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This paper describes a system identification method for electric vertical takeoff and land-
ing (eVTOL) aircraft. The approach merges fixed-wing and rotary-wing modeling techniques
with new strategies to develop a modeling method for eVTOL vehicles using flight test data.
The eVTOL aircraft system identification approach is demonstrated through application to
the NASA LA-8 tandem tilt-wing, distributed electric propulsion aircraft using a high-fidelity
flight dynamics simulation. Orthogonal phase-optimized multisine inputs are applied to each
control surface and propulsor at numerous flight conditions throughout the flight envelope to
collect informative flight data. An aero-propulsive model is identified at each flight condition
using the equation-error method in the frequency domain. The local model parameters are
then blended to create a global model across the nominal flight envelope. Parameter estimation
results are shown to provide a good fit to modeling data and have good prediction capability.
The methodology is developed with a discussion of unique eVTOL vehicle aerodynamic char-
acteristics and practical strategies intended to inform future flight-based system identification
efforts for eVTOL aircraft.

Nomenclature

0G , 0H , 0I = body-axis translational acceleration, ft/s2

6 = gravitational acceleration, ft/s2

ℎG , ℎH , ℎI = net body-axis propulsion system angular momentum, slug-ft2/s
�G , �H , �I , �GI = moments of inertia, slug-ft2
!, " , # = body-axis aero-propulsive moments, ft-lbf
< = aircraft mass, slug
=1, =2,..., =8 = LA-8 propulsor rotational speeds, revolutions/s
?, @, A = body-axis angular velocity components, rad/s or deg/s
D, E, F = body-axis translational velocity components, ft/s
+ = true airspeed, ft/s
- , . , / = body-axis aero-propulsive forces, lbf
U = angle of attack, rad or deg
V = angle of sideslip, rad or deg
X41 , X42 , X43 , X44 = LA-8 elevon deflections, rad or deg
X 51 , X 52 , X 53 , X 54 = LA-8 flap deflections, rad or deg
XA1 , XA2 = LA-8 ruddervator deflections, rad or deg
XF1 , XF2 = LA-8 front and rear wing angles, rad or deg
q, \, k = Euler roll, pitch, and yaw angles, rad or deg
d = air density, slug/ft3

Superscripts
) = transpose
−1 = matrix inverse
ˆ = estimate
¤ = time derivative
˜ = Fourier transform
† = complex conjugate transpose
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I. Introduction

Enabling technologies for the introduction of Urban Air Mobility (UAM) as a future transportation method are
a research focus across the aerospace industry. Many electric vertical takeoff and landing (eVTOL) aircraft

configurations are being developed∗ as transitioning vehicles able to precisely execute low-speed maneuvers in a
congested urban air traffic system while also leveraging an efficient, high-speed cruise flight mode. The broadened
aeronautical vehicle design space, uniquely utilizing distributed propulsion technology, has resulted in a diverse set of
eVTOL configurations including tilt-wings, tilt-rotors, and lift+cruise (dual propulsion system) concepts [1–6]. These
novel designs have formed a new category of aircraft that are a hybrid between fixed-wing and rotary-wing aircraft, but
also exhibit unique configuration-specific phenomena.

Many eVTOL aircraft research areas require further study prior to introduction of operational vehicles in a UAM air
traffic system. These areas include flight controls strategies, airworthiness certification, handling qualities, contingency
management, vehicle autonomy, and air traffic management. Accurate vehicle aerodynamic models are essential for
eVTOL aircraft flight dynamics simulations enabling flight control system development and certification activities. Since
propulsion aerodynamics, airframe aerodynamics, and propulsion-airframe interactional aerodynamics are generally
highly coupled for eVTOL aircraft, their aerodynamic models represent a combination of propulsion and airframe
aerodynamics characteristics that must be modeled together. For this reason, eVTOL aircraft aerodynamic models can
also be referred to as aero-propulsive models.

Previous research has investigated methods for efficient eVTOL aircraft aero-propulsive modeling across their
wide flight envelopes using computational fluid dynamics (CFD) simulations [7, 8] and wind tunnel testing [9–13].
References [8, 11] justified the use of tilt-wing and lift+cruise eVTOL aircraft-specific modeling procedures. CFD
aerodynamic characterization studies are advantageous because they allow analysis in early design stages, where the
aircraft configuration is not yet finalized and vehicle hardware has not yet been developed. Wind tunnel studies require a
test asset, but allow efficient, high-fidelity vehicle characterization in a low-risk test environment. The disadvantages of
CFD include necessary simplifying assumptions to make calculations computationally tenable and flowfield models
which may not adequately reflect real flight vehicle aerodynamics, particularly for modeling complex flowfields of
eVTOL aircraft. One disadvantage of wind tunnel testing is the presence of sting and wall effects. Also, the general
requirement of using subscale models for wind tunnel testing requires using similitude relationships to scale the results,
which are challenging for rotorcraft and typically limit vehicle wind tunnel testing [14, 15].

A goal of an aircraft aerodynamic model is to accurately describe the aerodynamics in flight, which drive aircraft
flight dynamic behavior. Thus, aerodynamic characterization using flight data offers the closest prediction to operational
reality. This work builds on previous CFD and wind tunnel eVTOL aircraft modeling studies [8, 11] to propose a method
for flight-based aero-propulsive model development. The process of developing mathematical models describing aircraft
motion from measured input and output data is referred to as aircraft system identification [16–18]. The aircraft system
identification process generally involves identifying a mathematical representation of the applied forces and moments as
a function of state and control variables, based on experimental data. Fixed-wing aircraft and rotorcraft generally follow
different modeling conventions, but their system identification techniques are well-developed for standard problems and
have been applied successfully to numerous aircraft configurations [16–22].

Although eVTOL aircraft share aerodynamic characteristics overlapping with both fixed-wing and rotary-wing
aircraft, system identification approaches used for either type of vehicle do not directly translate to modeling eVTOL
vehicles. eVTOL aircraft aerodynamic modeling is also challenging due to the presence of many control surfaces
and propulsors, propulsion-airframe interactions, high incidence angle propulsor aerodynamics, vehicle instability,
rapidly changing aerodynamics through transition, and large flight envelopes that need to be characterized by a global
aero-propulsive model. This work proposes an aircraft system identification process tailored to eVTOL aircraft based on
their unique aerodynamic characteristics and extends global modeling techniques used in previous fixed-wing aircraft
research [23]. System identification maneuvers are executed sequentially starting from trimmed flight conditions
throughout transition and modeling is performed using the equation-error method in the frequency domain at each
reference condition in post-flight analysis. The approach is formulated using simulated flight data, but can be applied to
future flight test aircraft system identification efforts. The input design, signal processing, and parameter estimation
methods used for this work were from the System IDentification Programs for AirCraft (SIDPAC) software toolbox.†

The paper is organized as follows: Section II provides an overview of the eVTOL aircraft flight dynamics simulation
used to perform simulated flight testing. Section III describes the proposed eVTOL aircraft aero-propulsive modeling
framework, followed by a description of the flight test experimental design techniques needed to collect data for model

∗Information available online at https://evtol.news/aircraft [retrieved 8 October 2021]
†Information available online at https://software.nasa.gov/software/LAR-16100-1 [retrieved 8 October 2021].
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identification in Sec. IV. Section V gives an overview of the employed parameter estimation methods. Section VI
provides sample local and global modeling results. Overall conclusions are summarized in Sec. VII.

II. eVTOL Aircraft Simulation
The system identification approach proposed in this paper is exercised for a tandem tilt-wing eVTOL vehicle in a

MATLAB®/Simulink® generalized UAM-class vehicle simulation developed at NASA Langley Research Center [24].
The high-fidelity simulation environment contains both common, aircraft-agnostic simulation components and aircraft-
specific model components, which provides a flexible framework for algorithm development for multiple eVTOL vehicle
configurations. The vehicle equations of motion, numerical integrators, and the atmospheric model are common to
all vehicles. Each vehicle model, which includes the aero-propulsive model, actuator models, inertial properties, and
control laws, is implemented in a modular framework to enable simultaneous assessment of multiple vehicles.

A. Flight Dynamics Simulation Framework
Nonlinear vehicle simulations are performed using the kinematic and dynamic aircraft equations of motion developed

under a standard set of assumptions [16, 25, 26]. The aircraft is modeled as a six degree-of-freedom rigid body, treating
the gyroscopic effects from the rotating portions of the propulsion system as applied external moments. Applied forces
(-,., /) and moments (!, ", #) are computed using the vehicle aero-propulsive model, which includes the collective
contributions of propulsion and airframe effects as well as their interactions. The translational dynamics equations are:

¤D = AE − @F − 6 sin \ + -/< (1)

¤E = ?F − AD + 6 cos \ sin q + ./< (2)

¤F = @D − ?E + 6 cos \ cos q + //< (3)

The rotational dynamics equations augmented to include propulsor gyroscopic effects are:

�G ¤? − �GI ¤A = ! + (�H − �I)@A + �GI ?@ − ( ¤ℎG + @ℎI − AℎH) (4)

�H ¤@ = " + (�I − �G)?A + �GI (A2 − ?2) − ( ¤ℎH + AℎG − ?ℎI) (5)

�I ¤A − �GI ¤? = # + (�G − �H)?@ − �GI@A − ( ¤ℎI + ?ℎH − @ℎG) (6)

The angular momentum of a single propulsor about its axis of rotation is ℎ? = �?Ω? , where �? is the moment of inertia
of the rotating portion of the propulsor and Ω? = 2c= is the rotation rate in radians per second, with clockwise rotation
when viewed from behind the rotating propulsor being positive. For use in the above equations, the angular momentum
for each propulsor is rotated into the aircraft body axes and then summed to compute the net angular momentum for
all propulsors (ℎG , ℎH , ℎI) [27]. Computing the net rate of change of angular momentum ( ¤ℎG , ¤ℎH , ¤ℎI) follows the
same process. If the propulsors are operated symmetrically, their angular momentum components cancel; however,
asymmetric propulsor operation necessary for system identification causes the propulsion gyroscopic effects to become
significant.

The aircraft equations of motion are also augmented with additional states to represent the dynamics associated with
control surface actuation and propulsor speed changes. Lag associated with the propulsors are particularly important to
consider for controller design because propulsion dynamics can be significantly slower than control surface dynamics,
particularly for eVTOL vehicles with fixed-pitch propellers. For this work, propulsor and control surface dynamics were
modeled using first-order and second-order dynamics, respectively, representing the lag between a commanded value
and actual value. Expressed as a differential equation, these respectively take the form,

g ¤X + X = Xcmd (7)

¥X + 2Zl= ¤X + l2
=X = l

2
=Xcmd (8)

where X is the actual value of a propulsor or control surface variable, Xcmd is the corresponding commanded value, g is
the first-order time constant, l= is the natural frequency, and Z is the damping ratio.

eVTOL aircraft are generally unstable in a significant portion of their flight envelope. Consequently, an active flight
control system is required to fly the aircraft or perform simulation studies. Flight control system design for complex
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eVTOL aircraft is a major challenge for many reasons, including: inherent vehicle instability, strong aerodynamic
nonlinearities, interaction effects, and ambiguous control allocation strategies due to the availability of many redundant
control effectors. The baseline control framework implemented in the simulation, described in Refs. [28, 29], is referred
to as the Robust Uniform Control Approach for vertical takeoff and landing (VTOL) aircraft. The approach integrates a
robust servomechanism linear quadratic regulator (RSLQR) control framework with control allocation techniques and
airspeed-based gain scheduling to develop a full-envelope flight controller. The controller has been successfully applied
to multiple eVTOL aircraft configuration types across their operational flight envelopes [28, 29].

Although atmospheric turbulence models are included within the simulation architecture, for this study, flight
simulations were performed in still air, for simplicity. The simulated flight data were corrupted with white, Gaussian
measurement noise. The sensor noise levels used for this work emulate those implemented in a simulation-based aircraft
system identification study performed in Ref. [30]. Sensor bias and scale factor errors generally seen in flight data
were not considered because these systematic instrumentation errors would be removed using kinematic consistency
correction techniques prior to model identification [16].

B. LA-8 Aircraft
The Langley Aerodrome No. 8 (LA-8) [6], pictured in Fig. 1, is a subscale, tandem tilt-wing, distributed electric

propulsion aircraft configuration intended to be a testbed for eVTOL aircraft technology. The LA-8 was developed
at NASA Langley Research Center as one of several eVTOL aircraft concepts intended to explore their unique flight
characteristics and resolve implementation challenges to help bring similar full-scale vehicles into mainstream operation.
The LA-8 is equipped with 20 control effectors, including two tilting wings, four elevons, four single-slotted Fowler
flaps, two ruddervators, and eight fixed-pitch propellers. A diagram of the propulsors and control surface definitions is
shown in Fig. 2. Wing, elevon, flap, and ruddervator deflections are defined positive trailing edge downward. Propellers
1, 3, 6, and 8 rotate clockwise and propellers 2, 4, 5, and 7 rotate counterclockwise, as viewed from the rear.

(a) LA-8 front view (b) LA-8 rear view

Fig. 1 LA-8 mounted in the NASA Langley 12-Foot Low-Speed Tunnel.
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Fig. 2 LA-8 propulsor and control surface definitions.
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The LA-8 aero-propulsive model development process using wind tunnel testing is described in Refs. [11, 13, 27, 31].
The aero-propulsive model consists of a set of nonlinear response surface equations describing the aerodynamic and
propulsion forces and moments exerted on the aircraft at several discrete reference airspeed conditions throughout the
vehicle flight envelope. These point model responses are then blended together to enable continuous simulation from
hover through forward flight. Two approaches were used to identify the aero-propulsive response surface equations [11].
The first approach used data from a powered-airframe wind tunnel experiment executed at multiple freestream velocity
settings to develop the model. A second approach sought to produce a higher fidelity model utilizing isolated propulsion
data in concert with powered-airframe data. The latter, more complex model was used to perform flight simulations for
this study. A future report is expected to be published providing LA-8 aero-propulsive models across the operational
flight envelope of the vehicle [32].

III. eVTOL Aircraft Modeling Approach
Aero-propulsive modeling for eVTOL aircraft requires a different approach compared to conventional fixed-wing

and rotary-wing aircraft modeling approaches. eVTOL vehicles can be considered a fixed-wing/rotary-wing hybrid,
suggesting that a combination of the twomodelingmethodologies will facilitate suitablemodel development. Accordingly,
the modeling approach defined here applies relevant aspects from both fixed-wing and rotary-wing system identification
and incorporates strategies specific to eVTOL aircraft. The proposed eVTOL aircraft system identification method
focuses on developing a model of the aero-propulsive forces and moments exerted on the aircraft as a function of vehicle
state and control variables. The approach is informed by vehicle attributes, as well as experience gained from past
eVTOL aircraft model development studies using CFD and wind tunnel testing [8, 11]. Note that the approach in this
paper applies when most or all of the distributed propulsors are operational on the aircraft. Certain vehicles, such as
the lift+cruise configuration type [1], disable most propulsion elements when operating in a high-speed forward flight
condition. For that aircraft type and flight regime, for example, a fixed-wing system identification approach would be
applicable, as was used in Ref. [8].

Following the rotorcraft modeling convention, the aero-propulsive models are developed and estimated in a
dimensional form. The response variables are defined as the dimensional body-axis applied aero-propulsive forces and
moments - , . , / , !, " , and # , as opposed to nondimensional aerodynamic force and moment coefficients �G , �H , �I ,
�; , �<, and �= normalized by freestream dynamic pressure @̄ = 1

2 d+
2 and aircraft geometry. Nondimensionalization

by freestream dynamic pressure is not valid for vehicles that are propulsion-dominated and experience significant
airframe-propulsion interaction. Propulsor aerodynamics, for example, scale with the dynamic pressure experienced
by the individual propeller blades, as opposed to freestream dynamic pressure. Also, the dimensionless force and
moment coefficients would be undefined in hover due to division by zero freestream dynamic pressure. A generally
nonlinear multivariate polynomial modeling approach adopted from fixed-wing applications has been used in previous
studies to capture the nonlinear aero-propulsive effects [8, 11]. Significant airframe-propulsion interactions and rapid
aerodynamic variation with flight condition for eVTOL vehicles suggests that a linear aero-propulsive model will have
a small region of local validity. For many applications, identification of a nonlinear aero-propulsive model will be
required; however, for this work, a linear aero-propulsive model structure used with the nonlinear aircraft equations of
motion was found to produce adequate modeling results for small perturbations from a reference flight condition. For
this reason, a linear aero-propulsive model was used as the local model structure and linear model parameters were
identified at numerous flight conditions across the LA-8 flight envelope to develop a nominal model for the purpose of
illustrating system identification applied to eVTOL aircraft. This approach is similar to previous work that identified
and combined linear models to produce a global model [23]. The method used for this paper can be readily extended to
using nonlinear aero-propulsive models in future studies.

Although the dimensional forces and moments are defined as the responses to be modeled, these quantities cannot
be measured directly in flight and must be inferred from other measurements. The dimensional applied forces are
calculated as the vehicle mass multiplied by the body-axis translational accelerometer measurements corrected to the
aircraft center of gravity:

- = <0G , . = <0H , / = <0I (9)

The applied moments are calculated using the rotational dynamic equations accounting for propulsor gyroscopic effects
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[cf. Eqs. (4)-(6)] as:

! = �G ¤? − �GI ¤A + (�I − �H)@A − �GI ?@ + ¤ℎG + @ℎI − AℎH (10)

" = �H ¤@ + (�G − �I)?A + �GI (?2 − A2) + ¤ℎH + AℎG − ?ℎI (11)

# = �I ¤A − �GI ¤? + (�H − �G)?@ + �GI@A + ¤ℎI + ?ℎH − @ℎG (12)

It is important to include propulsor gyroscopic effects in these equations because the propulsors will be dynamically
commanded and asymmetrically operated during maneuvers used for system identification.

The vehicle states defined as explanatory variables for modeling include the body-axis translational velocity
components D, E, F in ft/s and angular velocity components ?, @, A in rad/s, following the convention used in rotorcraft
system identification. The longitudinal force and moment components (- , / , ") use only the longitudinal states
(D, F, @) as explanatory variables, and the lateral-directional force and moment components (. , !, #) use only the
lateral-directional states (E, ?, A) as explanatory variables. Formulation in terms of body-axis velocity components,
as opposed to airflow angles U and V, allows the state explanatory variables to be defined across the flight envelope,
including in hover. The state variables are expressed in their dimensional form for modeling because the forces and
moments are also described dimensionally. The vehicle control surface deflection angles in radians are also defined as
explanatory variables, as is commonly done for fixed-wing aircraft system identification.

To complete the definition of proposed modeling variables, the rotational speeds of each propulsor in revolutions/s
are defined as explanatory variables, which applies for modeling vehicles with fixed-pitch propellers. If the vehicle had
variable-pitch propellers, the propulsion explanatory variables for each propulsor would be both rotational speed and
blade pitch angle. This formulation deviates from fixed-wing modeling where propulsion aerodynamics are generally not
characterized in flight, and rotary-wing aircraft modeling which generally includes more rotor states. Many conventional
helicopter rotor states, such as flapping, lead-lag, and coning, are not as relevant to eVTOL vehicles because of smaller
and stiffer propeller blades, and measuring or estimating these quantities for each propulsor would be challenging. These
additional rotor states are not necessary to capture dominant eVTOL vehicle aerodynamic dependencies due to the
smaller diameter, higher rigidity distributed propellers and reduced mechanical complexity compared to articulated
rotors. Rotorcraft modeling studies also often include pilot control positions as explanatory variables because rotor
collective and cyclic blade pitch angles are difficult to measure. This is not acceptable for modeling eVTOL aircraft
because the number of control surfaces and propulsors is greater than the number of pilot inputs.

For this work, the forward airspeed component D is treated as a flight condition variable, where local models are
identified at a set of reference airspeed conditions D>. Density altitude ℎ, or atmospheric density d, could be included as
another flight condition variable, but the approach taken here is to develop modeling techniques at a single altitude.
Additionally, wing tilt angles for the LA-8 vehicle are treated as flight condition variables scheduled with airspeed, as
opposed to being defined as explanatory variables. Including wing tilt angles as explanatory variables would introduce
additional complications because the propellers, wings, and wing-fixed control surfaces all change orientation with
respect to the body-axes. Also, the assumption that the aircraft is operating as a single rigid body would be violated.
Treating wing angles as configuration variables assumes an existing wing angle schedule.

The flight condition variables, explanatory variables, and response variables defined for the LA-8 aircraft used in
this work are summarized in Table 1. As mentioned above, a fixed linear aero-propulsive model structure was used for
developing a local model for each reference flight condition and several linear models were developed throughout the
nominal flight envelope. For example, the local model structure for / is:

/ = /DD + /FF + /@@ + /X41
X41 + /X42

X42 + /X43
X43 + /X44

X44 + /X 51
X 51 + /X 52

X 52 + /X 53
X 53 + /X 54

X 54 + ...
+ /XA1

XA1 + /XA2
XA2 + /=1=1 + /=2=2 + /=3=3 + /=4=4 + /=5=5 + /=6=6 + /=7=7 + /=8=8 + /> (13)

Here, /> contains the aerodynamic bias as well as contributions related to the regressor reference values [16]. The
model structures for - and " include the same explanatory variables. The model structures for . , !, and # are similar,
with the only difference being that E, ?, and A are included as explanatory variables, as opposed to D, F, and @. The next
section discusses an experimental design methodology which ensures the effects of all the explanatory variables on the
responses can be adequately characterized.

6



Table 1 Summary of modeling variables for the LA-8 aircraft

Variable Type Variable Symbol
flight condition variables D>, XF1 , XF2 , ℎ

explanatory variables D, E, F, ?, @, A, X41 , X42 , X43 , X44 , X 51 , X 52 , X 53 , X 54 , XA1 , XA2 , =1, =2, =3, =4, =5, =6, =7, =8

response variables -,., /, !, ", #

IV. Flight Experiment Design
A flight experiment must be properly executed to generate informative data from which a useful model can be

identified using the approach outlined in the previous section. This includes the flight test instrumentation and excitation
input design strategies, discussed next.

A. Flight Test Instrumentation
The instrumentation requirements for eVTOL aircraft system identification largely follow what is used for research-

quality fixed-wing and rotary-wing aircraft testing [16–18]. The desired measurements for LA-8 include body-axis
translational acceleration, body-axis angular rates, Euler orientation angles, air data parameters, control surface
deflection angles, wing tilt angles, and propulsor rotational speeds. The inertial navigation system should have the
built-in capability to provide reconstructed body-axis velocity components through use of a state estimator, such as
an extended Kalman filter. This is important for system identification at low airspeed where air data will likely have
low signal-to-noise ratios. A sample eVTOL aircraft system identification measurement list for the LA-8 aircraft is
summarized in Table 2. Note that different eVTOL aircraft configurations might require other measurements, such as
propulsor blade pitch angle and propulsor tilt angle.

Table 2 Sample eVTOL aircraft system identification measurement list for the LA-8 aircraft

Measurement Name Notes
body-axis translational acceleration (0G , 0H , 0I)
body-axis angular velocity (?, @, A)
Euler orientation angles (q, \, k) reconstructed via state estimation
true airspeed (+)
body-axis velocity (D, E, F) reconstructed via state estimation
airflow angles (U, V)
static pressure used to compute air density and density altitude
ambient temperature used to compute air density and density altitude
control surface deflection angles
propulsor rotational speeds
wing tilt angles

Additional aircraft configuration data are required prior to flight testing. The vehicle mass and moments of inertia
should be accurately measured or estimated for use with the aircraft dynamics equations. The moment of inertia of the
rotating portion of each propulsor is also needed to properly account for gyroscopic effects. A preliminary estimate of
the aircraft dynamic modes and control bandwidth (particularly propulsion control bandwidth) is useful for excitation
input design.

B. Input Design
Orthogonal phase-optimized multisine inputs, described in further detail in Refs. [16, 33–35], are the excitation input

type used for this work. A multisine input is defined as a sum of multiple sinusoidal functions with different amplitudes,
frequencies, and phase angles, where the frequencies are chosen to encompass the frequency range corresponding
to the system dynamics of interest. To make all inputs orthogonal in both the time domain and frequency domain,
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the multisine signal for each 9 th control effector is assigned sinusoids with a unique subset of discrete harmonic
frequency indices  9 selected from the complete set of available frequency indices,  . The available frequencies are
5: = :/), : = 1, 2, ...,  , where ) is the fundamental period. For < total control effectors, each 9 th input signal u 9 is
defined as,

u 9 =
∑
:∈ 9

�
√
%: sin

(
2c: t
)
+ q:

)
9 = 1, 2, ..., < (14)

where � is the signal amplitude, %: is the :th power fraction, q: is the :th phase angle defined on the interval [−c, +c],
and t is the time vector containing # discrete points. The relative peak factor '%�, defined as,

'%�
(
u 9

)
=

1
√

2

[
max

(
u 9

)
−min

(
u 9

) ]
/ 2√

u)
9
u 9/#

(15)

is the range of input amplitude divided by the root-mean-square of the signal, referenced to the peak factor for a single
frequency sinusoidal signal. A '%� value near one is preferred for system identification to prevent perturbing the
system far from the reference flight condition. The relative peak factor for a multisine signal is minimized by optimizing
the phase angles using the simplex algorithm because the optimization problem is not convex [33]. Minimizing the
'%� by phase-shifting the sinusoidal components of a multisine input does not affect the excitation input energy or the
mutual orthogonality of the inputs.

For this study, individual multisine signals were generated for each of the LA-8 control surfaces and propulsors,
for a total of 18 different excitation signals. Several harmonic components were assigned to each control surface and
propulsor multisine signal, where the overall frequency range was set to between 0.05 Hz and 1.8 Hz in accordance with
frequencies where the rigid-body dynamics of interest were expected to manifest. The propulsion harmonic components
were focused into lower frequencies below 1.2 Hz to adhere to the lower bandwidth of the propulsors [27]. Six different
sets of multisine input frequency components were considered for the experiment by varying the fundamental period )
from 30 seconds to 180 seconds in 30-second increments. A larger fundamental period results in a finer frequency
resolution, Δ 5 = 1/) Hz, which allows assigning more frequency components to each individual multisine signal.
The design with the shortest fundamental period () = 30 seconds) had three harmonic components assigned to each
propulsor and control surface signal; the design with the longest fundamental period () = 180 seconds) had 16 harmonic
components assigned to each propulsor signal and 18 harmonic components assigned to each control surface signal.
Since the starting phase angles for each harmonic component are generally chosen randomly in [−c, +c], a different set
of phase angles optimized for minimum '%� is generally obtained each time a multisine signal is designed. Multisine
optimization with randomly chosen starting phase angles was performed 30 times for each different set of frequency
components and the design with the quickest time to decrease pairwise correlation was selected to compare to signals
developed with different fundamental periods. The relative peak factor for the design with the quickest time to decrease
pairwise correlation for each fundamental period ) is shown in Fig. 3; a similar '%� is obtained for each control
effector signal for different values of ) , with a slight general decreasing trend in '%� as ) increases. The propulsor
signals also generally have a lower '%� value compared to the control surface signals.

Fig. 3 Relative peak factor of candidate LA-8 aircraft multisine designs.

Multisine signals are orthogonal in the time-domain at integer multiples of ) , which might be interpreted to suggest
using a multisine design with a small fundamental period. However, obtaining high quality modeling results requires low
correlation rather than zero correlation [35], meaning that good modeling results can be obtained by using a maneuver
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time shorter than the fundamental period of the multisine signal. Also, using a larger number of frequency components
provides more diverse dynamic information, which has been shown to improve modeling results [36]. Following an
approach similar to Ref. [35], input correlation metrics were used as criteria to assess the quality of each multisine
design as maneuver time progresses.

Correlation between two inputs can be assessed using the pairwise correlation coefficient. The correlation coefficient
A8 9 between two input signals, u8 and u 9 , is defined as,

A8 9 =
(u8 − D̄8)) (u 9 − D̄ 9 )√

(u8 − D̄8)) (u8 − D̄8)
√
(u 9 − D̄ 9 )) (u 9 − D̄ 9 )

(16)

where D̄8 and D̄ 9 are the respective mean input signal values. A correlation coefficient value of zero means the signals
are uncorrelated, or orthogonal, and an absolute correlation coefficient of one indicates that the signals are completely
correlated, or linearly dependent. Lower absolute correlation generally results in better modeling results [35]. A
correlation coefficient between signals used for modeling with magnitude greater than 0.9 indicates that data collinearity,
or correlation between signals high enough to cause corrupted model identification, may be encountered [16, 17]. The
correlation coefficient only quantifies correlation between pairs of inputs, and thus cannot diagnose collinearity among
more than two input signals.

An alternative method that can be used to assess multiple correlation between more than two inputs is analysis of
the eigenvalues of [)[, where [ is a matrix composed of column vectors of the input signals, [ = [u1, u2, ..., u<].
Assuming that a model includes all input signals, the inverse of the[)[matrix would be required to compute the ordinary
least-squares regression solution. The ratio of the maximum eigenvalue and minimum eigenvalue, ^ = _max/_min, is the
condition number of the[)[ matrix. A value of ^ close to one indicates low multiple correlation whereas a large value
of ^ indicates an ill-conditioned estimation problem due to data collinearity. Values of ^ indicating adverse effects from
data collinearity range anywhere from 100 to 100,000 depending on the particular data set [16, 17, 37, 38].

The evolution of correlation metrics over time for each multisine design with a different fundamental period is shown
in Fig. 4. Figure 4a shows the maximum absolute pairwise correlation value |A8 9 |max for each multisine design as a

(a) Maximum pairwise correlation coefficient (180 seconds) (b) Maximum pairwise correlation coefficient (60 seconds)

(c) Condition number of[Z[ (180 seconds) (d) Condition number of[Z[ (30 seconds)

Fig. 4 Input signal correlation metrics against time.

function of time, with Fig. 4b displaying the same plot over a shorter time interval. Figures 4a-4b show that the pairwise
correlation values are zero at integer multiples of the fundamental period of the respective multisine design. The
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maximum correlation for each different multisine design shows a similar rate to decrease below 0.5, which is achieved
in roughly 10 seconds. It can also be seen that the design with the greatest fundamental period () = 180 seconds)
generally has the lowest maximum pairwise correlation for the first 10 seconds. After 10 seconds, each design has
reasonably close |A8 9 |max values until approaching the fundamental period for each design, where the signals converge to
zero correlation. Figure 4c shows the condition number ^ of[)[ for each multisine design as a function of time, with
Fig. 4d displaying the same plot over a shorter time interval. All multisine designs achieve a condition number less than
100 in approximately 7 seconds at nearly the same rate and, thereafter, the condition numbers continue to decrease at
a slower rate. The overall takeaway from Fig. 4 is that multisine designs with different fundamental periods obtain
low correlation metrics in a similar maneuver time. Informed by these time-dependent correlation analysis results and
previous research showing the benefits of increased frequency resolution [36], the multisine design with the largest
fundamental period () = 180 seconds) was selected to be used for the system identification experiments.

The input spectra for the final set of orthogonal phase-optimized multisine signals with a fundamental period of
) = 180 seconds is shown in Fig. 5. There are 308 total harmonic components, with 16 frequencies assigned to each
propulsor and 18 frequencies assigned to each control surface in an alternating manner. The overall frequency range
is between 5min = 0.05 Hz and 5max = 1.756 Hz with a frequency resolution of Δ 5 = 1/) = 0.00556 Hz. The input
spectra plot shows that the propulsor harmonic components are focused into a lower frequency range, reflecting that the
input excitations were designed to be within the bandwidth of the propulsion system. Figure 6 shows the first 20 seconds
of the input excitation signals normalized to have a maximum absolute value of one. This reflects how the signals are
injected into the flight controller, where a gain is applied to scale each input signal to a sufficient amplitude to obtain a
good signal-to-noise ratio, while not deviating far from the trimmed flight condition or perturbing the aircraft to an
unsafe flight condition.

Fig. 5 LA-8 aircraft multisine input spectra for each control effector.

Fig. 6 LA-8 aircraft normalized multisine inputs used for system identification.
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C. Input Strategy with Feedback Control
eVTOL aircraft dynamics are generally unstable over a large portion of their flight envelopes, which requires the

feedback control system to be active when operating at these conditions. Although necessary for safety, flight control
systems can create deficiencies in the data information content available for system identification. Control systems act
to suppress the natural aircraft motions that system identification maneuvers are designed to excite, distort optimally
designed control inputs, and lead to correlation between explanatory variables, making their independent effects more
difficult to distinguish. Strategies used for modeling aircraft with feedback control include using a priori information to
better condition the modeling problem, lowering the feedback gains, and/or injecting the input excitations downstream
of the control laws. Using preliminary information can result in biased estimates if the parameters are not a good
representation for actual aircraft characteristics. Also, tampering with the control system is generally not advisable from
a risk-mitigation standpoint, particularly for unstable aircraft. Hence, the strategy used here for handling the presence of
the flight controller is to sum each input excitation signal with the control effector command from the control system
just before the commanded actuator position and rate limits [16]. This approach allows characterizing the influence of
each control effector on the aircraft open-loop dynamic response simultaneously. This input excitation framework is
depicted in Fig. 7.

Control 

PositionsControl

System

Limiters & 

Actuators

Excitation Inputs

Closed-Loop Response

++

Open-Loop Response

Pilot or Guidance 

System Inputs

Control 

Commands

Sensor Data

Aircraft

Outputs

Fig. 7 Proper application of excitation inputs relative to the control system [16].

V. Parameter Estimation
Parameter estimation for this study was performed using the equation-error method formulated in the frequency

domain [16, 39, 40]. First, the regressor and response data are detrended and transformed into the frequency domain
using a Fourier transform technique leveraging time-domain cubic interpolation and the chirp-I transform to produce
a high accuracy transform with an arbitrary frequency range and resolution [16, 41]. The transform frequencies are
selected to encompass the aircraft dynamics. This approach effectively smooths the modeling data and allows estimation
of nearly unbiased parameter estimates when the regressors contain noise [40, 42]. For this study, the frequency
range was selected to match the excitation input design with a fundamental period of ) = 180 s (see Sec. IV.B); the
Fourier transform frequencies were set between 5min = 0.05 Hz and 5max = 1.756 Hz with a frequency resolution of
Δ 5 = 0.00556 Hz, resulting in " = 308 transform frequencies. A parameter sensitivity study indicated that a coarser
frequency resolution resulted in parameter estimation errors, whereas a finer frequency resolution provided minimal
additional parameter estimation accuracy.

After the modeling data are transformed into the frequency domain, ordinary least-squares regression is applied
using the complex regressor and response data. Ordinary least-squares regression is used to estimate a vector of =?
unknown model parameters in a vector ) for a given model ỹ = ˜̂ ) [16]. Here, ỹ is the length " complex model
response vector and ˜̂ is a " × =? matrix consisting of column vectors of the complex regressors assumed to be
error-free. The regression equation, including the complex measured response variable z̃ corrupted by constant variance,
zero-mean, and uncorrelated complex measurement error .̃, is given as:

z̃ = ˜̂ ) + .̃ (17)

For complex least-squares parameter estimation, the optimal estimate of the unknown parameters ) is determined by
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minimizing the cost function:

� ()) = 1
2

(
z̃ − ˜̂ )

)† (
z̃ − ˜̂ )

)
(18)

It follows that the solution to compute an optimal estimate of the unknown real-valued parameters is,

)̂ =
[
'4

(
˜̂ † ˜̂

)]−1
'4

(
˜̂ † z̃

)
(19)

where )̂ is a vector of =? estimated parameters. The modeled response variable vector is:

ˆ̃y = ˜̂ )̂ (20)

A length =? vector of standard errors s()̂) corresponding to the estimated parameters )̂ is given as:

s()̂) =

√(
1

2) ( 5max − 5min)
'4

[(
z̃ − ˆ̃y

)† (
z̃ − ˆ̃y

)] )
diag

( [
'4

(
˜̂ † ˜̂

)]−1
)

(21)

This form of s()̂) accounts for the fact that a frequency range narrower than zero to the Nyquist frequency is used for
analysis [40].

After complex least-squares parameter estimation is completed, an additional step is needed to identify the bias term
in a model equation [e.g., /> in Eq. (13)] because the detrended data used to fit the model parameters contain only
dynamic information [16, 40]. The bias parameter estimate \̂> is estimated as the mean value of (z − ^)̂), where z is
the measured response variable in the time domain, ^ is a matrix consisting of column vectors of the regressors in the
time domain, and )̂ is the model parameter vector estimated previously using complex least-squares regression.

VI. Results
As described in Sec. III, the modeling approach used for this paper is to identify several linear aero-propulsive

models across the nominal flight envelope for the LA-8 aircraft. The local model parameters are then blended together
to form a global aero-propulsive model. Sample local and global modeling results obtained from simulated LA-8 flight
tests are provided in this section.

A. Local Modeling Results
Simulated LA-8 flight data for a level maneuver at a reference forward airspeed of D> = 45 ft/s and wing angles

fixed at XF1 = XF2 = 25 deg with orthogonal phase-optimized multisine inputs active on all control surfaces and
propulsors are shown in Figs. 8-9. As mentioned previously, the simulated flight data used for modeling were corrupted
with measurement error using noise levels consistent with a previous simulation-based aircraft system identification
study [30]. The control effector signal waveform shown in Fig. 8 is different than the designed signals shown in Fig. 6
due to distortion from the active flight control system. Even with this distortion, modeling variables are still sufficiently
decorrelated for model identification as a result of injecting the excitation inputs as shown in Fig. 7 [16]. A total
maneuver length of 60 seconds was selected by investigating the parameter estimation results and the root-mean-square
error (RMSE) for validation data as a function of maneuver time used for modeling, as will be demonstrated below. All
of the following analysis in this subsection uses the simulated flight data shown in Figs. 8-9, where the first 40 seconds
are used for model identification and the last 20 seconds are used for model validation.
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Fig. 8 Control surface deflection angles and propulsor rotational speeds during a simulated LA-8 system
identification maneuver at uo = 45 ft/s.
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Fig. 9 Simulated LA-8 flight data at uo = 45 ft/s with multisine inputs active on all control effectors.

Figure 10 shows the / parameter estimates and error bars of ±2B()̂) computed using complex least-squares
regression against the amount of maneuver time used for modeling. Parameter estimates were computed in a batch
manner for the various different maneuver lengths used for modeling, as opposed to implementing real-time calculations.
The plot also shows the linearized parameters computed directly from the nonlinear LA-8 simulation using central
finite differences, for comparison. The parameters appear to converge to reasonably consistent values by the time
40 seconds has elapsed and show good concurrence with the linearized LA-8 simulation parameters. Similar results
were obtained for the parameters corresponding to the other aero-propulsive forces and moments and at different flight
conditions throughout the LA-8 flight envelope. Note that the parameter estimates contain asymmetries that are not
apparent from the LA-8 vehicle configuration. This is a result of manufacturing differences between the clockwise
and counterclockwise propellers, which resulted in a significant difference in thrust production between the propeller
variants [31]. Since the propulsion-only and propulsion-airframe interaction effects are significant, this propulsion
asymmetry is manifested in many model terms [11].
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Fig. 10 Variation of ` parameter estimates with maneuver time used for modeling at uo = 45 ft/s.

Figure 11 shows the validation RMSE (RMSEE ) in the time domain for each response variable against the amount
of maneuver time used for modeling. RMSE is calculated as,

RMSE =

√
(z − ŷ)) (z − ŷ)

#
(22)

where ŷ is the length # model response vector and z is the length # measured response vector. The last 20 seconds of
data from the maneuver shown in Figs. 8-9 were used to compute the RMSEE metric at each modeling time length.
The amount of time for RMSEE to nearly level off is different for each response, but all responses appear to have a
small RSMEE reduction rate by the time 40 seconds has elapsed, indicating that a longer maneuver would provide little
additional benefit. Similar results were obtained at other flight conditions.

In view of Figs. 10-11, and also with the knowledge that 40 seconds is the amount of time needed to complete two
full periods of the lowest frequency sinusoidal component of the multisine maneuver ( 5min = 0.05 Hz), 40 seconds
was selected as the amount of maneuver time to use for modeling at each flight condition. A 60 second maneuver was
executed at each reference flight condition used for model identification, where the first 40 seconds were used to identify
the local aero-propulsive model, and the last 20 seconds of the maneuver were used as validation data to test the model
prediction capability. This maneuver time length worked well across the LA-8 flight envelope, as will be shown in
Sec. VI.B.
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Fig. 11 Variation of validation RMSE with maneuver time used for modeling at uo = 45 ft/s.

Figure 12 shows the model fit in the frequency domain using the first 40 seconds of the maneuver shown in Figs. 8-9.
A good model fit is observed for each response. The coefficient of determination ('2) metric shown on the plot for
each response is high, indicating that most of the variation of the response variable about its mean is characterized by
the model. Figure 13 shows the model fit and model prediction compared to the smoothed aero-propulsive forces and
moments in the time domain using the same maneuver. The model fit and model predictions are close to the responses
calculated from the simulated flight data, indicating that the model is able to describe a large amount of the variation in
each response. The local model fit and prediction capability were similar for the other reference flight conditions across
the LA-8 flight envelope.

Fig. 12 Comparison of modeling response data and model fit in the frequency domain at uo = 45 ft/s.
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Fig. 13 Model fit and model prediction in the time domain for a simulated LA-8 maneuver at uo = 45 ft/s.

B. Global Modeling Results
Similar execution of a 60-second multisine maneuver and the subsequent analysis shown in the previous subsection

were used to develop a local model at several flight conditions throughout the LA-8 flight envelope. The model fit and
model predictions in the time domain for seven different flight conditions through the LA-8 transition envelope are
shown in Fig. 14. A good model fit and good model predictions are observed for each flight condition. Figure 15 shows
the RMSE value for each response for both modeling data and validation data. Observing that the modeling RMSE for
each response holds a similar value to the corresponding validation RMSE, the modeling RMSE values are an accurate
representation of prediction performance suggesting that modeling was successful.

Although maneuvering between flight conditions is not shown in Fig. 14, the plots still reflect how a practical flight
test for the LA-8 aircraft would occur. The testing would start in a hover flight condition to develop an initial model and
then testing would move gradually through transition to eventually develop models through the nominal flight envelope.
This could occur in a single flight, could involve the aircraft returning to the ground between test points, or could be
some combination of the two strategies. This approach would work well alongside safe envelope expansion flight
testing and could be used to aid in tuning a flight controller to achieve a safe transition. Note that the forward airspeed
conditions tested for this study ranged from 0 to 54 ft/s and the wing angles ranged from approximately 83 deg (the
trimmed hover setting) to 15 deg. For an actual system identification flight test of the LA-8 vehicle, modeling would be
performed through wing angles of 0 deg (forward flight); however, for this simulated study, the possible flight conditions
were limited by the range of validity of the wind tunnel derived aero-propulsive models currently implemented in the
LA-8 simulation.

17



Fig. 14 Model fit and model prediction for the aero-propulsive forces and moments at several reference
conditions throughout the LA-8 transition envelope.

Fig. 15 Modeling and validation RMSE for each response against reference forward speed.
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Figure 16 shows the / parameter estimates and error bars of±2B()̂) computed using complex least-squares regression
for each tested flight condition. The solid line connecting the parameters is computed using shape-preserving piecewise
cubic interpolation [43, 44] with the pchip.mMATLAB® function‡; this interpolation method is preferred over cubic
spline interpolation for blending parameter estimates because of its tendency to avoid overshoot and oscillatory behavior.
Blending local model parameter estimates using this method shows how a continuous simulation can be formed using
local models identified at several different reference conditions. The linearized parameters computed directly from the
nonlinear LA-8 simulation at each condition are also shown for comparison. The identified / parameters show good
concurrence with the linearized LA-8 simulation parameters across the flight envelope. Similar results were obtained
for the parameters corresponding to the other aero-propulsive forces and moments.

Fig. 16 Variation of ` parameter estimates with forward speed across the LA-8 flight envelope.

VII. Conclusions
eVTOL vehicles are a new type of aircraft exhibiting aerodynamic characteristics of both fixed-wing and rotary-wing

aircraft as well as challenging vehicle-specific attributes, such as many available control effectors to characterize. The
aircraft are also generally unstable and have a wide range of operational flight conditions. This paper developed a
system identification methodology for eVTOL aircraft leveraging system identification techniques for fixed-wing and
rotary-wing aircraft, as well as previous eVTOL aircraft aero-propulsive characterization studies. The proposed method
was evaluated using a high-fidelity flight dynamics simulation for the LA-8 tandem tilt-wing eVTOL aircraft.

An experimental design for the LA-8 was developed using orthogonal phase-optimized multisine signals designed
for each individual control surface and propulsor. Several multisine designs were compared varying the fundamental
period, which indicated that maneuvers with a longer fundamental period would be beneficial for model identification.

‡Information available online at https://www.mathworks.com/help/matlab/ref/pchip.html [retrieved 12 October 2021].
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Since the aircraft is unstable, system identification maneuvers were executed with the flight control system active, but the
strategy still effectively excited the LA-8 aircraft dynamics allowing accurate modeling throughout the flight envelope.
A 40 second modeling maneuver was shown to be an adequate length for accurate local model identification for the
investigated vehicle and demonstrates the utility of using multiple-input orthogonal optimized multisine maneuvers for
efficient eVTOL aircraft system identification.

Model parameters in a linear aero-propulsive model structure used with the nonlinear aircraft equations of motion
were estimated at several different flight conditions throughout the LA-8 flight envelope. Parameter estimation was
performed using the equation-error method in the frequency domain. The model structure is appropriate for capturing
eVTOL aircraft characteristics in small perturbation maneuvers from a trimmed flight condition; however, the approach
can also be readily extended to develop nonlinear aero-propulsive models that increase the region of model validity.
The identified models were shown to have good predictive capability, small model fit error, and good agreement with
linearized simulation parameters. A blending method was shown which allows development of a global aero-propulsive
model through the nominal flight envelope of the vehicle. Model development flight testing strategies were discussed
allowing safe envelope expansion and sequential flight controller tuning for a new vehicle.

This work provides progress in eVTOL aircraft modeling research using flight test techniques that can be applied
for many current and future vehicles. The general method will allow accurate identification of a dynamic model for
complex, unstable eVTOL aircraft configurations using a short amount of flight test time and with minimal additional
risk posed to the vehicle. Future system identification studies are anticipated to further refine aero-propulsive model
development methodologies.
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