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1 Introduction1

Compressive sensing (CS) is a simultaneous data acquisition and compression technique, where2

data compression is performed at the detector front-end itself. CS is a mathematical theory which3

allows sampling at sub-Nyquist rate by exploiting sparsity in data sets. In this work, we assess4

the application of CS to gravitational microlensing events. Our work is primarily applicable for5

space-flight instruments, which exhibit tremendous limitations for on-board space flight resources6

as well as data transmission bandwidth.7

Gravitational microlensing is an astronomical phenomena during which a massive body, such as8

a star or a black hole, or a system of bodies, may pass in front of a distant source star causing9

the deflection of light from the source, effectively briefly magnifying and brightening that source.10

Using this technique exoplanets can be detected. The phenomenology of microlensing requires the11

exceedingly precise alignment of a source star and an intervening massive body. Consequently,12

microlensing events are very rare – thus sparse in both time and space. These, hence, form an13

excellent evaluation platform for the development and application of CS. The mathematical tech-14

nique implemented for CS exploits this sparsity inherent in gravitational microlensing and encodes15

the image during acquisition, significantly reducing data volume and for space flight instruments-16

reduces on-board resources.1, 2 Similar to traditional methods, we apply data acquisition of the17

spatial images, followed by differencing to obtain a light curve representing a microlensing star18

over time. The differencing provides the relative change in pixel magnitude over time, as shown in19

Figure 1.20
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Fig 1: Image differencing to generate a light curve over time, representing the change in magnifi-
cation of a microlensing star

Figure 2 shows the placement of a CS detector in a high level block diagram.21

Fig 2: CS detector will replace a traditional detector to acquire spatial images. The data acquired
from the detector will be used to generate photometric light curves for microlensing events

In our previous work, we did preliminary analysis on the effects of CS on transient photometric22

measurements. In this work, we specifically analyze single and binary microlensing events and the23

implications of CS reconstruction on gravitational microlensing parameters of interest.24

1.1 Compressive Sensing25

Compressive sensing is a mathematical theory for sampling at a rate much lower than the Nyquist
rate, and yet, reconstructing the signal back with little or no loss of information. The signal is
reconstructed by solving an underdetermined system. Sparsity in data sets is a key component
required for the accuracy in reconstruction using CS methods. If it is not sparse in the sampling
domain, we can transform it to a sparse domain, perform the reconstruction and then transform it
back to the original domain.3, 4 In a CS architecture, to acquire a signal of size n, we collect m
measurements, where m << n. One measurement sample consists of a collective sum. We solve
for equation (1) to determine x through the observation y.5–8

ymx1 = Amxnxnx1 (1)

Using the acquired measurements vector y and the known measurement matrix A, we can solve26

for a sparse x by applying various techniques, including greedy algorithms and optimization algo-27

rithms. Various reconstruction algorithms are discussed in the work by Pope.928
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1.2 Gravitational Micorlensed Events29

In gravitational lensing, the surface brightness, which is the flux per area, is conserved. The total30

flux increases or decreases, since the area increases or decreases. In microlensing, distinct images,31

due to the gravitational effects of the lensing system, are not seen, but rather, magnification or32

demagnification of the source star is observed; the images are not resolved. Since the Jacobian33

matrix gives the amount of change in the source star flux in each direction, the transformation of34

the original source to the “stretched” source, can be mapped by the Jacobian. The absolute value35

of the inverse of determinant gives the amount of magnification.36

Einstein’s ring forms when there is an exact alignment of the source, lens and observer and37

is an important parameter for the basis of gravitational microlensing equations. Einstein’s ring38

radius, θE can be defined by equation 2.39

θE =

√
4GMDLS

c2DLDS

(2)

where M is the the mass of the lensing system, DLS is the distance from the lens to the source,40

DL is the distance from the observer to the lensing system, and DS is the distance from the ob-41

server to the source.10, 11
42

43

1.3 Single Lens Gravitationally Microlensed events44

Here we describe the amplification value for each time as the source star moves in relation to the45

lensing system. Let u represent source position, and y represent image position, normalized by46

θE . Then, the lensing equation for a single lens microlensing event can be given as equation 3.10
47

y± = ±
√
u2 + 4± u

2
(3)

Total amplification of the two images formed is given by48

A(u) =
u2 + 2

u
√
u2 + 4

(4)

Due to the relative motion between the lens and source, amplification is dependent on the position49

of the source image at each time, t. Equation 5 shows the position of the source at each time given50

the trajectory the source takes.10
51

u(t) =

[
u20 +

(
t− t0
tE

)2]1/2
(5)

The trajectory is defined by the impact parameter, u0, which is the minimum apparent separation52

between the lens and source in units of θE . Einstein ring radius crossing time is given by tE and53

the time of peak magnification is given by t0.10 The amplification with time dependency is shown54
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in equation 655

56

A(t) =

u20 +

(
t− t0
tE

)2

+ 2[
u20 +

(
t− t0
tE

2
)]1/2[

u20 +

(
t− t0
tE

)2

+ 4)

]1/2 (6)

1.3.1 Error sensitivity57

In this section, we show the relation of error to the sensitivity of the parameter θE . For an error58

of ε(t) in the change in amplification at any given time, the amplification at each time changes by59

A(t) + ε(t). This change in ε(t) at each time, t, changes the amplification equation derived due to60

two images resulting from a single lens microlensing event. Using equation 5, equation 6 can be61

written as 7.62

A(t) =
u2(t) + 2

u(t)
√

[u2(t) + 4]
(7)

Incorporating error, we get equation 8.63

A(t) + ε(t) =
u2(t) + 2 + ε(t)[u(t)

√
u2(t) + 4]

u(t)
√
u2(t) + 4

(8)

From equation 8, it is evident that a change in the light curve due to an error, ε(t), will not64

merely result in a change in u0, but rather a change in the lensing system itself. That is, the light65

curve produced would not be accurately mapped to a lensing system.66

In order to better understand analytical effects of error on science parameters, here, we show the67

effect of the change in science parameter and its implication on the amplification value. For a68

change of γ in the value of θE , which depends on the properities of the lensing system, as noted in69

equation 2, we can define, θ̃E as70

θ̃E = γθE (9)

Using this θ̃E in the lensing system, we derive the new amplification curve shown in equation 11.71

In our model, for ˜A(t), we scale u0 by θE and not by θ̃E to keep the same u0 scale for comparison72

to A(t).73

A(u) =
u2 + 2γ2

u
√
u2 + 4γ2

(10)

Expanding to include the definition of u(t), we get equation 11.74

Ã(t) =

u20 +

(
t− t0
tE

)2

+ 2γ2[
u20 +

(
t− t0
tE

)2 ]1/2[
u20 +

(
t− t0
tE

)2

+ 4γ2)

]1/2 (11)

To analyze the effect of compressive sensing errors, for single microlensing events, we consider75

the effect of θE on the amplification value. In equation 6, u0 is in units of θE . Hence, a change76
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of γ in θE , will directly affect the mass and distance parameters, M , DLS, DL and DS of the77

lensing system. Our CS based modelling incorporates γ to determine the effect of errors due to CS78

application on the value of θE .79

For astronomical measurements, the detector measures the flux of the source star. Hence, for80

microlensing, total flux received from the source star is given by equation 12.81

F (t) = FsA(t) + Fb (12)

where Fs is the flux from the source, A is the amplification amount and Fb is the blended flux.82

In our simulation modelling, we use Fb = 0 for simplicity.83

84

1.4 Binary Lensed Gravitational Microlensed Events85

A binary microlensed system consists of two lensing bodies, which act as a lens, deflecting the86

light from the observed source star. Here, we have two lensing bodies with mass, m1 and m2,87

where m1 + m2 = M . The source position is given by Ψ̄. The image positions are given by88

equation 13.10
89

z̄ = Ψ̄ +
m1

z − z1
+

m2

z − z2
(13)

The amplification due to this lensing system is given by the ratio of the total area of the images90

to the total area of the source. Finding the amplification at each time is given by the following91

process:12
92

93

1. Find the roots of the polynomial given by the lensing equation 13.94

2. Determine the boundaries of the images given the critical curves. The Jacobian of the lensing95

equation is used to determine the boundaries.96

3. Find the area of all the images bounded by the critical curves.97

4. Total amplification is given by equation 14.98

A =
AI

AS

(14)

where A is the amplification value, AI is the total area of all the images produced due the99

lensing, and AS is the area of source star.100

For an error, ε, in the amplification, that is, Ã = A ± ε we can say either ÃI = AI ± δ1 or101

ÃS = AS ± δ2. The area of the source star is determined by the source star radius, ρ, mass ratio,102

q, and the separation between the two lenses, s. Amplification as a function of time is dependent103

on the trajectory angle, α. The solution to this polynomial of 5th order contains either 3 or 5104

images formed. To determine the total area of the 3 or 5 images, Green’s theorem is used.12 The105

magnification is given by the relative motion of the source star and lensing system.106

In this work we examine single and binary lens caustics. A single lens event will have a caustic107

as a point. Hence the observed light curve should have a single peak as it approaches the caustic.108
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Binary lens caustics are more complicated and can be characterized by three different categories-109

Close, Intermediate, and Wide. The three categories are divided based on the combination of the110

mass ratio and the separation between the two lensing masses.10 Binary sources as well as binary111

lenses could cause two peaks as depicted in our simulated light curves (Section 3). However, when112

generating light curves, we focus on the magnification due to binary lensing. Thus, a generalization113

of our CS results would be applicable for binary sources as well. Caustic curves represent closed114

loci where the magnification of a point source goes to infinity. Change in magnification as a115

function of time, depends on116

1. ρ : source star radius117

2. α: trajectory angle118

3. q : ratio of the mass of the two lensing bodies119

4. s: distance between the two lensing bodies120

For a given q value, the topography changes to one, two, or three caustic curves based on the121

value of s. In terms of the magnification curve, the change in the number of caustics can result in122

different light curve signatures as the source crosses the caustic.123

Mass ratio, q, and separation parameter, s, have a direct effect on the caustic topography gen-124

erated. In this work, we focus on the error caused due to small changes, δ and ε, in q and s,125

respectively.126

We show the error sensitivity for δ = 0.1q and ε = 0.1s. In order to study error sensitivity,127

we choose points on the topography map in11 well within each region, so that the change in the128

parameter does not result in a change in caustic topography.129

For all our simulation analysis, we use sensitivity of 10%, hence q ± 0.1q and s± 0.1s.130

2 Compressive Sensing Simulations Setup131

Microlensing is typically detected in crowded stellar fields. Although the spatial images are132

densely populated, the microlensed events are very rare, hence, only stars with a transient magnifi-133

cation are of interest to astronomers. In order to eliminate constant star sources in crowded fields,134

differencing can be applied. Through our previous work,13 we show that CS can be applied on135

crowded star fields to produce differenced images, preserving the microlensed star magnification,136

with very low error when the point spread function (PSF) of the two differenced images are the137

same.138

2.1 Compressive Sensing Architecture and Process139

In our simulations, we use CS framework based on our previous work.13 An architectural diagram140

is shown in Figure 3.141

6



Fig 3: CS Architecture used for obtaining differenced images with star sources varying in flux due
to a gravitational microlensing event

In this work, we define a reference image, xr, as an image of a spatial region, x, with a PSF,142

Pr, while an observed image, xo, is defined as an image of the same spatial region, x, but with a143

different PSF, Po. A reference image has a narrower PSF, resulting in a cleaner image as compared144

to an observed image. The architecture is implemented in the following manner:145

1. Obtain CS based measurements, yo, for a spatial image.146

CS can be applied by projecting a matrix, A, onto the region of interest, xo. This can be done147

on a column-by-column basis for a n x n spatial region, xo. Thus, for 2D images, y0 and A148

are of size m x n, where m << n.149

2. Given A and a clean reference image, xr, construct measurements matrix yr, where yr =150

Axr.151

3. Apply a 2D differencing algorithm on yo and yr to obtain a differenced image, ydiff , and152

the corresponding convolution kernel, M, which is used to match the observed and reference153

CS measurement vectors, yo and yr.14 In our modelling, we use ydiff = yo − yr, by using154

the assumption that the PSF of the reference and observed image is the same as discussed in155

Section 2.2.156

4. Reconstruct the differenced image, x′diff using CS reconstruction algorithms, given A and157

ydiff .158

2.2 Assumptions in our Model159

To understand merely the effects of Compressive Sensing on photometric measurements, we elim-160

inate the following variables in our simulations. In future work, we will incorporate each of these161

factors in one at a time to thoroughly understand the effect of each one in our CS based framework.162

The two assumptions we make are:163

164

1.) The PSF of the reference image and the observed image is the same. This would typically be
the case for space-borne observatories in which the PSF changes very slowly, if at all. The two
images differ in any magnification of a star source due to a transient event.
In applications where the PSF of the reference and observed images are different, equation 16 is
used.

ydiff = Axo − (Axr ? M) (15)
= yo − (yr ? M) (16)
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However, in our models, for simplicity, we assume the same PSF for a reference and observed165

image, thus resulting in equation 19.166

ydiff = A(xdiff ) (17)
= A(xo)− A(xr) (18)
= yo − yr (19)

Hence, in Figure 3, image differencing consists of subtracting the reference measurements from167

the observed measurements. In non-ideal cases, when the PSF of the reference image is different168

as compared to the observed image, image differencing algorithms can be added. However, that169

adds another layer of uncertainty and error, which we needed to eliminate for our purpose of un-170

derstanding purely the effects of compressive sensing acquisition and reconstruction.171

172

2.) There is no noise present.173

To eliminate added complexity in this preliminary study, we do not incorporate any noise. In future174

studies, we will add in detector noise, measurement noise, as well as any background noise.175

For a practical approach, we can assume the effects of noise to be minimal if the SNR during a176

magnification event for the specific group of pixels representing the microlensing star is sufficiently177

high, such that, the sparsity content of the image is preserved. In section 3, we briefly show the178

basic effect of CS reconstruction for degrading SNR for an image with Gaussian added noise.179

2.3 Simulation Setup Parameters180

In our simulations, we use a 128 x 128 size image. In order to depict a crowded stellar field, we181

generate the number of star sources to be 75% of the total number of pixels. To simulate realistic182

fields, we use Airy shaped PSFs with varying radius and flux of the star sources. The radius ranges183

from [0, 5] pixel units and flux ranges from [50, 5000] pixel counts. We perform 100 Monte Carlo184

simulations for each set of parameter values discussed later in this section. For each of the 100185

Monte Carlo simulations, the crowded stellar field is changed, including the PSF radius and flux186

values of each star source generated. In addition, for each of the simulation, the Bernoulli random187

values in A are changed. We use Orthogonal Matching Pursuit algorithm, as provided by Python188

libraries, for reconstruction.189

190

Compressive Sensing Parameters191

For a n x n size spatial image, we use a measurement matrix, A, of size m x n to obtain the192

measurements, y, of size m x n. Hence, our compression factor is
m

n
.193

For both single lens and binary lens event simulations, we use the following CS parameters.194

• Number of measurements, m = 25% of n195

• Measurement matrix, A, consists of Bernoulli random variables of values 1 and 0. These196

values were chosen such that the matrix can be relevant for practical application.197

Gravitational Microlensing Parameters198

We simulate microlensing events for single lens and binary lens systems.199
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I Single Microlensing events200

For single lens systems we use the following parameters and for each of the simulation cases,201

u0 and t0 are varied in the simulation setup.The other parameters from equation 6 are shown202

in Table 1.203

204

Parameter Value
u0 0.01, 0.1, 0.5
t0 13, 15, 17
te 30

Table 1: Single microlensing event equation parameters used for CS simulation modelling

II Binary Microlensing events205

For binary microlensing events, we perform simulations for each of the three topographies206

with the parameter list shown below.207

208

Parameter Close Intermediate Wide
s 0.6 1 1.7
q 1 0.1 0.01
ρ 0.01 0.01 0.01
α 0.03 0.93 0.03
tE 100.3 100.3 100.3
t0 7154 7154 7154
u0 0.1 0.2 0.3

Table 2: Binary microlensing event equation parameters used for CS simulation modelling

The description of parameters show in Table 2 is given below:209

1) s: separation between the two masses in the lensing system in units of total angular210

Einstein radii211

2) q: Mass ratio of the two lenses212

3) ρ: Source radius in units of Einstein’s ring raidus213

4) α Trajectory angle between lens axis and source214

5) tE: Einstein ring radius crossing time215

6) t0: Time of peak magnification216

7) u0: Impact parameter in units of Einstein’s ring radius217

Error Calculations218

We calculate % error based on total flux of the microlensing star in a 3 pixel unit radius from the219

center pixel of the star. Error is calculated using220

|f ′diff − fdiff |
fdiff

× 100% (20)
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where f ′diff and fdiff are the total fluxes within the 3-pixel radius of the source positions of the221

reconstructed and original differenced images, respectively.222

3 Simulation Results223

3.1 Single Lens Events224

In these first set of simulations, we vary u0, while keeping t0 = 15 and te = 30 constant.225

Amplification for single lens microlensing events are generated using equation 6. We compare the226

CS reconstruction with error due to a γ change in θE as described in equation 11, where γ = 1±0.1.227

Hence θE = 0.9θE and θE = 1.1θE .228

Fig 4: Single Lens microlensing event, u0 = 0.01.
The original simulated microlensing curve along with the CS reconstruction, and the microlensing
curve generated due to a change γ in θE is shown

Fig 5: % Errors for Single Lens event, u0 = 0.01 for CS reconstruction and the change in mi-
crolensing light curve generated due to γ changes in θE as compared to the original simulated
microlensing curve for the light curves in Figure 4

Single lens event with u0 = 0.01 Average % error Average standard deviation
CS 0.49 0.00

γ = 0.9 12.62 1.53
γ = 1.1 12.71 1.61

Table 3: Errors for single microlensing light curve with u0 = 0.01
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Fig 6: Single Lens microlensing event, u0 = 0.1.
The original simulated microlensing curve along with the CS reconstruction, and the microlensing
curve generated due to a change in γ in θE is shown

Fig 7: % Errors for Single Lens event, u0 = 0.1 for CS reconstruction and the change in mi-
crolensing light curve generated due to γ changes in θE as compared to the original simulated
microlensing curve for the light curves in Figure 6

Single lens event with u0 = 0.1 Average % error Average standard deviation
CS 0.36 0.00

γ = 0.9 12.91 1.36
γ = 1.1 13.01 1.43

Table 4: Errors for single microlensing light curve with u0 = 0.1
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Fig 8: Single Lens microlensing event, u0 = 0.5.
The original simulated microlensing curve along with the CS reconstruction, and the microlensing
curve generated due to a change in γ in θE is shown

Fig 9: % Errors for Single Lens event, u0 = 0.5 for CS reconstruction and the change in mi-
crolensing light curve generated due to γ changes in θE as compared to the original simulated
microlensing curve for the light curves in Figure 8

Single lens event with u0 = 0.5 Average % error Average standard deviation
CS 0.77 0.00

γ = 0.9 16.07 0.66
γ = 1.1 16.45 0.76

Table 5: Errors for single microlensing light curve with u0 = 0.5

In the next set of simulations, we use u0 = 0.1 and vary t0 with t0 = 13 and t0 = 17.229
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Fig 10: Single Lens microlensing event, t0 = 13.
The original simulated microlensing curve along with the CS reconstruction, and the microlensing
curve generated due to a change in γ in θE is shown

Fig 11: % Errors for Single Lens event, t0 = 13 for CS reconstruction and the change in mi-
crolensing light curve generated due to γ changes in θE as compared to the original simulated
microlensing curve for the light curves in Figure 10

Single lens event with t0 = 13 Average % error Average standard deviation
CS 0.42 0.00

γ = 0.9 12.94 1.40
γ = 1.1 13.03 1.48

Table 6: Errors for single microlensing light curve with t0 = 13
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Fig 12: Single Lens microlensing event, t0 = 17.
The original simulated microlensing curve along with the CS reconstruction, and the microlensing
curve generated due to a change in γ in θE is shown

Fig 13: % Errors for Single Lens event, t0 = 17 for CS reconstruction and the change in mi-
crolensing light curve generated due to γ changes in θE as compared to the original simulated
microlensing curve for the light curves in Figure 12

Single lens event with t0 = 17 Average % error Average standard deviation
CS 0.32 0.00

γ = 0.9 12.98 1.48
γ = 1.1 13.09 1.57

Table 7: Errors for single microlensing light curve with t0 = 17

Our simulations show that CS reconstruction is affected by the magnification value of the230

source star in each differenced image. For low magnification events, such as the one caused by231

u0 = 0.5, the error in CS reconstruction is higher. The results in13 also indicate that CS reconstruc-232

tion accuracy is dependent on the magnification of the event, which in turn affects the sparsity of233

the data set. For low magnification star in a differenced image, the rate of decay of the coefficients234

in the differenced images also decreases, hence, causing a higher error in CS reconstruction. The235

small fluctuations in the average error are due to the variation in Bernoulli random measurement236

matrix. From the error plots (7, 9, 5), we see that CS error is fairly constant, with little variability,237

over the microlensing curves for all u0 and t0 values.238
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3.1.1 Noise effects on a Single Lens Microlensing Event Curve239

In this section, we briefly show the effect of Gaussian noise on the reconstruction of the microlens-240

ing event curves. From CS theory, it is known that the signal of interest is accurately reconstructed241

for sparse signals. Hence, adding noise to the spatial images can degrade the sparsity of the images.242

In our simulations, we add random Gaussian noise with mean = 0, and varying standard deviation243

to obtain images with different SNRs. CS architecture shown in Figure 3 is applied, with the noise244

application on the observed image, xo. In the noise simulation, 25% CS measurements were used.245

Fig 14: % error as a function of image SNR. Images are generated by varying added Gaussian
noise. The dashed red line represents % error without any addition of noise

From Figure 14, it is evident that as the SNR decreases, the % of error increases at a higher246

rate. The rate of increase is 0.06 % error per SNR unit towards the higher SNR values and 0.29 %247

error per SNR unit towards the lower SNR range.248

3.2 Binary Lens Microlensing Events249

The amplification for the photometric curves is derived using gravitational microlensing equations,250

generated by the software provided in.12
251

We perform simulations on the three categories described in Section 1.4 - close, intermediate,252

and wide. To determine error sensitivity in terms of impact on the separation parameter, s, and253

mass ratio, q, we compare the CS reconstruction with the following values of s and q, thereby254

providing CS reconstruction accuracy bounds of 10% for the value of s and q.255

Caustic Original s ±0.1s Original q ±0.1q
Close 0.6 0.54, 0.66 1 0.9, 1.1

Intermediate 1 0.9, 1.1 0.1 0.09, 0.11
Wide 1.7 1.53, 1.87 0.01 0.009, 0.011

Table 8: Values of s and q chosen for calculating error sensitivity, such that it is within 10% of the
value chosen for the original caustic
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Fig 15: Closed caustic microlensing curve with s = 0.6 and q = 1, shown along with the CS
reconstruction, as well as the microlensing curve generated using s= 0.54, 0.66 and q = 0.9, 1.1

Fig 16: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
s.

Fig 17: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
q
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CloseCaustic Average % Error Avg Standard deviation of the % error
CS 0.76 0.00

s= 0.54 0.52 11.52
s= 0.66 10.47 40.02
q= 0.9 1.11 0.80
q= 1.1 1.07 0.82

Table 9: Errors for close caustic topographies model for CS reconstruction, and for microlensing
light curve generated due to 10% variation in s and q

Fig 18: Intermediate caustic microlensing curve with s = 1 and q = 0.1, shown along with the CS
reconstruction, as well as the microlensing curve generated using s= 0.9, 1.1 and q = 0.09, 0.11

Fig 19: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
s for the given (Figure 18) intermediate caustic binary lensing light curve reconstruction
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Fig 20: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
q for the given (Figure 18) intermediate caustic binary lensing light curve reconstruction

Intermediate Caustic Average % Error Avg Standard deviation of the % error
CS 0.61 0.00

s= 0.9 7.74 10.45
s= 1.1 25.86 94.24

q= 0.09 6.76 40.14
q= 0.11 1.13 3.23

Table 10: Errors for intermediate caustic topographies model for CS reconstruction, and for mi-
crolensing light curve generated due to 10% variation in s and q

Fig 21: Wide caustic microlensing curve with s = 1.7 and q = 0.01, shown along with the CS
reconstruction, as well as the microlensing curve generated using s= 1.53, 1.87 and q = 0.009,
0.011
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Fig 22: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
s for the given (Figure 21) wide caustic binary lensing light curve reconstruction

Fig 23: % error of CS reconstruction as compared to % error due to 10% deviation in the value of
q for the given (Figure 21) wide caustic binary lensing light curve reconstruction

Wide Caustic Average % Error Avg Standard deviation of the % error
CS 0.97 0.00

s= 1.53 13.64 46.57
s= 1.87 5.54 11.02

q= 0.009 0.96 1.73
q= 0.011 0.97 1.74

Table 11: Errors for wide caustic topographies model for CS reconstruction, and for microlensing
light curve generated due to 10% variation in s and q

Our simulations show that we can attain error less than 1% using 25% of the Nyquist256

rate measurements. In addition, the error obtained through CS reconstruction, will be well257

within 10% deviation in verified microlensing parameters of θE , s and q.258

4 Conclusions and Future Work259

Using this technique we give limitations on the sensitivity of detection of planetary perturbations260

given our CS parameters. We show examples of the effects of error tolerance on the science pa-261

rameters that are of importance in the microlensing curves. For both single and binary microlensed262
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events, we provide examples of the changes in the microlensing parameters due to minimal error263

tolerance. This gives a bound for analyzing the effects of compressive sensing for the application of264

gravitational microlensing. These are simulated theoretical error bounds for given sensitivities- the265

sensitivity of the detectors and technology currently used may not be sensitive to such δ changes in266

the science parameters. For single lensed microlesning events, we showed the CS reconstruction267

error as compared to error from ± 10% in θE . Our results show that CS is sensitive to changes268

in u0 and not to changes in t0, as t0 causes merely a shift in data, while u0 causes a change in269

magnification value. For binary lensed microlensing events, we show CS reconstruction error as270

compared to error within ± 10% of the mass ratio and the separation between the two lenses. Our271

work shows that we can reconstruct microlensing light curves using 25% of the required Nyquist272

rate measurements with error less than 1%. In terms of microlensing sensitivity, we show that273

this error is within the bounds of 10% of θE for single microlensed events and within 10% of q274

and s for binary microlensed events. In this work we only focus on bounds determined by our275

simulated models using microlensing theory and disregard detector optics effects. In cases where276

less sensitivity is affordable, fewer measurements can be used to further save on-board resources.277

Vice Versa, if more sensitivity to perturbations is required the number of measurements can be278

increased. This technique works with high accuracy, with less than 1% error for crowded stellar279

fields with the same PSFs for a reference and observed image.280

281

Our future work will incorporate noise analysis, as well as the implementation of this CS282

architecture for reference and observed images with different PSFs. In the case of different PSFs,283

we will understand the efficacy of differencing algorithms used in astronomical applications.284
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1 Image differencing to generate a light curve over time, representing the change in341

magnification of a microlensing star342

2 CS detector will replace a traditional detector to acquire spatial images. The data343

acquired from the detector will be used to generate photometric light curves for344

microlensing events345
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3 CS Architecture used for obtaining differenced images with star sources varying in346

flux due to a gravitational microlensing event347

4 Single Lens microlensing event, u0 = 0.01. The original simulated microlensing348

curve along with the CS reconstruction, and the microlensing curve generated due349

to a change γ in θE is shown350

5 % Errors for Single Lens event, u0 = 0.01 for CS reconstruction and the change351

in microlensing light curve generated due to γ changes in θE as compared to the352

original simulated microlensing curve for the light curves in Figure 4353

6 Single Lens microlensing event, u0 = 0.1. The original simulated microlensing354

curve along with the CS reconstruction, and the microlensing curve generated due355

to a change in γ in θE is shown356

7 % Errors for Single Lens event, u0 = 0.1 for CS reconstruction and the change357

in microlensing light curve generated due to γ changes in θE as compared to the358

original simulated microlensing curve for the light curves in Figure 6359

8 Single Lens microlensing event, u0 = 0.5. The original simulated microlensing360

curve along with the CS reconstruction, and the microlensing curve generated due361

to a change in γ in θE is shown362

9 % Errors for Single Lens event, u0 = 0.5 for CS reconstruction and the change363

in microlensing light curve generated due to γ changes in θE as compared to the364

original simulated microlensing curve for the light curves in Figure 8365

10 Single Lens microlensing event, t0 = 13. The original simulated microlensing366

curve along with the CS reconstruction, and the microlensing curve generated due367

to a change in γ in θE is shown368

11 % Errors for Single Lens event, t0 = 13 for CS reconstruction and the change369

in microlensing light curve generated due to γ changes in θE as compared to the370

original simulated microlensing curve for the light curves in Figure 10371

12 Single Lens microlensing event, t0 = 17. The original simulated microlensing372

curve along with the CS reconstruction, and the microlensing curve generated due373

to a change in γ in θE is shown374

13 % Errors for Single Lens event, t0 = 17 for CS reconstruction and the change375

in microlensing light curve generated due to γ changes in θE as compared to the376

original simulated microlensing curve for the light curves in Figure 12377

14 % error as a function of image SNR. Images are generated by varying added Gaus-378

sian noise. The dashed red line represents % error without any addition of noise379

15 Closed caustic microlensing curve with s = 0.6 and q = 1, shown along with the380

CS reconstruction, as well as the microlensing curve generated using s= 0.54, 0.66381

and q = 0.9, 1.1382

16 % error of CS reconstruction as compared to % error due to 10% deviation in the383

value of s.384

17 % error of CS reconstruction as compared to % error due to 10% deviation in the385

value of q386

18 Intermediate caustic microlensing curve with s = 1 and q = 0.1, shown along with387

the CS reconstruction, as well as the microlensing curve generated using s= 0.9,388

1.1 and q = 0.09, 0.11389
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19 % error of CS reconstruction as compared to % error due to 10% deviation in the390

value of s for the given (Figure 18) intermediate caustic binary lensing light curve391

reconstruction392

20 % error of CS reconstruction as compared to % error due to 10% deviation in the393

value of q for the given (Figure 18) intermediate caustic binary lensing light curve394

reconstruction395

21 Wide caustic microlensing curve with s = 1.7 and q = 0.01, shown along with the396

CS reconstruction, as well as the microlensing curve generated using s= 1.53, 1.87397

and q = 0.009, 0.011398

22 % error of CS reconstruction as compared to % error due to 10% deviation in399

the value of s for the given (Figure 21) wide caustic binary lensing light curve400

reconstruction401

23 % error of CS reconstruction as compared to % error due to 10% deviation in402

the value of q for the given (Figure 21) wide caustic binary lensing light curve403

reconstruction404
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