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NASA has established goals of returning humans to Moon with an initial landing by 2024 

and a subsequent sustained presence by 2028, which will require technological advances in 

spacecraft navigation to enable precision landing. The ability to assess the navigation 

performance of these new and existing technologies is critical to identifying areas of risk 

reduction and investment. To that end, the Safe and Precise Landing Integrated Capabilities 

Evolution (SPLICE) project has demonstrated that a detailed six degree-of-freedom 

integrated performance simulation framework can provide information on and assessment of 

expected navigation performance. This framework incorporates engineering models of the on-

board spacecraft guidance, navigation, and control systems at varying levels of fidelity. Recent 

advances in the development of this integrated performance simulation permit running these 

systems “in-the-loop,” rather than assuming perfect knowledge of the spacecraft states. This 

development, coupled with fast simulation time and modularization of the various system 

models, enables a wide variety of system trades to be assessed at once. This paper presents a 

summary of the advances in the SPLICE simulation framework, updates to the spacecraft 

navigation models, and an application of the framework to characterize the precision landing 

performance of a human-scale lunar lander. A series of trade studies examining effects of 

ground state update qualities shows that given all other assumptions, sufficiently accurate 

Deep Space Network (DSN) measurements can enable safe and precise human-scale Lunar 

landings. 
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I. Introduction 

Recent NASA studies of crewed missions to the Moon and Mars have highlighted the need for an autonomous 

safe and precise landing capability [1, 2]. The payload and mass requirements for these human-scale missions are 

orders of magnitude higher than previous robotic-scale missions. Numerous challenges must be addressed and 

technologies matured before these types of landings become feasible, including in the areas of spacecraft guidance, 

navigation, and control (GN&C).  

The Safe and Precise Landing Integrated Capabilities Evolution (SPLICE) project is tasked with advancing 

autonomous spacecraft navigation through multiple areas of research and development. A crucial aspect of this effort 

is increasing the technology readiness level (TRL) of key deorbit, entry, descent, and landing (DDL/EDL) GN&C 

systems. Detailed six degree-of-freedom (6DOF) physics-based engineering simulations are used to aid in evaluation 

of these systems in an integrated performance sense [3]. Different navigation sensors and their effects on overall 

system performance are evaluated using these simulations.  

In this work, an update to [3] is presented with application to the human-scale Lunar lander described in [4]. A 

brief description of the lander and concept of operations is provided in Section II. Updates to the models built to 

represent navigation sensors and other spacecraft systems are described in Section III. Finally, the results are presented 

in Section IV with emphasis on how improved modeling fidelity enables rapid and detailed assessment of the overall 

integrated system performance. 

II. Human-Scale Lunar Landing 

The Artemis program began in 2019 with a directive to return humans to the Moon by 2024 [5]. To that end, 

NASA awarded contracts in May 2020 to three companies to mature the design of an integrated Lunar lander vehicle 

[6]. Throughout this period, NASA maintained a government reference design for a Lunar lander that was 

continuously refined in parallel with the contractor efforts. The present analysis will focus on the government design. 

A. Deorbit, Descent, and Landing Vehicle 

Though the Artemis program relies on industry-provided lander designs, the vehicle used in the present study is 

from an abbreviated NASA Design Analysis Cycle (Mini-DAC) that focused a storable propellant system that does 

not rely on cryogenics, increasing the readiness of the design for 2024 [4]. The design is a two-element architecture 

with a Descent Element (DE) and Ascent Element (AE). Table 1 lists relevant vehicle information and assumptions.  

Table 1  DDL vehicle information. 

System Parameter Value 

Mass 
Mass 33,151 kg  

Main Engine Propellant Load  14,425 kg 

Propulsion 
Main Engines 3x 8000 lbf @ 340 s Isp 

RCS 16x 100 lbf @ 300 s Isp 

Actuators Main Engines TVC, ±10° 

B. Concept of Operations 

The DDL concept of operations of the Mini-DAC design for the Artemis Lunar lander is shown in Fig. 1. DDL 

begins in the 100 km circular parking orbit. The deorbit insertion (DOI) burn places the vehicle in an intermediate 

100x15.24 km orbit, and powered descent initiation (PDI) begins at periapsis with the braking burn performed by the 

DE. The braking burn is designed to reduce the vehicle velocity as efficiently as possible. The vehicle then transitions 

to the approach phase, during which the vehicle orientation is adjusted to use the landing navigation sensors. During 

this phase, vehicle thrust is controlled such that once the vehicle is over the landing site, horizontal velocity is nullified. 

Note that the “braking” and “approach” nomenclature is a holdover from the Apollo Moon landings. Terminal descent 

begins at an altitude of 50 m at 5 m/s, and the vehicle velocity is further reduced such that the main engines cut off at 

an altitude of 1 m and a velocity of 1 m/s.  
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Fig. 1  Artemis Lunar lander DDL concept of operations, government reference design. 

C. Navigation Sensor Ground Rules and Assumptions 

Fig. 2 shows which navigation sensors are used in each mission phase. Dark gray bars indicate the sensor in that 

row is inactive. Inertial measurement unit (IMU) measurements are made continuously and throughout all phases of 

flight. Star tracker measurements cease at DOI, resume during the coast phase, and terminate 10 minutes prior to the 

start of the braking phase. A Deep Space Network (DSN) update is made five minutes prior to the deorbit burn. TRN 

measurements nominally begin during the braking phase and end prior to the approach and vertical descent phases, 

which are also referred to as terminal descent. Navigational Doppler LIDAR (NDL) measurements are made during 

the latter phases of powered flight, typically prior to terminal descent.  

 

Fig. 2  Navigation sensor concepts of operation. 

 Various assumptions were made in the implementation and use of the navigation sensors for this work. As the 

simulation framework matures, these assumptions will be revised and updated: 

• All sensors are mounted perfectly to the rigid body with known alignments (i.e., no sensor-to-body frame 

misalignments). 

• The IMU is calibrated during an unmodeled on-orbit quiescent period, resulting in a reduction of the scale 

factor and biases by a factor of 10 for the remainder of the flight. 

• IMU measurements below the thresholds listed in Table 2 are rejected by the navigation filter to avoid 

integrating noise. This measurement rejection occurs only during the loiter and coast phases.  

• IMU measurements are not quantized. 

• The navigation filter process noise includes IMU-related noise only. 

• The DSN update is treated as a filter re-initialization rather than a measurement. This means that the DSN 

state measurement and associated covariance replaces the current filter state and covariance.  

• Estimated vehicle mass properties (mass, inertias, and center of gravity location) are obtained directly from 

the simulation truth values. 

• Lag time between sensor measurements and filter processing is unmodeled. 
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• Spacecraft clock time is the same as the simulation truth time.  

• The target landing site (i.e., latitude, longitude, altitude) is known perfectly. 

III.  Simulation Framework and System Modeling 

The DDL case study described in Section II is simulated using the Program to Optimize Simulated Trajectories II 

(POST2) 6DOF framework presented in [3]. This framework consists of generalized, modular, and user-configurable 

engineering models of various vehicle systems.  

  

Fig. 3  GN&C block diagram. 

The overall GN&C system architecture is illustrated as a block diagram in Fig. 3. The navigation system is shown 

as green and blue boxes. Sensor measurements are derived from simulation truth states. The outputs of the navigation 

system, in the form of vehicle states and associated derived quantities, are then passed to the guidance, which 

determines the necessary commands to achieve the desired final state. These commands are passed to the vehicle 

controllers, which then compute the necessary actuator states to achieve those commands. Finally, these states are 

passed to the vehicle actuators and propulsion systems, which impart forces and moments on the vehicle. This section 

describes the individual models that comprise the GN&C system in the integrated simulation. While some 

considerations for sensor accommodation on the reference government vehicle are made for each GN&C subsystem 

element, specific details of sensor accommodation and performance will be vehicle and mission dependent. 

A. Guidance and Control 

The G&C laws used during DDL are shown in Fig. 4. The Artemis lander uses the Apollo powered descent 

guidance based on formulations in [7]. During deorbit and coast phases, attitude control is provided by reaction control 

system (RCS) thrusters. A generalized three-axis phase-plane controller [8] directs RCS jet firings to minimize the 

errors between the commanded and navigated attitude and attitude rates.  

 

Fig. 4 Guidance and control laws per major trajectory phase. 

During powered descent, RCS is used for roll control only. Pitch and yaw control are provided by the three DE 

main engines. Pitch and yaw commands are passed through a proportional-integral-derivative (PID) controller to 

generate desired angular acceleration commands, which are then in turn passed through a thrust vector control (TVC) 

allocator to determine jet firings.  
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B. Navigation 

The simulation framework includes a suite of spacecraft navigation models that are generalized to the extent that 

they can be used to simulate sensors of varying quality for a variety of mission scenarios. The full sensor suite is 

described in [3] and includes engineering and behavioral models of a strapdown IMU, star tracker, altimeter, 

velocimeter, navigational Doppler light detection and ranging (LIDAR, NDL), terrain-relative navigation (TRN), 

hazard detection (HD), and a ground update/Deep Space Network (DSN). This section will detail new or improved 

model capability since the publication of [3].   

1. Model Fidelity and Sensor Quality 

SPLICE has been supporting the development of various sensor models for use in performance assessments of 

various navigation scenarios. To this end, SPLICE has adopted a tiered approach to model fidelity and sensor quality 

so trade studies may be performed [3].  

Model fidelity refers to the level of detail the model captures the underlying physical and mechanical processes of 

the sensor. For example, a low-fidelity IMU model may just be corrupted simulation truth states. A high-fidelity IMU 

model might capture the physical of the IMU sensing mechanism, voltage changes, etc. Note that higher fidelity does 

not necessarily indicate a “better” model, as the appropriate fidelity of the model depends on the application. Most of 

the models used in the present study are of low- or medium-fidelity and are designed to be able to capture a wide 

range of performance, or sensor quality.  

Sensor quality refers to how accurately the sensor measurements reflect truth. The precise definition of high, 

medium, and low quality is subjective and depends on the type of sensor. For example, a low-quality IMU might be a 

commercial system intended for robotics hobbyists that has relatively large noise, scale factor, and bias attributes. A 

high-quality IMU might be a military-grade unit that has comparatively small noise, scale factor, and bias attributes.  

2. Multi-Mode Extended Kalman Filter 

An extended Kalman filter (EKF) provided by the NASA Engineering & Safety Center (NESC) was implemented 

in the simulation framework [9]. This multi-mode EKF (MEKF) is designed as an easily configurable navigation filter 

that can be used for various mission scenarios. The MEKF includes built-in navigation models for an IMU, star tracker, 

altimeter, and velocimeter. The MEKF has been augmented by adding similar models for TRN, NDL, and ground 

station updates. For the present study, the filter process noise only includes terms related to the IMU measurements. 

3. Terrain-Relative Navigation 

A medium-fidelity TRN model was implemented in the simulation. Having TRN measurements available during 

DDL/EDL is critical for precision landing capability. The TRN sensor provides lander position measurements relative 

to a planet-fixed coordinate system. The purpose of this sensor model is to capture the behavior of a passive camera-

based TRN system, which extracts the surface coordinates of landmark features in the camera image by matching 

these features to a reference map. Using these matches, a Kalman-type filter or least squares estimator is used to 

estimate lander position. 

The TRN sensor model in this simulation has a similar architecture, namely feature matching and state estimation.  

However, to limit the modeling scope, this model is behavioral and does not render images or perform image 

processing. Instead, it simulates uniformly distributed feature matches using the camera field-of-view and the true 

lander state. Each feature match is then corrupted by several error sources to mimic the image processing errors of a 

real system. These error sources include cross-correlation matching error, outlier error, map quantization error, and 

horizontal feature bias at both the local level and regional level. 

For the estimation step, the sensor model leverages state space modeling because it provides a relatively 

straightforward method to relate TRN position accuracy to the basic system parameters like camera direction, field-

of-view, image resolution, reference map resolution, etc. Parameter uncertainties like camera misalignment and focal 

length error are considered.  The model has built-in internal checks that ensure the operating envelope of the TRN 

system is not violated. These checks include maximum and minimum altitudes, speeds, body rates, etc. The estimation 

algorithm in the model is based on the formulation presented in [10]. This approach has the same lineage as the fine 

matching mode of the Lander Vision System (LVS) on the Mars 2020 lander [11]. This similarity allows the position 

accuracy of the TRN sensor model to be tuned using 2019 LVS helicopter field test data. The TRN sensor model 

consists of an internal EKF in which attitude, velocity, and position states are initialized by the MEKF. The model 

can be used as a least squares estimator or as a parallel filter. Depending on the selection, the feature measurements 

refine either the prior MEKF estimate or an independent IMU estimate to produce a position measurement for the 

MEKF. 
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The standalone sensor model implementation is verified using Monte Carlo simulation. The ensemble error 

statistics match with the filter predicted error statistics. This indicates the output of the code implementation is 

consistent with the modeling assumptions. 

An example plot for the position accuracy of the TRN sensor model is shown in Fig. 5.  In this example, 2 different 

map resolutions are used over the altitude range of 6 km to 500 m. The map switching occurs at 25 s. When the 6.3 

m/pixel reference map is used, the horizontal position accuracy is 22 m (3). When the 1.8 m/pixel map is used, the 

position accuracy improves to 7 m (3). It is important to note that the position accuracy remains relatively unchanged 

after the first update using a particular map. This behavior is a result of the regional feature bias error in the reference 

map. 

For this analysis, the TRN camera is mounted near the vehicle CG and is angled at a 45° angle away from the 

vehicle centerline. 

 

Fig. 5  Example position estimate error from the TRN sensor model. 

4. Navigational Doppler LIDAR 

Each NDL beam produces two fundamental measurements: range (distance along beam to terrain intercept) and 

the component of the planet-relative velocity vector projected onto the beam. The NDL measurement model utilizes 

the POST2 antenna subsystem model to simulate each of the three LIDAR beams. The beams are assumed to be rigidly 

fixed to the vehicle at a common mounting location, and the direction of the beams in the body frame are assumed to 

be known perfectly. The POST2 antenna subsystem calculates the range between the beam source and terrain 

intersection point [12]. For this work, the NDL mounting location (i.e., beam origin location) is at the base of the 

vehicle near the main engines. The beams are angled away from the centerline by 10° and beams B and C are separated 

from the center beam A by 120°. 

An NDL measurement error model provided by the LaRC NDL team [13, 14] was also implemented in the 

simulation. The model ingests truth values produced by the measurement model and outputs corrupted measurements 

that are then passed to the MEKF. This error model applies errors as a function of modulation period and bandwidth, 

beam wavelength, frequency, and pointing knowledge. The measurement uncertainties are assumed to be 2.5 m 1σ in 

position and 0.015 m/s 1σ in velocity. 

5. Sensor Performance Parameters 

A summary of the sensor performance parameters is listed in Table 2 and are adapted from various sources. The 

star tracker and DSN models are of low fidelity, meaning they are simply corrupted truth values using the dispersions 

in Table 4. Only a subset of the NDL parameters are listed to the sensitive nature of some specific performance 

parameters. 



7 

 

 

Table 2  Sensor performance parameters. 

Sensor Parameter Value 

IMU [2] 

Quality High  

Measurement Frequency 200 Hz 

Measurement Threshold Variance 1e-5 m/s, 1e-6 rad 

TRN [10] 

Quality High 

Measurement Frequency 1 Hz 

Operational Range 6.0-1.5 km altitude 

Field of View 90° 

Number of Maps 4 

Observable Features 100 

Feature Bias 1.1x map resolution 

Camera Pointing Knowledge Error 0.5° 3σ 

Feature Matching Failure 6.6% 

Camera Focal Length 0.006 m 

Minimum Map Resolution 1 m/pixel 

Pixels Per Axis 1024 

NDL [13, 14] 
Operational Range 3.0-0.03 km altitude 

Measurement Frequency 20 Hz 

Star Tracker [2] 
Quality High 

Measurement Frequency 0.1 Hz 

C. Monte Carlo Analysis 

Varying key vehicle design parameters permits evaluation of the robustness of the integrated vehicle systems while 

providing an assessment of overall vehicle performance. Vehicle parameters varied for this study are listed in Table 

3. Specific navigation sensor dispersions are listed in Table 4. Dispersions listed as single values apply to all three 

axes. DSN measurement uncertainties are provided in a velocity-relative u-v-w frame. Monte Carlo analyses 

consisting of 8,000 distinct trajectories (i.e., samples) were performed for each study outlined in the next section.  

Table 3  Monte Carlo Dispersions. Dispersions listed as triplets refer to X/Y/Z axes unless otherwise noted. 

Category Parameter Dispersion Distribution 

Initial  

Conditions 

Body Rates 0.3°/s 3σ normal 

Attitude (Velocity-relative) 3.0° 3σ normal 

Uncorrelated state covariance 
0.03º 3σ for angles,  

0.03 km 3σ for altitudes 
normal 

Propulsion 
Peak thrust Scale factor: 1% 3σ normal 

Isp Scale factor: 1% 3σ normal 

Mass 

Mass 250 kg 3σ normal 

Center of gravity 0.05 / 0.01 / 0.01 m 3σ normal 

Moments of inertia 1% kg-m2 3σ normal 

Products of inertia 1% kg-m2 3σ normal 
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Table 4  Navigation sensor dispersions. Dispersions listed as single values apply to all three axes. Dispersions 

listed as triplets refer to X/Y/Z axes unless otherwise noted. 

Sensor Parameter Dispersion (X/Y/Z Axes) Distribution 

IMU 

Accelerometer Misalignment 17 arcsec 3σ normal 

Accelerometer Scale Factor 450 ppm 3σ normal 

Accelerometer Bias  84 micro-g 3σ normal 

Accelerometer Velocity Random Walk  0.003 m/s2 3σ normal 

Gyroscope Misalignment  19 arcsec 3σ normal 

Gyroscope Scale Factor  27 ppm 3σ normal 

Gyroscope Bias  0.036 °/hr 3σ normal 

Gyroscope Angular Random Walk  0.015 °/√hr 3σ normal 

Star Tracker 
Bias  8 arcsec 3σ normal 

Boresight Noise  24 arcsec 3σ normal 

DSN Update 
Position Bias (u-v-w frame) 500 / 1000 / 200 m 3σ normal 

Velocity Bias (u-v-w frame) 0.05 / 0.10 / 0.01 m/s 3σ normal 

NDL NDL Error Model 

Optical TRN See TRN sensor specifications in Table 2 

1. Definitions 

The present work uses the following definitions regarding navigation errors. Consider a simulation analysis of a 

spacecraft attempting to reach a target. The dispersion of truth states x is the collection of the true spacecraft states at 

a given time or event such as touchdown. The dispersion of navigation states 𝒙 is the collection of the estimated 

spacecraft states as computed by the onboard navigation filter at that corresponding time or event. In the present work, 

the navigation error is defined to be the difference between the true state and the navigation state, computed as the 

root-sum-squared (RSS) of the difference between the truth and navigation state vectors. These parameters are 

illustrated in Fig. 6.  

 

Fig. 6  Dispersion and error definition. 

2. Performance Metrics 

While the integrated performance simulation framework permits the assessment of a wide variety performance 

parameters, the present study will focus on those related to navigation: 

 

1. Navigation error: This parameter, while not a single value, describes the overall behavior of the navigation 

system. Specifically, the navigation errors at specific events are assessed to understand how the various 

navigation sensors, when activated and deactivated, affect the evolution of the navigation error.  

2. Landing precision: This parameter describes how well the integrated vehicle lands near the pre-designated 

target. Currently, a landing precision (i.e., range to target at touchdown) of 100 m in a 3σ sense is desired. For 

this analysis, it is assumed that the inertial location of the landing site is known perfectly (e.g., is not 

dispersed), and that the same location is used for GN&C targeting. The present study will also assess landing 

precision in a 99%-tile sense to better capture the effects of outliers. 

3. Success rate: The success rate describes the percentage of 8,000 Monte Carlo samples that achieve a safe (or 

successful) landing. The present study defines a safe landing as one that reaches the touchdown event with a 

Truth State
Dispersion

Navigation State
Dispersion

Navigation 
Error

Target
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horizontal (translational) velocity of less than or equal to 1.0 m/s, a vertical velocity of less than 3.0 m/s, an 

angle off of vertical of less than 3°, and a maximum angular rate about any axis of less than 0.5°/s. A success 

rate of 99% or better is desired. 

 

Note that the success rate as defined here does not capture a precise landing, since that is captured by the previous 

performance metric. This means that any given Monte Carlo sample can land precisely but not safely, and vice versa.  

3. Filter Consistency 

Performance of the navigation filter can also be evaluated using a normalized error square (NES) filter consistency 

test [15]. A filter that is consistent means the state estimate uncertainties defined by the filter covariance accurately 

represent the actual navigation state dispersions. The NES is defined as 𝑁𝑘
2 = (𝒙 − 𝒙𝑘)

𝑇�̂�𝑘
−1(𝒙 − 𝒙𝑘) where 𝒙 is the 

true state vector, 𝒙 is the estimated state vector, �̂� is the filter state covariance, and 𝑘 is the time index. The NES is 

computed for each Monte Carlo sample then averaged across all Monte Carlo samples. The filter is consistent if this 

parameter satisfies 𝑁𝑘
2 ∈ [𝜒𝑛,𝑝

2 𝜒𝑛,1−𝑝
2 ] where 𝜒2 is the chi-squared probability distribution, 𝑛 is the number of 

observations or degrees of freedom, and 𝑝 and 1 − 𝑝 define the bounds of the desired significance level. In the present 

analysis, only the states (position and velocity) will be considered so that there are a total of six observations, and the 

desired significance level is chosen to be 5% (e.g., the two-sided 95% interval). Thus, the filter is consistent if 𝑁𝑘
2 ∈

[5.924 6.076]. 

IV. Results 

Results from the POST2 simulations of the government reference Artemis lander at the Moon with navigation 

running in-the-loop are presented in this section. To demonstrate the ability to perform trade studies, several Monte 

Carlo analyses were run with varying DSN measurement qualities. Recall from Section II.C that the DSN updates are 

treated as filter reinitializations. The results use the following labels:  

 

1. SPLICE: High quality DSN measurement (baseline SPLICE specifications). Uses the position and velocity 

dispersions from Table 4. 

2. DSN 50%: High quality DSN measurement with position and velocity bias dispersions reduced by 50%. 

Represents a more accurate state update such as that obtained with more on-orbit tracking, additional tracking 

stations, etc. 

3. DSN 10%: High quality DSN measurement with position and velocity bias dispersions reduced by 90%. 

Represents near-perfect state knowledge. 

4. DSN Pos 10: High quality DSN measurement with position bias dispersions reduced by 90%. Chosen to 

study sensitivity to position vs. velocity uncertainty. 

 

These trades were selected to illustrate the sensitivity of navigation performance to the DSN update. In general, 

DSN measurement uncertainties can be improved by tracking the vehicle across longer orbital arcs or using more 

ground tracking stations. These methods depend on the specific orbital parameters and how long the vehicle is in view 

of the various Earth ground stations, so these cases can be considered a simplified trade study.  

Fig. 7 shows the landing precision metric (actual range to target at touchdown) results for all trades. Histograms 

are shown at top-left, gaussian quantiles that illustrate how well the dispersions follow a normal distribution are shown 

at top-right, and statistics are shown at the bottom. The quantile plot emphasizes that for certain parameters, 

considering only standard deviations (σ) can be misleading since the typical standard deviation assumes a gaussian 

distribution. As the distributions deviate from gaussian (shown by the dotted solid line on the quantile plot), the 

standard deviation becomes less representative of the underlying data. For this reason, other statistics are computed 

and shown. In particular, the 99%-tile is used by the authors to evaluate performance, as it better captures the behavior 

of the tails of the distribution.  

From these results, it is seen that the SPLICE-provided DSN update leads to a markedly poor success rate (80.2%). 

Of those successful cases, however, the landing precision (36.4 m 3σ, 45.84 m 99%-tile) is within the 100 m 

requirement. Note here how the standard deviation is significantly lower than the percentile. Thus, running with the 

SPLICE high quality DSN update permits precise but not safe landing. This also indicates that a lower quality DSN 

measurement is unlikely to provide the performance required by the Artemis lander. 

When the DSN update noise dispersions are reduced to 50% of the original values (see DSN 50% column), there 

is improvement in both the success rate (97.0%) and landing precision (42.13 m 99%-tile), which could satisfy the 

requirements since a minimum success rate requirement has not been explicitly defined. When the DSN update noise 
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dispersion is reduced to 10% of the original value, diminishing returns are observed in both the success rate (greater 

than 99%) and landing precision (41.42 m 99%-tile). The fourth trade, in which the position noise dispersions are 

reduced to 10% of the original values but the velocity dispersions are left at the original high quality SPLICE 

specification, has the success rate (greater than 99%) and landing precision (41.61 m 99%-tile) remain essentially 

unchanged. Thus, most of the performance improvement can be obtained through improving the vehicle position 

uncertainty, though the specific degree of tracking accuracy improvement is dependent on number of available and 

visible ground stations, time spent continuously tracking, etc.  

 

Fig. 7  Touchdown precision statistics. A success rate of 100% is listed for the DSN 10% case due to rounding. 

To provide some context to these dispersions, Fig. 8 shows how the vehicle position dispersions evolve over time 

in a downrange-crossrange-altitude space relative to the landing target for the DSN 10% trade. The data shown focus 

on the latter part of powered descent, from TRN activation to touchdown. These views emphasize how far away from 

the target the TRN and NDL sensors are active, and how the trajectory dispersions are reduced as the sensors work to 

“clean up” navigation errors. An example of this is shown by the altitude spread at the “TRN On” (cyan dots) and 

“NDL On” (purple dots) events, both of which are triggered by the navigated altitude estimate rather than a truth 

altitude. By the time the NDL is activated at a 3 km altitude, the spread in the points has essentially disappeared. This 

also emphasizes how critical navigation sensor measurements are to minimizing errors.  

The red dots in Fig. 8 correspond to the five failed Monte Carlo samples in this trade. While they are generally 

clustered at lower altitudes at TRN activation, it is likely that these cases fail due to a combination of low altitude and 

either excessive or insufficient velocity, as well as attitude considerations, that would contribute to insufficient control 

authority. 
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Fig. 8  Position dispersions, powered descent events, DSN 10% trade. 

Fig. 7 shows the landing precision metric but does not provide information on navigation performance. Fig. 10 

shows the navigated position error at PDI for each trade. Recall from Fig. 6 that navigation position error is the RMS 

of the difference between the truth and navigated position vectors. This event is useful because it illustrates how much 

error must be accommodated by the G&C systems at the start of powered descent. For example, when considering 

only this position space, the 99%-tile position error of 4218 m for the SPLICE case is too large for the G&C to correct, 

resulting in a low success rate. The 1393 m error for DSN Pos 10% case, however, is within the G&C control authority. 

Fig. 10 shows the results of the navigated position error at touchdown for each trade. When considering trades two 

through four (improved DSN update quality), the consistent navigation position error of approximately 15 m 99%-tile 

shows how well the TRN and NDL sensors can “clean up” the errors during coast and early powered descent phases.  

 

Fig. 9  Position navigation error at PDI. 
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Fig. 10  Position navigation error at touchdown. 

Fig. 11 shows the precision landing performance at start of vertical descent and at touchdown in terms of 

crossrange and downrange for the fourth trade (DSN Pos 10%). This case provides adequate position performance for 

landing and indicates a possible change to the baseline DSN assumptions for future Artemis studies.  

 

Fig. 11  Vertical descent and touchdown precision landing footprints, Trade 4, “DSN Pos 10%”. 

A summary of the relevant navigation performance results at various key events during the trajectory are listed in 

Table 5. Navigated position, velocity, and attitude errors are listed at DOI, PDI, and touchdown. Errors when the TRN 

is activated (TRN On), deactivated (TRN Off), and at the start of vertical descent are included to illustrate how the 

errors evolve throughout the trajectory. The accuracy of the DSN update, five minutes prior to DOI, is evident from 

the errors at DOI. There is a significant increase in the errors between DOI and TRN on, during which there are only 

star tracker updates during coast and IMU measurements. The TRN sensor significantly reduces the navigation errors, 

and NDL maintains low errors.  



13 

 

 

Table 5  Navigation error evolution across trajectories. 

 SPLICE DSN 50% DSN 10% DSN Pos 10% 

 Pos 

(m) 

Vel 

(m/s) 

Att 

(deg) 

Pos 

(m) 

Vel  

(m/s) 

Att 

(deg) 

Pos 

(m) 

Vel  

(m/s) 

Att 

(deg) 

Pos 

(m) 

Vel  

(m/s) 

Att 

(deg) 

DOI 819 0.24 0.004 418 0.13 0.004 87 0.03 0.004 92 0.09 0.004 

PDI 4218 3.69 0.003 2623 2.23 0.003 657 0.58 0.003 1393 1.21 0.003 

TRN On 4638 4.10 0.006 2818 2.53 0.006 728 0.71 0.006 1584 1.42 0.006 

TRN Off 8 0.15 0.068 8 0.14 0.067 8 0.14 0.067 8 0.14 0.067 

Vertical Descent 18 0.07 0.296 15 0.03 0.071 15 0.03 0.068 15 0.03 0.069 

Touchdown 20 0.20 0.295 15 0.16 0.065 15 0.15 0.064 15 0.15 0.064 

 

The NES filter consistency check was performed for a randomly selected dispersed trajectory and is shown in Fig. 

12. The NES indicates that overall, the filter is not consistent and tends to either over- or underestimate the actual 

navigation dispersion since the NES exceeds the bounds specified by the 95% significance interval, plotted as dashed 

lines. There are two bounds to capture the maximum and minimum ranges of consistency, but are close together at 

this scale so they appear as a single line. While this study demonstrates the capability and utility of the simulation 

tool, a more rigorous filter tuning approach is required to improve the NES statistic and make the filter consistent 

across the entire trajectory. For example, adjusting the filter process noise to include dynamics modeling errors such 

as those due to onboard gravity model differences from truth would improve filter consistency. 

The NES was also calculated for all Monte Carlo samples at touchdown and averaged across successful cases as 

described in Section III.C.3. For the fourth trade, the NES value was 95.420, beyond the range that represents a 

consistent filter (6.076), further illustrating that additional filter tuning is required. 

 

Fig. 12  NES filter consistency, dispersed Monte Carlo sample. 

Finally, simulation runtime is an important metric when performing Monte Carlo analysis on many trade studies. 

The runtimes for the various Monte Carlos are listed in Table 6. The runtime is defined as the time elapsed from the 

start of first trajectory to the end of the final trajectory. Each Monte Carlo consists of 8,000 trajectories run on the 

Atmospheric Flight and Entry Systems Branch (AFESB) compute clusters at NASA Langley Research Center. A 

1,000-node queue was used such that approximately 1,000 trajectories could be run simultaneously. Though there are 

only four samples here, on average the runtime was approximately ten minutes per trade study. This runtime is 

sufficiently short to enable a fast assessment of navigation performance using a full 6DOF simulation with integrated 

GN&C, from deorbit to touchdown.  



14 

 

 

Table 6  Monte Carlo run times. 

Trade Study Runtime 

SPLICE 660 s (11.0 min) 

DSN 50% 595 s (9.9 min) 

DSN 10% 554 s (9.2 min) 

DSN Pos 10% 578 s (9.6 min) 

V.  Summary and Conclusions 

An extensive update to the generalized simulation framework presented in [3] has been presented. Various 

navigation sensor engineering models have been improved and added to enable rapid investigation of a variety of 

vehicles and missions in an integrated performance sense. An application of this framework to a human-scale Lunar 

lander was presented to emphasize the types of fast navigation analyses that can be performed using this generalized 

simulation framework.  

The study of the human-scale Lunar lander showed that overall navigation performance given the design and 

analysis GR&As and a sufficiently accurate DSN measurements was satisfactory. In particular, better position 

accuracy can provide significant improvements in success rate. However, a filter consistency check revealed that the 

navigation filter was underestimating the actual navigation state dispersions, highlighting the need for additional filter 

tuning. It was also clear that it is insufficient to consider only a single performance metric as an indicator of vehicle 

robustness or mission success since the SPLICE baseline DSN accuracy specification resulted in the vehicle landing 

precisely but not safely in a statistical sense. Thus, careful consideration and selection of the specific performance 

metric must be accounted for when designing program requirements.  

Additional future work will include trading TRN sensor performance with DSN accuracy to determine if increasing 

the altitude of the first TRN measurement may eliminate the need for the more precise DSN updates investigated in 

the study. Additionally, refining the sensor error models to include mounting misalignments will be necessary to 

capture more realistic dispersions. 
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