Re-Architecting the NASA Wire Derating Approach

Presented by
Steven L. Rickman
NASA Technical Fellow for Passive Thermal
NASA Engineering and Safety Center (NESC)

Representing the
NESC Assessment Team

Presentation to the Electrical Wiring Science and Technology Meeting
December 2021



Disclaimer

This presentation discusses work in progress.

All results are considered preliminary and subject to change and should not
be used for engineering analysis
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Background

* Design of wiring for aerospace vehicles relies on an understanding of “ampacity,” which
refers to the current carrying capacity of wires, individually or in wire bundles.

* Designers rely on standards to derate allowable current flow to prevent exceedance of
wire temperature limits due to resistive heat dissipation within the wires or wire bundles.
Designers select wire sizing and circuit protective device settings/sizing based on the
standards.

* Exceeding the wire temperature rating can result in electrical, physical, and/or chemical
degradation of the wiring insulation and conductor which could lead to a catastrophic

failure.

 These standards can add considerable margin, in some cases underestimate the margin
and are based on empirical data that is no longer available for review.



Background

Wire and wire bundle testing were performed during a previous NESC-led pathfinder
assessment [Ref. 1] resulting in data to inform thermal models developed as a predictive
tool to aid in ampacity determination. The results were encouraging and suggested, with
further development, models may become sufficiently mature to supplant the long-held
practice of using published wire derating standards. Derating standards use of tables
limits designers’ options and, in some cases, drive conservative designs. Tables are
limited and can not address range of parameters that can impact design.

A follow-on assessment was approved and started in Spring, 2021 and expands upon the
testing and analysis performed during the pathfinder study.




Scope of New Assessment

* Design of experiments (DOE) techniques are used to formulate the test matrix including single
wires, wire bundles, and specialty configurations.

 The test apparatus is modified to improve application of boundary conditions on test articles.

 Wire data are being collected for use in thermal models including: conductor radius, outer jacket
radius, resistance per unit length and a reference temperature, temperature coefficient of
resistance, jacket infrared transmissivity, jacket infrared emissivity.

 Thermal models have been reconfigured to accommodate large quantities of analysis runs.

 Adesign aid tool is being developed to aid the user community in wire bundle sizing.

* Regression equations, based on DOE cases, will be derived from, both, test data and analytical
models for use in the design aid tool.

« The model will be validated using wire sizes 26 to 4 using modern wire constructions with bundles
as large as 149 wires and under sea level to vacuum conditions over the operating range of the
wiring.



Overall Study Architecture
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Test Apparatus
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Test Apparatus

Shroud with Lid (Old Design)

Old Routing New Routing

Temperature Controlled Shroud with Wire Bundle Test Article
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Test Apparatus
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Thermal Modeling — Single Wire Model

The single wire model is composed of a system of equations:

I?R,o[1 + a(T, — Ty)] = 2nr,fh(Ty — T,) + 2nr,oe(TE — T}) + 2nr.ot(TE — TH)

27Tkw (Tc _ Ts)

I2R,o[1 + a(T. = Ty)] = + 2nr,ot(TE =T,

where...

R LO
To
a
Tc
Ts
Kw
I

&

In(rs /1)
Resistance/length at a reference temperature t Jacket infrared transmissivity
Reference temperature h Convective heat transfer coefficient
Temperature coefficient of resistance In Convection coefficient scaling
Conductor radius T. Conductor temperature
Jacket radius T, Jacket surface temperature
Jacket effective thermal conductivity T, Environment temperature
Current flow o Stefan-Boltzmann constant

Jacket infrared emissivity
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Thermal Modeling — Single Wire Model
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Reference temperature

Temperature coefficient of resistance
Conductor radius

Jacket radius

Jacket effective thermal conductivity

Current flow

Jacket infrared emissivity (1 — @ — p)

Jacket infrared transmissivity

Jacket infrared reflectance (not used directly in model)
Convective heat transfer coefficient
Convection coefficient scaling

Conductor temperature

Jacket surface temperature

Environment temperature

Stefan-Boltzmann constant

Key
Measured Parameter

Test Parameter
Constant Parameter
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Thermal Modeling — (Uncorrelated) Single Wire Regression Model
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Thermal Modeling — Wire Bundle Models
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Thermal Modeling — Wire Bundle Models
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Test Design

Design of Experiments (DOE) techniques used to formulate test single wire
and wire bundle test matrices.

Test Article WPB AWG (Insul_Wt| Insul_Type |Conductor| Plating |Pressure_atm Shroud Temp Status

1 20 LW ETFE CuHS Ag Completed

1 20 LW ETFE CuHS Ag Completed

1 20 LW ETFE CuHSs Ag 1 20 Completed

2 20 LW ETFE CuHSs Ag 20 Completed

2 20 LW ETFE CuHS Ag 1 Complete

2 20 LW ETFE CuHS Ag il Complete
LW ETFE Cu Ni f New
Lw ETFE Cu Ni 1 20 New
NW TKT CuHS Ag 0.5 New
NW TKT CuHSs Ag 1 MNew
NW TKT CuHSs Ag 20 MNew
NW ETFE Cu Ag 1 MNew
NW ETFE Cu Ag MNew
NW ETFE Cu AE 0.5 MNew
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Obtaining Key Test Data

* Wire resistance per unit length as a
function of temperature is determined
using an oil bath technique.

* Data collected are used to determine
the temperature coefficient of
resistance.

- J ‘

Polyscience Temperature Bath
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Obtaining Key Test Data
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Obtaining Key Test Data

Infrared reflectance
measurements using the AZ
Technology Laboratory
Portable Spectroreflectometer
(LPIR), with both gold and
blackbody backgrounds and
calculating the transmission
per NASA/TP-2019-220552.
Will develop IR transmissivity
as a function of temperature
for use in single wire model.

LPIR with blackbody over sample
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Obtaining Key Test Data
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Design Aid Tool
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Current Status

* Vacuum chamber fabricated.

* Chamber shroud modifications completed.

e Test matrices defined using Design of Experiments (DOE)

* Wire materials ordered and some have arrived.

* Test article fabrication underway.

* Wire property data collection in progress.

* Analytical models updated and pre-test analysis is completed.

* Analysis case DOE developed and cases run — used for initial regression
models.

* Design Aid Tool requirements are complete and initial coding is underway.
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Forward Work

 Complete wire property measurements

e Set up test chamber

* Conduct single wire and wire bundle testing

* Correlate thermal models to test data

 Run DOE model cases using correlated model and generate regressions
 Complete Design Aid Tool
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