alternate 

application of 𝐻!
and 𝐻"

• For p altera)ons, the 
parameters are 𝟐𝒑
times/angles
𝜸𝟏, 𝜷𝟏, … 𝜸𝑷, 𝜷𝒑

𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻" 𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻"

Quantum Optimization Algorithms: AQO, QA, QAOA

15-Nov-2021

• Common elements: Given cost function C(z),
• Phase separation operator based on the cost function,

– Usually based on 𝐻! = −𝐶 𝑧 |𝑧⟩⟨𝑧|, often including additional “penalty terms” to 
enforce constraints

• Driver/Mixing operator 
– Most frequently 𝐻" = ∑

#
𝑋𝑗, though we will shortly see other mixers
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AQO
• Evolution under

• Slowly enough to 
stay in the ground 
subspace 

QA
• Evolution under

• Many quick runs, 
thermal effect 
contribute

QAOA
• Alternate 

application of 𝐻!
and 𝐻"

• For p alterations, the 
parameters are 𝟐𝒑
times/angles
𝜸𝟏, 𝜷𝟏, … 𝜸𝑷, 𝜷𝒑

𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻" 𝑯(𝒕) = 𝒂(𝒕)𝐻! + 𝒃(𝒕)𝐻"

Quantum Optimization Algorithms: AQO, QA, QAOA

15-Nov-2021

• Common elements: Given cost function C(z),
• Phase separation operator based on the cost function,

– Usually based on 𝐻! = −𝐶 𝑧 |𝑧⟩⟨𝑧|, often including additional “penalty terms” to 
enforce constraints

• Driver/Mixing operator 
– Most frequently 𝐻" = ∑

#
𝑋𝑗, though we will shortly see other mixers

6



Quantum Alternating Operator Ansatz

15-Nov-2021

• Based on the Quantum Approximate Optimization Algorithm
– A gate model heuristic due to Farhi et al.
– Iterates  between two Hamiltonians, p times

• Phase separation (cost function dep.) 
• Mixing 

• Early results by Farhi and co-authors
– p → ∞:  from AQO

• Converges to optimum for p → ∞
– p = 1: from IQP circuits 

• Provably hard to sample output efficiently classically (up to standard complexity theory 
conjectures)

• Beat existing classical approx. ratio on MaxE3Lin2, but inspired better classical algorithm

• Later results
– New algorithm for Grover’s unstructured search problem

• achieves √N query complexity by different means

Z. Jiang et al., Near-optimal quantum 
circuit for Grover's unstructured search 
using a transverse field, PRA 95 (6), 
062317, 2017.

7



Quantum Alternating Operator Ansatz

15-Nov-2021

• Advantages
– Supports more general mixing operators, providing massive improvements in 

implementability
– Incorporates hard constraints into mixer instead of as a penalty term; algorithm 

explores only feasible subspace, often exponentially smaller, so more efficient 
search

– Reworked QAOA acronym to support applications to exact optimization and 
sampling as well as approximate optimization

• We have mapped many problems to extended QAOA formalism
– Focused on scheduling and network problems
– Including Max-k-colorable subgraph

S. Hadfield et al., From the Quantum Approximate Optimization Algorithm to a 
Quantum Alternating Operator Ansatz, Algorithms 12 (2), 34 2019, arXiv:1709.03489
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Gate-model quantum optimization heuristic:
Quantum Alternating Operator Ansatz

Mixer: unitary which:
• Preserves the feasible 

subspace
• Provides nonzero transitions 

between all feasible states
• Not necessarily time 

evolution of a single local 
Hamiltonian

• 𝛽k depends on the level 1 ≦
k ≦ p, but independent of Hj

Phase separator: unitary 
for which
• The energy spectrum of 

HP encodes the 
problem’s objective 
function

• 𝐻! = −𝐶 𝑧 |𝑧⟩⟨𝑧|

Initial state which:
• is a superposition of one or more 

solutions in the feasible subspace
• can be prepared efficiently

Generalization of Quantum Approximation Optimization Algorithm

*
#

𝑒$%&!'"

15-Nov-2021 9



Example: QAOA for Max-κ-Colorable Subgraph

15-Nov-2021

• Problem: Given a graph 𝑮 = 𝑽, 𝑬 ,
and 𝒌 colors 𝟏,… , 𝒌, find a color 
assignment maximizing the # of 
properly colored edges

• Properly colored edge means 
endpoint vertices have been 
assigned different colors

• “One-hot” Encoding:  𝒏𝒌 variables
– 𝒙𝒖𝒋 = 𝟏 iff vertex u is colored color j

• Optimization: Write cost function as 
– 𝑪 𝒙 = 𝒎− ∑ 𝒖𝒗 ∈𝑬

𝒎 ∑𝒋*𝟏𝒌 𝒙𝒖𝒋𝒙𝒗𝒋

!
𝒋$𝟏

𝒌

𝒙𝒖𝒋 = 𝟏

• Must avoid invalid colorings
– e.g. if a vertex is labeled as both red 

and blue, or not colored at all

• Requires n constraints: one for 
each vertex u

10



Example: QAOA for Max-κ-Colorable Subgraph

15-Nov-2021

• Could add constraints to the cost 
function to enforce penalties
– standard approach in quantum annealing

• Better: design mixer to keep the 
evolution in the feasible subspace, 
which keeping the phase separator 
simple 

• Use swap mixer on the colors rather 
than bit flip mixer
– instead of ∑

#
𝑋𝑗, use sum of swap operators,

– |00⟩⟨00| + |10⟩⟨01| + |01⟩⟨10| + |11⟩⟨11|
– one for each pair of (adjacent) colors

• Feasible subspace is 
exponentially smaller search 
space than entire Hilbert space
– While still exponentially large

• Initial state choice
– Any classical feasible state

• e.g., all colored red
– Any superposition of feasible states

• e.g., superposition of all colors (W 
state)

11



Partitioned Mixer Example: Max-κ-Colorable Subgraph
A partitioned mixer; Parity ring mixer

Uparity (�) = Ulast(�)Ueven(�)Uodd(�), (1)

where
Uodd(�) =

Y

a odd, a 6=n

e�i�(XaXa+1+YaYa+1), (2)

Ueven(�) =
Y

a even

e�i�(XaXa+1+YaYa+1), (3)

Ulast(�) =

(
e�i�(XdX1+YdY1),  odd,

I ,  even.
(4)

November 16, 2018 9 / 13

15-Nov-2021

Example: Max--Colorable Subgraph

Problem. Given a graph G = (V ,E ) with n vertices and m edges, and 
colors, maximize the size (number of edges) of a properly vertex-colored
subgraph

Representation: nm variables indicating whether or not node v is colored
with color i

Phase separator: UC = e�iHC , where HC = �1
4

P
(u,v)2E

P
j=1 RZuZv

(�)

Mixing Hamiltonian: HB =
P

v
Bv , where

Bv =
P

i = 1Xv ,iXv ,i+1 + Yv ,iYv ,i+1

Unified Mixer: UB = e�iHB

Partitioned Mixers: Products of UBv = e�iBv . Don’t commute, so
di↵erent orders give di↵erent mixers

November 16, 2018 8 / 13
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Numerical Results: Advantage of XY-mixer

15-Nov-2021

Confirmed advantage of mixers that 
maintain evolu5on within feasible 
subspace
Ra#o of dimension of feasible subspace to full 
Hilbert space of shrinks exponen#ally with n: 

Ring vs. complete mixer

Zhihui Wang, Nicholas C. Rubin, Jason M. Dominy, Eleanor G. Rieffel, 
XY-mixers: analytical and numerical results for QAOA, PRA 101 (1), 
012320, 2020 

Numerical obtained approximation ratio for 3-coloring 
of a triangle graph. (Left) QAOA with standard X-
mixer. (Right) QAOA with XY-mixer.  

4

where the weight parameter ↵ 2 R+. Note that in Eq. (8)
the penalty Hamiltonian is subtracted because we aim
to maximize the original cost function and minimize the
penalty. In order for the penalized function to have the
same optima as the original cost function, the penalty
weight needs to be set above a critical value. In the cur-
rent problem, assigning more than one color to a vertex is
not energetically favorable, so it is the opposite, assign-
ing no color to a vertex that may create fake maxima.
Since for every no-color vertex, there are at most bdv/c
edges lifted from being improper, the penalty should sat-
isfy ↵ > bmax{dv}/c, we can loosely take ↵ � n/.
On the other hand, the range of possible values of fC
(and of spectral values of HC) is m. Therefore, any
↵ > m will ensure an energy separation between all
feasible states and all unfeasible states.

It should be noted that, unlike the motivating situa-
tion in adiabatic computation, the energy gap plays no
clear role in QAOA. Thus it should be expected that,
while the introduction of a penalty into the cost Hamil-
tonian may alter the QAOA dynamics, perhaps manip-
ulating the reachable set of unitary operators, the role
of the penalty strength is unclear at best. This per-
spective is supported by the numerical results in Section
V A. Indeed, while for some problems, such as the one-
hot-encoded problems under consideration, sophisticated
mixers can be designed to satisfy the constraints [2], the
design of general and systematic methods for incorporat-
ing constraints into QAOA remains an open problem.

In the penalty formulation the mixer can be either the
standard X-driver

HX =
nX

v=1

X

c=1

�x

v,c
(9)

or the XY -Hamiltonian. If the XY -Hamiltonian is se-
lected the penalty parameter may help the variational
optimizer maintain probability mass in the feasible sub-
space and is not strictly necessary. In QAOA, it is un-
clear how a penalty parameter helps maintain probability
mass over the feasible subspace. The feasible space of a
-coloring problem is the set of states that satisfy

Ztot,v ⌘
X

c=1

�z

v,c
= � 2 , (10)

i.e., a subspace spanned by states in the computational
basis that correspond to bit strings of Hamming weight
equal to one.

Although formulating the penalty Hamiltonian facili-
tates the use of the standard X-mixer in QAOA, which
can be implemented in constant circuit depth, we empha-
size that the relative size of the feasible space becomes
exponentially small as the graph size grows and thus a
penalty formulation is sub-optimal. To see this, consider
the size of the feasible subspace Hfea, for each node, the
feasible subspace can be spanned by states corresponding

to  Hamming-weight one bit-strings, hence is of dimen-
sion k, and the feasible subspace for the whole problem is
of dimension kn. The ratio of the feasible subspace sizes
to the size of the full Hilbert space is

dim(Hfea)

dim(H)
=

n

2n
=

� 

2
�n

, (11)

which for any  � 1 shrinks exponentially with the graph
size n.

B. The XY mixer: enforcing evolution in the
feasible subspace

The Ztot,v constraint can be incorporated in a natural
way by selecting a mixing term that preserves the feasible
subspace. Here we use the XY -Hamiltonian

HXY,v =
1

2

X

c,c02K

HXY,v,c,c0 (12)

HXY,v,c,c0 = �x

v,c
�x

v,c0 + �y

v,c
�y

v,c0 . (13)

which drives rotations in the {(0, 1), (1, 0)} subspace of
each color labeling. In the above equation the mixer ap-
plies to any color pair c, c0 in a set K. It can be verified
that for any K, [HXY,v, Ztot,v] = 0.

1. Complete vs ring mixing Hamiltonians

In Eq. (12), when the mixing-set K includes all pairs,
the mixer is termed complete-graph mixer. An alterna-
tive is the ring mixer in which K takes a one-dimensional
structure: c0 = c+1 and apply periodic boundary condi-
tion. In the same fashion, there are a variety of derivative
mixers based on the XY -Hamiltonian, depending on the
underlying connectivity between colors. We focus on the
complete-graph and the ring mixers.

2. Simultaneous vs partitioned mixers

For a given mixing Hamiltonian, Eq. (12), for each
node, a simultaneous mixer exactly applies the unitary
exp[�i�HXY,v] while a partitioned mixer applies the
product of exp[�i�HXY,v,c,c0 ] in some order of {(c, c0)}.
We define the parity-partition mixer such that a local
XY -Hamiltonian is applied on even pairs first and odd
pairs next.

The parity-partitioned mixing unitary is a first-order
approximation of the simultaneous mixing unitary. Em-
ploying the Zassenhaus formula through second order

eit(Heven+Hodd) ⇡ eitHeveneitHodde
t2

2 [Heven,Hodd] (14)

allows us to characterize the leading error term
e�t

2
/2[Heven,Hodd] as a function of . For simplicity, we

Trade off in depth between initial state 
generation and QAOA iterations
• W state vs single classical state

XY MIXERS: ANALYTICAL AND NUMERICAL RESULTS … PHYSICAL REVIEW A 101, 012320 (2020)

TABLE II. Top: Benchmarking graph sets: each row indicates all
χ -chromatic graphs of size n, and we solve the problem of κ coloring
of such graphs choosing κ = χ . Bottom: Benchmarking graph sets
II for examining the simultaneous vs partitioned ring mixers on
different ring sizes; each row indicates all connected graphs of size
n, and we solve the problem of κ coloring of such graphs. Because
the total number of qubits is nκ , which is the limiting factor to the
simulation, we limit to small n to see κ varying up to 8.

χ n No. graphs

3 5 12
3 6 64
3 7 475
4 6 26
4 7 282
5 7 46
6 7 5

n κ No. graphs

4 4 6
4 6 6
4 8 6

tendency toward saturation around level 10—this could either
be the nature of the algorithm or be due to increasing difficulty
in finding the global optimum in the parameter subspace as the
level increases, which poses another practical consideration
for application. (Note that due to the optimization over param-
eter space for each initial state the average over the classical
initial state is not equivalent to prepare the initial state in a
mixed state for the ensemble.)

Because our simulation is noise free, due to ergodicity,
in the limit of p → ∞ the optimal performance should be
independent of the initial state. But for practical implemen-
tation on a near-term hardware, where noise accumulates fast
with circuit depth, such medium-level QAOA behavior is of
high relevance. In Appendix C we survey methods to generate
quantum circuits for preparing W states. It is shown that with
certain methods it can be generated with O(κ ) CNOT gates.
The overall performance of QAOA will be a tradeoff between
the extra effort in preparing the W state and the damage that
comes with circuit depth.

C. Benchmarking graph sets

To better understand the behavior of these QAOA graph-
coloring algorithms, we make use of the sets of all
κ-chromatic graphs of size n as the benchmarking sets for the
XY mixers under consideration. See Table II for the number
of instances in each benchmarking set.

1. Approximation ratio and probability of optimal solution

Using the W state as the initial state, for simultaneous
ring and complete-graph mixers, the mean and median of
the approximation ratio as well as the probability of optimal
solution are evaluated across problem sets.

The following observations have been made on the typical
performance for each problem set.

a. Consistent performance over instances. For all problem
sets, the approximation ratio and the probability-of-optimal-

FIG. 7. Approximation ratio (solid lines) and probability to exact
solution (broken lines) for QAOA with the ring simultaneous mixer,
with n = 6 (crosses) vs n = 7 (filled circles).

solution curves as a function of the QAOA level are highly
consistent across graphs, bearing the same shape for the prism
and envelope graphs. For each problem set, the approximation
ratio showed very little deviation from the mean (demon-
strated by the small error bars in Fig. 7).

b. Larger graphs are harder to color. As expected, for the
same κ , as n increases, the performance of QAOA with the
same type of mixer decreases (see Fig. 7 for comparison of
the simultaneous ring mixer for n = 6 and 7).

c. The complete-graph mixer is better than the ring mixer.
For the same problem size n, the simultaneous complete-graph
mixer demonstrates better performance than the simultaneous
ring mixer in QAOA levels from 1 to 10. See the scatter
plot for QAOA level 2 and level 8 in Fig. 8. For small
QAOA levels, this advantage is uniform across instances
for smaller levels, as shown in Fig. 8(a) for level 2, where
for all 282 instances the complete mixer generates a higher
approximation ratio. The advantage is decreasing as QAOA
level increases [cf. Figs. 8(a) and 8(b)]. This is possibly due
to the approximation ratio getting close to 1. We also speculate

ring
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(a) QAOA level-2
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(b) QAOA level-8

FIG. 8. QAOA with simultaneous mixers. Performance compar-
ison between ring and complete-graph mixers applied to the same
graph-coloring problems. The axes show the approximation ratio
achieved using the labeled mixer type. The scatter plot shows the
results for four-coloring of all connected chromatic-4 graphs of size
n = 7. In (b), for better visibility, an outlier data point at (ring = 0.95,
complete = 0.9) is not shown in the plot.

012320-9

Approximation ratio on all 4-colorable, 
connected graphs with 7 vertices

M Streif, M Leib, F Wudarski, E Rieffel, Z Wang, Quantum algorithms with local 
particle number conservation: noise effects and errorcorrection, Physical 
Review A 103 (4), 042412, 2021

XY-mixer retains advantage under noise
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Parameter Setting for QAOA 

15-Nov-2021

McClean, Boixo, Smelyanskiy, Babbush, Neven, Barren plateau paper (Nature Comm, 
2018) 
- Processes for finding parameters can get stuck in large, featureless plateaux

QAOA for Grover’s unstructured search – simple, periodic parameters recover square-
root query complexity
- (Not a Trotterization of Roland-Cerf adiabatic algoruthm, since Trotterization loses 
the square-root query complexity)

For the trivial problem of MaxCut on ring, good parameters harder to find than might 
be expected 

- Fermionic view helps with analysis
- Control theory gives insight into parameter landscape
- Mbeng, Fazio, Santoro advanced our results, finding a regular set of parameters 

that approximated adiabatic schedule arXiv:1906.08948 
Bravyi et al., Classical Algorithms for Quantum Mean Values, arXiv:1909.11485  

Z. Jiang et al., Near-optimal quantum circuit for Grover's unstructured 
search using a transverse field, PRA 95 (6), 062317, 2017

Z. Wang et al., The Quantum Approximation Optimization 
Algorithm for MaxCut: A Fermionic View, PRA 97 (2), 2018 
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Analytical Framework for QAOA: Overview

15-Nov-2021

Key quantities for parameterized quantum circuits such as QAOA expressed as 
expectation values 

Can obtain exact parameter series expressions for these quantities via “the Heisenberg 
picture” 

For alternating ansätze, similar terms reappear in the series as the number 𝑝 of layers is increased 

For QAOA, the resulting terms of the series intuitively relate to classical functions 
(derived from the cost function) that reflect problem structure and choice of mixing 
operator 

Applications:
• leading-order behavior and series approximations for QAOA𝑝

• encapsulate several existing performance results for QAOA1 

• extensions to QAOA𝑝 with 𝑝 ≥ 1
• additional results including generalizations to constrained optimization 

Stuart Hadfield, Tad Hogg, Eleanor G. Rieffel, Analytical Framework for Quantum Alternating Operator Ansätze, arXiv:2105.06996
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Connections between quantum annealing schedules 
and QAOA parameter setting

Brady, Baldwin, Bapat, Kharkov, V. Gorshkov arXiv:2003.08952
- generically, for a fixed amount of time, optimal procedure has bang-bang structure of 

QAOA at the beginning and end, but a smooth annealing structure in between

Zhou, Wang, Choi, Pichler, Lukin arXiv:1812.01041
• Learned optimal parameters
• Identified regular subfamily of optimal parameters, resembling digitized smooth 

evolution
– For easy problems,  resembled adiabatic schedules
– For hard problems, resembled diabatic schedules 

Mbeng, Fazio, Santoro, Connects adiabatic adiabatic schedules with optimal QAOA 
parameters for the easy problem of MaxCut on a Ring, arXiv:1906.08948 

Yang, Rahmani, Shabani, H Neven, C Chamon, PRX 2017
- Pontryagin’s minimum principle implies optimal evolution schedules must be bang-

bang, up to some caveats 
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Status of QAOA 

• Unclear as of yet as to whether it provides a speed up beyond a few 
examples
– that is true for any NISQ quantum optimization algorithm!

• Parameter setting is challenging
– we will return to this topic shortly
– relation between parameter setting in QAOA and annealing schedule choice in 

quantum annealing
• Two types of QAOA algorithms:

– Gate-model, with mixing operator and phase separation operator made up of 1- and 
2-qubit gates

– Large-scale Hamiltonians applied, possible on some hardware being developed for 
both annealers and universal QCs

15-Nov-2021

Cf. Neill et al., A blueprint for demonstrating quantum supremacy with 
superconducting qubits (2017) 
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Exercise: Map Independent Set to QAOA

15-Nov-2021

• MIS (Map Independent Set) Problem: Given a graph 𝑮, find largest 
mutually disjoint subset of vertices 𝑺 ⊂ 𝑽,    where 𝑽 = 𝒏

• Specify 
– Representation (meaning of binary variables)
– Cost function
– Mixing operator
– Initial state

• Feel free to express in terms of classical operations, including 
controlled-NOTs, even multiply controlled-NOTs
– Then convert to Hamiltonian or unitary

• Bonus exercise: Map Max-3-Colorable-Induced Subgraph to QAOA
– Problem statement: Given a graph 𝑮, find largest subset of vertices 𝑺 ⊂ 𝑽, such that 

all edges between s ∈ S are properly colored (endpoints have different colors)
– Hint: Use concepts from both Max-Colorable-Subgraph and MIS mappings

18



A Solution: One Possible MIS to QAOA Mapping

15-Nov-2021

• Representation
– Use n binary variables 𝒙𝒖, one for each vertex in the graph. These variables will be 

mapped to n qubits. Variable 𝒙𝒖 = 𝟏 indicates vertex 𝒖 ∈ 𝑺
• Initial State: Empty set: |𝟎𝟎…𝟎⟩

• Cost function
– cost function to maximize       𝒄 𝑺 = |𝑺| = ∑𝒖∈𝑽𝒙𝒖
– maps to Hamiltonian      𝑪 = 𝟏

𝟐
∑𝒖∈𝑽(𝑰 − 𝒁𝒋)

• Mixer
– Can add (or remove) a vertex 𝒖 to 𝑺 if none of 𝒖’s neighbors are already in 𝑺
– For each vertex, construct the partial mixer (a controlled X-rotation) 

𝒆𝒙𝒑 −𝒊𝜷𝑩𝒖 = 𝚲𝒙𝒗𝟏𝒙𝒗𝟐…𝒙𝒗ℓ 𝐞𝐱𝐩(−𝐢𝜷𝑿𝒖)
where 𝒏𝒅𝒉𝒅 𝒖 = {𝒗𝟏, … 𝒗ℓ}

– Total mixer: 𝑼𝑴 𝜷 = ∏𝒖∈𝑽𝒆𝒙𝒑(−𝒊𝜷𝑩𝒖)
where we must choose a product order

For more explanation, and answer 
to bonus exercise, see
Hadfield et al. From the Quantum Approximate 
Optimization Algorithm to a Quantum Alternating 
Operator Ansatz. arXiv:1709.03489 (2017)
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– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement
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– Quantum gates and quantum circuits
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– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks
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Pause Feature on the D-Wave 2000Q

• Annealing Hamiltonians
– H(s) = A(s)Hd + B(s) Hp, 0 ≦ s ≦ 1

• Annealing schedule: s(t)

• Previously, schedule restricted to 
adjustment of overall time, ta
– s(t) = t/ta

• New pause feature supports more 
flexible schedules 
– given total anneal time of ta + tp
– anneal normally to pause location sp

– hold H constant from sp to sp + tp
– continue normally after sp + tp

Standard 
D-Wave 
2000Q 
schedule

Example 
pause 
schedule

15-Nov-2021 21



Pause Results for One Typical Problem

• Performance for pause schedules
– heat map of probability of solution P0 as function of 

pause location sp and pause length tp
– heat map of average energy (above ground state) 

of solution as function of pause location sp and 
pause length tp

• Results for single 800-qubit problem
– total anneal time ta = 1 𝜇s
– Each point: 10,000 anneals, using 5 gauges
– P0 = 10-4 for anneal without pause

• Orders of magnitude improvement for 
pausing in narrow region of location 
parameter sp

J. Marshall, D. Venturelli, I. Hen, E. Rieffel, The power of pausing: advancing 
understanding of thermalization in experimental quantum annealers, Physical 
Review Applied 11 (4), 044083, 2019, arXiv:1810.05881
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Theory and Relevant Time Scales

• Early times: Ground state is 
well-separated by rest of 
spectrum, so P0 ~ 1

• Gap narrows: tr < tH
Relaxation rate increases, 
potential for thermal excitation 
leading to instantaneous 
thermalization

• Gap widens: tH < tr ≲ tp
Instantaneous thermalization 
no longer occurs, but a pause 
may enable significant 
thermalization

• Late times: tp << tr Energy 
levels well-separated so even 
with a pause of length tp, 
thermalization cannot occur

Cartoon of distinct regions with different behavior focusing on 
most dynamic part of the anneal
• t_r = relaxation rate
• t_H = Hamiltonian evolution time scale. 

For t_r < t_H, the system instantaneously thermalizes (we 
plot t_H as a line only for the purpose of easy visualization 
of the regions)
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Effectiveness of Pause on Embedded Problems

• Problem class: Minimum Weighted Spanning Tree with degree 
constraints
– Factor of five 

improvement in the 
mean probability of 
success observed for 
50, N=4 problem 
instances (20–35 
variables; 50–125 
qubits when 
embedded)

– Consistent pause 
location across 
instances 

– Similar results for 
N=5 problems (not 
shown)

Mean and median probability of success 
as a function of the annealing pause for 
50 N=4 instances, 1 ms anneal, 50K 
reads, Jferro = -2. Pause location for 
• (left) ranging from 0.1 to 0.9 
• (bottom) near the peak success prob.
(Error bars are at the 35th and 65th
percentiles)

Open question: why is the effect less pronounced 
for these embedded problems?
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Classical HPC Simulation of Quantum Circuits

• Advanced the state-of-the-art
– can simulate larger quantum circuits 

than any previous approach
– judicious use of cuts within a tensor 

network contraction
– HPC memory tricks and trade-offs
– can flexibly incorporate fidelity goal

• Largest computation run on NASA 
HPC clusters
– 60-qubit subgraph, depth 1+32+1 
– 116,611 processes on 13,059 nodes, 

peak of 20 PFLOPS, 64% of max
– across Pleiades, Electra, Hyperwall

• Applications
– quantum supremacy experiments
– benchmark emerging quantum hardware
– empirically explore quantum algorithms

Villalonga et al., A flexible high-performance simulator 
for the verification and benchmarking of quantum 
circuits implemented on real hardware. 
arXiv:1811.09599
Villalonga et al., Establishing the Quantum Supremacy 
Frontier with a 281 Pflop/s Simulation, arXiv:1905.00444

Computed exact amplitudes for 72 qubit 
Bristlecone random circuit, depth 1+32+1
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Quantum Supremacy

• How do you verify a 
computation that no 
other hardware can 
do?
– check smaller version
– check pieces
– check variants that are 

simpler to simulate
• Entering an era of 

unprecedented 
ways to explore 
quantum 
algorithms

• Era of quantum 
heuristics.

• These explorations 
will broaden the 
known application 
of quantum 
computing

Example random quantum circuit. Every cycle includes 
a layer of single- and two-qubit gates. The single-qubit 
gates are chosen randomly from a set of three gates. The 
sequence of two-qubit gates follow a tiling pattern, 
coupling each qubit sequentially to its four neighbors.

24 Oct 2019
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Unified Framework for Optimization à PySA

2815-Nov-2021

- Modern C++17 with template metaprogramming
for high level of abstraction

- Compile time optimization to improve performance

• UFO features and state-of-the-art algorithm 
implementations:

- Compile time optimization
- Optimize natively k-local Ising Hamiltonians, with k ≥ 2
- Algorithms:

- Parallel Tempering
- Ergodic and non-ergodic Isoenergetic cluster moves
- Approximate solution using mean-field theory
- [Planned in PySA] Thermal cycling
- [Planned in PySA] Simulated Quantum Annealing
- [Planned in PySA] Hard-embedding of constraints

- Fully working C-APIs 
- Python libraries with full state access [Planned in PySA]

- [Planned in PySA] GPU implementation

We continuously 
update UFO [PySA] 
with optimized code 
for state-of-the-art 

classical optimization, 
including physics 

inspired approaches 
we have developed



Qubit Routing on NISQ Processors

Compila(on of an algorithms to 
a NISQ processor requires
• Decomposi(on into na(ve 

gates 
• Qubit rou(ng

Qubit rou(ng  moves qubit 
states to loca(ons where the 
required gates can act on them
• Can be done by inser(ng 

SWAPs into a circuit 
composed of na(ve 

Main result: Any unordered set 
of k-qubit gates on distinct k-
qubit subsets of n logical 
qubits can be ordered and 
parallelized in O(nk−1) 

Applications:
• QAOA
• Quantum simulation of 

Fermionic systems
– Single Trotter step
– uses fermionic swap gates to 

change ordering of a Jordan-
Wigner string 

Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, K. 
BirgiQa Whaley, Generalized swap networks for near-term 
quantum compuFng, arXiv:1905.05118
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• Qubit routing can be phrased as a 
temporal planning problem 
• minimize makespan

• Can incorporate
– nearest-neighbor h/w constraints 
– varying quantum gate times
– crosstalk

• Initial experiments focused on
• QAOA circuits for Maxcut because of 

their high number of commuting gates 
• Rigetti hardware proposal with varying 

gates between neighboring qubits

• Mapped circuit compilation problem 
to a temporal planning problem, 
compared state-of-the-art temporal 
planners 

• Demonstrated temporal planning is a 
viable approach to circuit compilation

• More recently, combined temporal 
planning with constrained 
programming 

• Currently extending to more complex 
circuits such as QAOA for graph 
coloring

• Expressive framework can 
incorporate further hardware 
requirements, incl. noise tradeoffs, as 
we learn them

Temporal Planning for Qubit Routing

D. Venturelli et al., Compiling quantum circuits to realistic 
hardware architectures using temporal planners, Quantum 
Science and Technology (2018) 
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Classical HPC Simulation of Quantum Circuits

Advanced the state-of-the-art
- simulates larger quantum circuits than 
previous approaches
- judicious use of cuts within a tensor 
network contraction
- HPC memory tricks and trade-offs
- can flexibly incorporate fidelity goal

Largest computation run on NASA HPC clusters
- 60-qubit subgraph, depth 1+32+1 
- 116,611 processes on 13,059 nodes, peak 
of 20 PFLOPS, 64% of max
- across  Pleiades, Electra, Hyperwall
Applications
- quantum supremacy experiments
- benchmark emerging quantum hardware
- empirically explore quantum algorithms

Villalonga et al., A flexible high-performance simulator for the 
verification and benchmarking of quantum circuits implemented 
on real hardware. arXiv:1811.09599
Villalonga et al., Establishing the Quantum Supremacy Frontier 
with a 281 Pflop/s Simulation, arXiv:1905.00444

Open source qFlex code: 
https://github.com/ngnrsaa/qflex

Computed exact amplitudes for 72 qubit 
Bristlecone random circuit, depth 1+32+1
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HybridQ: A Hybrid Quantum Simulator
for Large Scale Simulations

Hardware agnostic quantum simulator, designed to simulate large scale quantum circuits.
Can run tensor contraction simulations, direct evolution simulation and Clifford+T
simulations using the same syntax
Features:

Fully compatible with Python (3.8+)
Low-level optimization achieved by using C++ and Just-In-Time (JIT) compilation with JAX and Numba,
It can run seamlessly on CPU/GPU and TPU, either on single or multiple nodes (MPI) for large scale 

simulations, using the exact same syntax
User-friendly interface with an advanced language to describe circuits and gates, including tools to 

manipulate/simplify circuits.

Recent Improvements:
Commutations rules are used to simplify circuits (useful for QAOA)
Expansion of density matrices as superpositions of Pauli strings accepts arbitrary non-Clifford gates,
Open-source (soon!) project with continuous-integration, multiple tests and easy installation using either 

pip or conda

Open source code available at https://github.com/nasa/HybridQ

15-Nov-2021 32



Agenda

15-Nov-2021

• Part I: Quantum-computing fundamentals
– High-level motivation, history, and status
– Qubits, multi-qubit states, and quantum measurement

Morning break
• Part II: Circuit-model quantum computing

– Review of notation
– Quantum gates and quantum circuits

Lunch
– Basic quantum algorithms

• Part III: Quantum annealing
Afternoon break

• Part IV: Further quantum algorithms
– Quantum Alternating Operator Ansatz (QAOA)
– Advancements in quantum algorithms
– Concluding remarks

33



Quantum Error Mitigation

15-Nov-2021

• Error suppression: Inhibits transitions out of the ground 
subspace 

• Error correction: Counteracts transitions that have 
happened

XX

XX

XX

ZZ

ZZ

ZZ

1,1 1,2

2,2 2,3

3,1 3,3

• Quantum error correction initially thought impossible! 
– No cloning principle: an unknown quantum state cannot be copied reliably without 

destroying the original 
• Quantum information theory was just too interesting 

– Steane and Shor & Calderbank saw a way to finesse what had seemed 
insurmountable barriers to quantum error correction 

• Now quantum error correction is one of the most developed areas
– beautiful, almost magical, effects! 
– uses properties of quantum measurement and entanglement to its advantage 

• Stabilizer code formulation most common
• More recently, advantages of subsystem codes

– e.g. Jiang & Rieffel, Non-commuting two-local Hamiltonians for quantum error 
suppression, Q Info Processing (2017)
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Fault Tolerance

15-Nov-2021

• Error suppression and correction mechanisms cannot be done perfectly 
• Fault tolerance: Ensures error suppression/correction do not introduce 

more problems than they solve 
• Imprecise implementation of mechanisms may cause errors Even 

accurate implementation may magnify errors 
– can take correctable errors to uncorrectable ones 

• Threshold theorems: There exists an error rate threshold rth below 
which indefinitely long quantum computations can be carried out 
robustly 

• In the gate model, a number of different threshold theorems are known. 
Specific theorems involve precise statements of error model, precision 
of implementation, resource quantification, distance measure 

• How to establish a threshold theorem for adiabatic quantum computing 
remains a major open question 
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Measurement-Based Quantum Computing (MBQC)

15-Nov-2021

• Outline of measurement-based quantum computation
– Start in a highly entangled state that serves as the quantum resource 

• Cluster states, graph states, …
– Make series of single-qubit measurements that  can depend on previous 

measurement results
– Interpret the results of the measurements to obtain a final answer 

• Properties
– Computational power equivalent to standard quantum computation 
– Separation between classical and quantum aspects of the computation 
– Entanglement decreases; also called one-way quantum computing

• Resource states for MBQC
– Some states too entangled to serve as a resource!
– Classically hard to sample from output distributions of non-adaptive MBDL!
– Open questions remain, e.g. Rieffel & Wiseman, Discord in relation to resource 

states for measurement-based quantum computation, PRA (2014)
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Status of Quantum Algorithms

15-Nov-2021

• Anything a classical computer can 
do, a quantum computer can do 

• Provable quantum advantage known 
for a few dozen quantum algorithms

• Data from Quantum Algorithms Zoo: 
speed up over classical
– Exponential: 2
– Superpolynomial: 29
– Polynomial: 28
– Constant: 1
– Varies: 4
– Total: 64
– https://quantumalgorithmzoo.org/

• Rapidly expanding opportunity for 
empirical testing on emerging 
quantum hardware

Conjecture: Quantum 
heuristics will significantly
broaden of applications of 
quantum computing

What is the chance that the 
only cases in which 
quantum computing 
provides a speed up is in 
cases when we can prove 
it does?
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Impact of Quantum Information Processing Viewpoint 
on Classical Computer Science

15-Nov-2021

• Analogies
– Complex analysis enables computation of real integrals
– Probabilistic algorithms inform analysis of deterministic algorithms

• Quantum computational security reductions for purely classical 
encryption schemes
– Regev’s lattice-based encryption scheme
– One of the security reductions for Gentry’s fully homomorphic encryption scheme

• Improved classical simulations of quantum systems

• Insights into classical complexity theory
– Aaronson found a short, almost trivial, proof of a property of the complexity class PP

by showing that it is the same as the quantum complexity class PostBQP
• Drucker & de Wolf (2009) survey “Quantum proofs for classical 

theorems”
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A Historical Perspective

• Illiac IV—first massively parallel 
computer 
– 64 64-bit FPUs and a single CPU 
– 50 MFLOP peak, fastest computer at 

the time 

• Finding good problems and 
algorithms was challenging

• Questions at the time
– How broad will the applications be of 

massively parallel computing?
– Will computers ever be able to compete 

with wind tunnels? 

NASA Ames director Hans Mark brought 
Illiac IV to NASA Ames in 1972 
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Take Away Points

15-Nov-2021

• Next year will be even more exciting!
– Emerging quantum hardware performing 

computations beyond the reach of even the largest 
supercomputers

• Many open questions remain:
– When will scalable quantum computers be built, and 

how? 
• How quickly can special purpose quantum computing 

devices be built?
– How broad will the impact of quantum computation 

be? What will the ultimate impact of quantum 
heuristics be? 

– How best to harness quantum effects for 
computational purposes? 

• Deep connection between physics and 
computer science
– How fast does nature let us compute? 

Quantum-
enhanced 
applications

QC programming
Novel classical 
solvers

Physics Insights

Analytical 
methods

Simulation 
tools
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Eleanor G. Rieffel, Stuart Hadfield, Tad Hogg, Salvatore Mandrà, Jeffrey Marshall, Gianni Mossi, Bryan O'Gorman, 
Eugeniu Plamadeala, Norm M. Tubman, Davide Venturelli, Walter Vinci, Zhihui Wang, Max Wilson, Filip Wudarski, 
Rupak Biswas, From Ansätze to Z-gates: a NASA View of Quantum Computing, arXiv:1905.02860

Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandrà, Bryan O'Gorman, Alejandro 
Perdomo-Ortiz, Andre Petukhov, John Realpe-Gómez, Eleanor Rieffel, Davide Venturelli, Fedir Vasko, Zhihui Wang, 
A NASA Perspective on Quantum Computing: Opportunities and Challenges, arXiv:1704.04836

Further Reading 

Overviews of NASA QuAIL team work

Eleanor Rieffel and Wolfgang Polak
Quantum Computing: A Gentle Introduction
MIT Press, March 2011 

And references therein 
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Additional Resources
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• Free access to real quantum computers
– IBM Quantum Experience (circuit model): https://www.ibm.com/quantum-computing/
– D-Wave Leap (annealing model): https://cloud.dwavesys.com/leap

• Additional software for high-level programming of D-Wave systems
– Prolog: QA Prolog (https://github.com/lanl/QA-Prolog)
– C: C to D-Wave (https://github.com/lanl/c2dwave)
– Verilog: edif2qmasm (https://github.com/lanl/edif2qmasm)
– Macro assembly language: QMASM (https://github.com/lanl/qmasm)
– QUBO/Ising Google Sheet (https://tinyurl.com/y6wkkkm3)—use File→Make a copy

to store an editable version in Google Drive or File→Download as to save locally
• HPC quantum-circuit simulator

– qFlex (https://github.com/ngnrsaa/qflex)

• Student internships available
– NASA QuAIL at NASA Ames Research Center 

(https://ti.arc.nasa.gov/tech/dash/groups/quail/)
– LANL Quantum Computing Summer School Fellowship: 

https://quantumcomputing.lanl.gov/
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Tutorial Survey
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• Please send us feedback so we 
know how to improve the 
tutorial for next time

• Two ways to find the review 
form:
1. Scan the QR code on the screen 

outside this room
2. From 

https://sc19.supercomputing.org/, 
click on Schedule (at the top), 
then Introduction to Quantum 
Computing, and finally give 
feedback
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