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SUSAN Electrofan Concept
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Presentation topic

Subsonic Single Aft Engine 
(SUSAN) Electrofan:

Subsonic regional jet utilizing a 
single aft engine design with 

wing-mounted distributed 
electric propulsion
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• Team exploring a variety of technologies to 
improve performance

• Natural laminar flow (NLF) study objectives:
1. Quantify performance potential 

available from NLF wings
2. Identify multidisciplinary impact of NLF



Natural Laminar Flow Wings

• Laminar flow significantly improves vehicle performance by reducing skin friction and profile drag

• NLF has been limited to aircraft components with low sweep and Reynolds number, primarily due 
to crossflow instabilities

• Applying NLF to transport wings requires crossflow control. Options include:
– Reducing wing sweep
– Adding suction system
– Use Crossflow Attenuated Natural Laminar Flow (CATNLF) airfoils

• CATNLF design method changes the shape of airfoils to obtain pressure distributions that delay 
transition by damping leading-edge crossflow instabilities
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Example Design Target Pressures

52022 AIAA SciTech Forum

Notable differences:

• Leading-edge acceleration
– Laminar uses rapid acceleration for 

crossflow (CF) control

• Rooftop pressure gradient
– Laminar uses mild favorable gradient 

for Tollmien-Schlichting (TS) control
– Turbulent uses mild adverse gradient 

for shock strength reduction

• Shock strength
– Turbulent has weaker shock

Acceleration
CP gradient

Shock strength



Computational Tools

• Design Module: CDISC
Applies knowledge-based design rules to change geometry to match target pressure distributions

• Flow Solver: USM3D
Solves Navier-Stokes equations on unstructured tetrahedral grid

• Boundary Layer Profile Solver: BLSTA3D
Calculates boundary layer velocity and temperature profiles based on chordwise pressure 
distribution assuming conical flow

• Boundary Layer Stability Analysis: LASTRAC
Stability analysis and transition prediction using eN Linear Stability Theory method with 
compressibility effects
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Design Results: Geometry and Airfoils
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Inboard Outboard

Inboard
Outboard

Turbulent Design
Laminar Design

Mach = 0.785,  CL = 0.50,  Altitude = 37,000 ft,  ReMAC = 23.1 x106



Design Results: Laminar Flow Characteristics
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Laminar

Turbulent

Laminar Design supports laminar flow on approximately 53% of the 
surface area on the wing upper surface



Design Results: Performance Improvement
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Configuration CL CD Cm ML/D

Turbulent Design 0.500 0.0216 -0.281 18.17

Laminar Design (Laminar Analysis) 0.500 0.0197 -0.309 19.92

Laminar Design (Turbulent Analysis) 0.500 0.0216 -0.291 18.17

• Laminar Design reduced drag by 19 counts (8.8%) from Turbulent Design

• Total loss of laminar flow on Laminar Design would results in:
– No performance change from Turbulent Design
– Drag increase of 19 counts (8.8%) from Laminar Design



Design Results: Off-Design Characteristics
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Laminar Design shows sustained performance improvement 
across near-cruise off-design range

Drag RisePolar

Turbulent Design
Laminar Design (Laminar Analysis)
Laminar Design (Turbulent Analysis)
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Multidisciplinary Considerations of NLF

• General NLF considerations:

– Surface finish requirements ➔ additional manufacturing and maintenance costs
– Smooth surface requirements ➔ wing upper surface must be free of all steps and gaps

• SUSAN Electrofan considerations:

– Impact of wing-mounted engines on NLF:
• Engines can cause forward shock movement ➔ limit possible NLF extent
• Engines may increase turbulence/noise in boundary layer ➔ reduced NLF extent

– Impact of NLF on wing-mounted engines:
• NLF thins boundary layer ➔ reduced boundary layer ingestion benefit
• Possible boundary layer thickness changes ➔ engine performance with range of thicknesses
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Concluding Remarks

• CATNLF design process applied to the SUSAN Electrofan regional jet configuration

• NLF study objectives:
1. Quantify performance potential available from NLF wings
2. Identify multidisciplinary impact of NLF on SUSAN Electrofan

• Laminar Design supports 53% laminar flow on the wing upper surface providing an 8.8% 
decrease in drag for the wing-fuselage configuration

• Off-design characteristics show robust design with sustained laminar flow benefit

• Next steps:
– Design wing with wing-mounted engines
– Explore NLF on other surfaces such as nacelles, tail, nose, etc.
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