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This paper discusses the Dynamic Mode Decomposition (DMD) of the Unsteady Pressure-
Sensitive Paint (uPSP) measurements, which were collected with four Phantom high-speed 
cameras at a constant sample frequency in the Ascent Transient Aerodynamics Test (ATAT) 
of the Space Launch System (SLS) Block 1 cargo vehicle with the Unitary Plan Wind Tunnel 
(UPWT) 11-by-11-foot Transonic Wind Tunnel in September 2019 at NASA Ames Research 
Center. The conventional DMD algorithm is based on the Singular Value Decomposition 
(SVD). For the data with zero mean, the DMD is equivalent to the Discrete Fourier Transform 
(DFT). Since the uPSP is mainly used to determine the unsteady property of the aerodynamic 
flow, the DMD of the uPSP measurements is implemented in two steps: (1) subtract the mean 
value from the uPSP measurement; (2) apply the Fast Fourier Transform (FFT) on the 
resulting data with zero mean. The DMD of the uPSP measurements with FFT has two 
advantages: (1) the FFT algorithm is well known for its computational efficiency, therefore, 
compared to the SVD-based DMD algorithm, the DMD with FFT reduces the computation 
time; (2) the DMD with FFT can be easily implemented in parallel processing. The DMD 
outputs were generated with the execution in parallel of a code in C, with libraries of FFTW 
for FFT and MPI/OpenMP for parallel processing, on the NASA Pleiades supercomputer. In 
this paper, the results of DMD of the uPSP measurements in the tests of Mach sweep runs of 
the SLS ATAT are presented, and the effectiveness of the DMD of the uPSP measurements in 
the diagnosis of the unsteady, aerodynamic phenomena is demonstrated. The work described 
in this paper is a part of NASA’s development of a new state-of-the-art uPSP capability in 
production wind tunnels. Funding for this research was provided by the NASA Aeroscience 
Evaluation and Test Capabilities Project. 

 
 
 

Nomenclature 
 

A  = DMD dynamics matrix 
𝐴"  = proxy matrix 
ATAT   = Ascent Transient Aerodynamics Test 
D  = data matrix 
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DFT   = Discrete Fourier Transform 
DMD   = Dynamic Mode Decomposition 
FFT   = Fast Fourier Transform 
𝑓!"#$%&'   = Nyquist frequency 
𝑓&   = sample frequency 
M  = dimension of data vectors 
N  = number of data vectors 
PSP   = Pressure-Sensitive Paint 
SLS   = Space Launch System 
SRB   = Solid Rocket Booster 
SVD   = Singular Value Decomposition 
UPWT   = NASA Unitary Plan Wind Tunnel 
𝑈( , Σ( , 𝑉()  = output matrices of the reduced SVD of X 
uPSP   = Unsteady Pressure-Sensitive Paint 
𝑣   = eigenvector of the DMD dynamics matrix 
𝑣)  = eigenvector of the proxy matrix 
W   = vector of the DFT coefficients of the data matrix 
X, X#   = matrices of data vectors defining the DMD dynamics matrix 
𝑋*   = pseudoinverse of X 
x   = data vector 
z   = sinusoidal component of the data vector 
𝜆  = eigenvalue of the DMD dynamics matrix from the data with zero mean 
𝜇   = eigenvalue of the proxy matrix 
 
 
 
 

I. Introduction 
 

The technique of Pressure-Sensitive Paint (PSP) is commonly used in the aerospace industry to measure surface 
pressures on the model of launch vehicles and airplanes in the wind tunnel test (Refs. [1, 2]). Recent research has 
demonstrated that Unsteady Pressure-Sensitive Paint (uPSP) can be an essential tool for the assessment of the 
unsteady, aerodynamic phenomena (Refs. [3, 4, 5]). NASA is developing a new state-of-the-art uPSP capability in 
production wind tunnels (Refs. [6-16]). The work described in this paper is a part of the campaign. 

 
This paper discusses the Dynamic Mode Decomposition (DMD) of the uPSP measurements, which were collected 

with four Phantom high-speed cameras at a constant sample frequency in the Ascent Transient Aerodynamics Test 
(ATAT) of the Space Launch System (SLS) Block 1 cargo vehicle with the Unitary Plan Wind Tunnel (UPWT) 11-
by-11-foot Transonic Wind Tunnel in September 2019 at NASA Ames Research Center. Fig. 1 shows the scale model 
with uPSP in the SLS ATAT.  

 
The conventional DMD algorithm is based on the Singular Value Decomposition (SVD). For the data with zero 

mean, the DMD is equivalent to the Discrete Fourier Transform (DFT). Since the uPSP is mainly used to determine 
the unsteady property of the aerodynamic flow, the DMD of the uPSP measurements is implemented in two steps:   
(1) subtract the mean value from the uPSP measurement; (2) apply the Fast Fourier Transform (FFT) on the resulting 
data with zero mean. The DMD outputs in this paper were generated with the execution in parallel of a code in C, with 
libraries of FFTW for FFT and MPI/OpenMP for parallel processing, on the NASA Pleiades supercomputer. 

 
This paper is organized as follows. The DMD model and algorithm are described in Section 3. The equivalence 

of the DMD and the DFT for the data with zero mean is discussed in Section 3. In Section 4, the equivalence of the 
DMD and the DFT for the data with zero mean is verified with a sample uPSP data set, and the algorithm to implement 
the DMD to the uPSP measurements is discussed. In Section 5, the results of the DMD of the uPSP measurements in 
the tests of Mach sweep runs of the SLS ATAT are shown, and the effectiveness of the DMD of the uPSP 
measurements in the diagnosis of the unsteady, aerodynamic phenomena is demonstrated. Finally, the conclusions are 
presented in Section 6. 
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II. DMD Model and Algorithm 
 

The DMD is based on the eigendecomposition of a best-fit linear operator that approximates the dynamics present 
in the data. Given the time series of data, DMD computes a set of modes, each of which is associated with a fixed 
oscillation frequency and growth/decay rate. The description of the DMD model and algorithm in this section is based 
on the papers by Schmidt (Ref. [17]) and Taira et al. (Ref. [18]). 

 
Consider N data vectors collected at time 	𝑡+, k = 0, 1, …, N-1. Each of the data vectors has the dimension of M. 

For simplicity, it is assumed that the dimension of the vectors is larger than the number of vectors, i.e., M > N. As 
shown later in this paper, this assumption is true for the uPSP measurements collected in the SLS ATAT.  

 
Let the data vectors be denoted as {𝑥+ ,			𝑘 = 0, 1, … ,𝑁 − 1}. The combined N data vectors form an 𝑀 ×𝑁  data 

matrix 
 

 𝐷 =	 [𝑥, 𝑥- 𝑥. …… 𝑥!/. 𝑥!/-]        (1) 
 

In DMD, it is assumed the data vectors are separated by a constant interval of time, and the relationship between the 
consecutive vectors is given by the following equation 
  

𝑥+*- = 𝐴	𝑥+   k = 0, 1, … N-2.       (2) 
 

where the linear operator, in the form of an 𝑀 ×𝑀 constant matrix A, approximates the dynamics of the system. In 
this paper, the matrix A is referred as the DMD dynamics matrix. 
 

Equation (2) can be rewritten in the matrix form below 
 

𝑋# = 	𝐴𝑋              (3) 
 

where X and 𝑋#	are 𝑀 × (𝑁 − 1) matrices defined as following 
 

𝑋 =	 [𝑥, 𝑥- 𝑥. … … 𝑥!/.]            (4)    
 

𝑋# =	 [𝑥- 𝑥. 𝑥1 … … 𝑥!/-]           (5) 
 

The DMD dynamics matrix A can be determined as 
 

𝐴 = 𝑋#𝑋*              (6) 
 
where 𝑋* denotes the pseudoinverse of X. Consider the dimension of the data vectors, M, is usually a large number, 
instead of determining the 𝑀 ×𝑀 matrix A, the DMD algorithm computes the eigenvalues and eigenvectors of the 
matrix A.  
 

The conventional DMD algorithm, which is based on the SVD, includes the following steps: 
 

First, perform the reduced SVD of X as following 
 
𝑋 = 𝑈(S(𝑉()              (7) 

 
where 𝑈( and 𝑉( are 𝑀 × 𝑟 and 𝑁 × 𝑟 matrices respectively. S( is a 𝑟 × 𝑟 diagonal matrix, whose diagonal elements 
are non-zero singular values of the matrix X. 
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Then define a 𝑟 × 𝑟 proxy matrix 𝐴" as following 
 

𝐴" = 𝑈()𝐴𝑈( = 𝑈()𝑋#𝑉(S(	/-            (8) 
 
and find the eigenvalues µ3 and eigenvectors 𝑣)3,  j = 1, 2, …, r, of the proxy matrix 𝐴", with  
 

𝐴"𝑣)3 = µ3𝑣)3           (9) 
 
Every non-zero eigenvalues µ3 is an eigenvalue of the DMD dynamics matrix A. The corresponding eigenvector of A, 
denoted as 𝑣3, is determined as  
 

𝑣3 = µ3
/-𝑋#𝑉(S(	/-𝑣)3          (10) 

 
Each of the eigenvalues of the DMD dynamics matrix A defines the oscillation frequency and growth/decay rate of a 
DMD mode in time, and the corresponding eigenvector defines the shape of the DMD mode in space. 
 
 
 
 

III. Equivalence of DMD and DFT for the Data with Zero Mean 
 

It is proved that for the data with zero mean, the DMD is equivalent to the DFT. The discussion in this section is 
based on the papers by Rowley et al (Ref. [19]) and Chen et al (Ref. [20]). 

 
For the data with zero mean, the sum of the elements of the data matrix D, given in Eq. (1), is zero for each row. 

Therefore, the following equation can be derived  
 

𝑥, + 𝑥- + 𝑥. +	⋯	+ 𝑥!/- = 0         (11) 
 
From Eq. (2), the data vectors  {𝑥+ ,			𝑘 = 1,… ,𝑁 − 1}	can be rewritten as 
 

𝑥- = 𝐴𝑥,          (12a) 
 
 𝑥. = 𝐴.𝑥,          (12b) 
 
 … … 
 
 𝑥!/- = 𝐴!/-𝑥,           (12c) 
 
Combining equations (11) and (12) leads to 

 
0 = 𝑥, + 𝑥- + 𝑥. +	⋯	𝑥!/- 
   = 𝑥, + 𝐴𝑥, + 𝐴.𝑥, +	⋯	+ 𝐴!/-𝑥, 
   = (𝐼 + 𝐴 + 𝐴. +⋯+ 𝐴!/-)𝑥,         (13) 

 
Since 𝑥, is arbitrary, it is derived 
 

𝐼 + 𝐴 + 𝐴. +⋯+ 𝐴!/- = 0        (14) 
              
Let λ denote an eigenvalue of the DMD dynamics matrix A, then λ satisfies the following equation 

 
1 + 𝜆 + 𝜆. +⋯+ 𝜆!/- = (1 − 𝜆!) (1 − 𝜆)⁄ = 0         (15) 
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Therefore 
 

𝜆3 = 𝑒%	
!"#
$    j = 1, 2, … N-1       (16) 

 
where i is the imaginary unit. 
 

It is shown for the data with zero mean, the eigenvalues of the DMD dynamics matrix are N-th roots of 1 
(excluding 1 itself), which are uniformly located on the unit circle in the complex plane. The eigenvalue 	l3 
corresponds to a sinusoidal oscillation at the frequency 
 

𝑓3 = 𝑗 · 𝑓& 𝑁⁄    j = 1, 2, … N-1       (17) 
 

where 𝑓& is the sample frequency of the data. 
 
 
 
 

IV. DMD of the uPSP Measurements 
 

In this section, we discuss the implementation of DMD to the uPSP measurements of the SLS ATAT.  
 
The uPSP measurements were collected with four Phantom high-speed cameras at a constant sample frequency 

in the SLS ATAT and then processed with the uPSP data processing software (Ref. [10, 12, 15]). The output is an 
𝑀 ×𝑁 matrix of the nondimensional delta pressure coefficients at the nodes of a grid on the surface of the scale 
model. The DC component is subtracted in the time series of the delta pressure coefficient for each of the grid nodes. 
The number of rows, M, corresponds to the number of nodes in the grid, and the number of columns, N, corresponds 
to the number of camera output frames used in the DMD.  

 
As a comparison to the SVD-based DMD algorithm, the DFT was also applied to the rows of the 𝑀 ×𝑁 matrix 

of the uPSP detla pressure coefficients, implemented with the FFT algorithm. Let 𝑊3 denote the M dimensional vector 
of the DFT coefficients corresponding to the eigenvalue Jl3 ,			𝑗 = 1, 2, … ,𝑁 − 1L given in Eq. (16),  then the data 
vectors {𝑥+ ,			𝑘 = 0, 1, … ,𝑁 − 1}, i.e., the columns of the 𝑀 ×𝑁 matrix above, can be expressed with the eigenvectors 
𝑊3 	and eigenvalues 𝜆3 as following 

 
 𝑥+ =	∑ 𝑧3,+!/-

35-            (18) 
 
where 

 
 𝑧3,+ =	𝑊3𝜆3+ = 𝑊3𝑒

%!"#%$          (19) 
 

The vectors J𝑧3,+ ,			𝑘 = 0, 1, … ,𝑁 − 1L are the sinusoidal components of the data vectors {𝑥+ ,			𝑘 = 0, 1, … ,𝑁 − 1} 
corresponding to the frequency J𝑓3 ,			𝑗 = 1,… ,𝑁 − 1L given in Eq. (17). 
 

Note that the elements of the vectors of the DFT coefficients, J𝑊3 ,			𝑗 = 1, 2, … ,𝑁 − 1L,  are generally complex 
numbers. The conjugate complex vectors 𝑊3 and 𝑊!/3 (j = 1, 2, …, !

.
− 1) define two sinusoidal oscillation modes, 

corresponding to the same frequency, which can be determined as 2𝑅𝑒(𝑊3) and 2𝐼𝑚(𝑊3) , where 𝑅𝑒(𝑊3) and 𝐼𝑚(𝑊3) 
are real and imaginary parts of the vector 𝑊3. 

 
All the modes determined from the uPSP measurements are listed below 
 
Q2𝑅𝑒(𝑊-), 2𝐼𝑚(𝑊-), 2𝑅𝑒(𝑊.), 2𝐼𝑚(𝑊.), …… , 2𝑅𝑒(𝑊$

!/-
),			2𝐼𝑚 R𝑊$

!/-
S ,𝑊$

!
		T                  (20) 
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which correspond to the sinusoidal oscillations at the frequencies  
 

𝑓3 = 𝑗 · 𝑓& 𝑁⁄    j = 1, 2, …, !
.
.       (21) 

 
Note that the vector 𝑊$

!
 is real, which corresponds to the Nyquist frequency 

 
𝑓!"#$%&' =	𝑁 2⁄ · 𝑓& 𝑁⁄ =	𝑓& 2⁄ 	        (22) 

 
A uPSP data set, with 128 frames of uPSP measurements of delta pressure coefficients on 341 grid nodes, is 

selected. The SVD-based DMD algorithm, as described in Eqs. (7)-(10), was applied to the uPSP data set before and 
after the mean is removed for each of the grid nodes. The DMD outputs are shown below, and the comparison between 
the outputs of the DMD and the DFT is provided as well. 

 
Figs. 2(a) and 2(b) show the time series of the uPSP measurement of delta pressure coefficient on a sample grid 

node, before and after the mean is removed, respectively. In Fig. 2(a), the mean (0.00146) of the time series is an order 
of magnitude smaller than the standard deviation (0.011). Therefore, the time series of the delta pressure coefficient 
look almost the same before and after the mean is removed for a grid node. However, as shown below, the DMD 
outputs have different characteristics before and after the means are removed for all the grid nodes. 
 

Figs. 3(a) and 3(b) show the 127 eigenvalues of the DMD dynamics matrix (denoted as blue crosses) in the 
complex plane, determined from the uPSP data set before and after the means are removed, respectively. The red 
circles show the 128th roots of 1 (excluding 1 itself), given in Eq. (16). For the uPSP data set before the means are 
removed, most of the eigenvalues of the DMD dynamics matrix are located close to the unit circle, indicating 
sinusoidal oscillations in the data; however, no obvious features are observed in the distribution of the eigenvalues. 
For the uPSP data set after the means are removed, the eigenvalues are equal to the 128th roots of 1 (excluding 1 
itself), which are uniformly distributed in the unit circle in the complex plane. 
 

Two sets of vectors of dimension 341 are computed for the uPSP data set, before and after the means are removed, 
respectively. The first set includes 127 eigenvectors of the DMD dynamics matrix determined with Eq. (10), and the 
second set includes 127 vectors of the DFT coefficients, determined from the FFT, of the uPSP data for each of the 
grid nodes. Both sets of 127 vectors are sorted in the ascending order of the phase of the corresponding eigenvalues, 
and the ratios of all elements of the corresponding vectors are computed. Note that the ratios are complex numbers 
since the elements of the vectors in both sets are complex. Figs. 4(a) and 4(b) show the real and imaginary parts of the 
ratios determined from the uPSP data set, before and after the means are removed, respectively. For the uPSP data set 
before the means are removed, no obvious features are observed in the ratios. However, when the means are removed, 
the ratios are constant complex numbers for all elements regarding each pair of the corresponding vectors in the two 
sets. In fact, the vectors of the DFT coefficients are also eigenvectors of the DMD dynamics matrix, which define the 
shape of DMD modes. 

 
Figs. 3 and 4 verify the equivalence of the DMD and the DFT for the data with zero mean. Considering the uPSP 

measurements are mainly used to determine the unsteady property of the aerodynamic flow, the DMD of the uPSP 
measurements can be implemented in two steps:  

(1) subtract the mean value from the uPSP measurement on each of the grid nodes;  
(2) apply the FFT on the resulting zero-mean time series.  
 
The DMD of the uPSP measurements with FFT has two advantages:  
(1) The FFT algorithm is well known for its computational efficiency. For the time series of length N, the 

computational complexity of FFT is O(N*logN). Therefore, compared to the SVD-based DMD algorithm, the DMD 
with FFT reduces the computation time. 

(2) Since the data size is big, it is advantageous to process the uPSP data in parallel. Compared to the SVD-based 
DMD algorithm, the DMD with FFT can be easily implemented in parallel processing.  
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V. Results of the SLS ATAT 

 
The code to implement the DMD of the uPSP measurements was written in C, with libraries of FFTW for FFT 

and MPI/OpenMP for parallel processing. The DMD outputs were generated with the execution of the compiled C 
code in parallel on the NASA Pleiades supercomputer. In this section, the results of DMD of the uPSP measurements 
of the SLS ATAT are presented. 

 
The data shown in this section are from two Mach sweep runs of the SLS ATAT. The first Mach sweep run was 

taken on the second day of the ATAT, and Mach number went from 0.70 to 1.00. The second Mach sweep run was 
taken on the third day of the ATAT, and Mach number went from 0.98 to 1.40. The attitude angles of the model were 
set to zeros in both Mach sweep runs. 

 
In order to reduce the effect of the shot noise, a moving box filter with 5-by5-pixels was applied to each frame of 

the videos generated by four Phantom high-speed cameras. The uPSP measurements were then projected to a grid of 
233,651 nodes on the surface of the scale model, and the first 1,024 frames were processed and the DMD outputs were 
generated.  
 

The DMD of the uPSP measurements is effective in the diagnosis of the unsteady, aerodynamic phenomena in 
the SLS AUAT data. As examples, Figs. 5, 6 and 7 show the DMD modes of the vortex shedding at Mach numbers 
0.80, 1.00 and 1.40, respectively. The vortex shedding was generated when the flow passed the connections between 
the core and the Solid Rocket Boosters (SRBs) of the SLS. In the plots (a) and (b) of each figure, the DMD modes 
corresponding to the real and imaginary parts of the vector of DFT coefficients were visualized on the surface of the 
model in 3D respectively. In the plot (c), the phase between the two corresponding DMD modes was shown in a plane 
of x coordinate and azimuth angle. The changes in the shape of the DMD modes can be observed when the test 
configuration went through the subsonic, transonic and supersonic regimes. 

 
 

 
 

VI. Conclusions 
 

This paper discusses the DMD of the uPSP measurements in the SLS ATAT with the UPWT 11-by-11-foot 
Transonic Wind Tunnel in September 2019 at NASA Ames Research Center. Since the uPSP is mainly used to 
determine the unsteady property of the aerodynamic flow, the DMD of the uPSP measurements is implemented with 
FFT, which has two advantages: (1) the FFT algorithm is well known for its computational efficiency, therefore, 
compared to the SVD-based DMD algorithm, the DMD with FFT reduces the computation time; (2) the DMD with 
FFT can be easily implemented in parallel processing. The DMD outputs were generated with the execution in parallel 
of a code in C, with libraries of FFTW for FFT and MPI/OpenMP for parallel processing, on the NASA Pleiades 
supercomputer. In this paper, the results of DMD of the uPSP measurements in the tests of Mach sweep runs of the 
SLS ATAT are presented, and the effectiveness of the DMD of the uPSP measurements in the diagnosis of the 
unsteady, aerodynamic phenomena is demonstrated.   
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Fig. 1  Scale model of the SLS Block 1 cargo vehicle with uPSP in ATAT 
 

 
 
 

 
 
 

Fig. 2  Delta pressure coefficients of a sample grid node determined from the uPSP measurement: 
(a) before the mean is removed;  (b)  after the mean is removed. 
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Fig. 3  Eigenvalues of the DMD dynamics matrix (denoted as blue crosses) from the sample 
data set of 128 frames of uPSP measurements on 341 grid nodes: (a) before the means are 
removed; (b) after the means are removed. The 128th roots of 1 (excluding 1 itself) are denoted 
as red circles. 
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Fig. 4  Ratios of Eigenvectors of the DMD dynamic matrix to vectors of  DFT coefficients from 
the sample data set of 128 frames of uPSP measurements on 341 grid nodes: (a) before the means 
are removed; (b) after the means are removed. In the plots of (a) and (b), the top and bottom 
subplots show the real and imaginary parts of the ratios respectively. 
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Fig. 5  DMD modes of vortex shedding in a test of Mach sweep runs of the SLS AUAT, where  
the Mach number was 0.80. The plots (a) and (b) show the DMD modes on the model, 
corresponding to the real and imaginary parts of the DFT coefficients respectively; the plot (c) 
shows the phase of the two DMD modes in the plane of x coordinate and azimuth angle.  
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Fig. 6  DMD modes of vortex shedding in a test of Mach sweep runs of the SLS AUAT, where  
the Mach number was 1.00. The plots (a) and (b) show the DMD modes on the model, 
corresponding to the real and imaginary parts of the DFT coefficients respectively; the plot (c) 
shows the phase of the two DMD modes in the plane of x coordinate and azimuth angle.  
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Fig. 7  DMD modes of vortex shedding in a test of Mach sweep runs of the SLS AUAT, where  
the Mach number was 1.40. The plots (a) and (b) show the DMD modes on the model, 
corresponding to the real and imaginary parts of the DFT coefficients respectively; the plot (c) 
shows the phase of the two DMD modes in the plane of x coordinate and azimuth angle.  


