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Key Points:  25 

Main Point 1: With Cassini multi-instrument observations (CIRS, ISS, and VMIS), we provide 26 

measurements of the seasonal variations of Titan's Bond albedo. 27 

 28 

Main Point 2: Our measurements suggest a net energy excess (2.90.8% of the emitted energy) 29 

over the Cassini era (2004-2017) on Titan. 30 

 31 

Main Point 3: The energy imbalance changes from an energy excess (10.70.7%) in 2004-05 to 32 

an energy deficit (−3.40.6%) in 2017. 33 

 34 

 35 

Abstract  36 

Radiant energies of planets and moons are of wide interest in the fields of geoscience 37 

and planetary science. Based on long-term multi-instrument observations from the Cassini 38 

spacecraft, we provide here the first observational study of Titan’s global radiant energy 39 

budget and its seasonal variations. Our results show that Titan’s radiant energy budget is 40 

not balanced over the Cassini era (2004-2017) with the absorbed solar energy 41 

(1.2080.008)1023 J larger than the emitted thermal energy (1.1740.005)1023 J. The 42 

energy imbalance is 2.90.8% of the emitted thermal energy. Titan’s global radiant energy 43 

budget is not balanced either at the time scales of Earth’s years and Titan’s seasons. In 44 

particular, the energy imbalance can be beyond 10% of the emitted thermal energy at the 45 

time scale of an Earth year. The energy imbalance revealed in this study has important 46 

impacts on Titan, which should be examined further by theories and models.  47 
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 48 

Plain Language Summary  49 

The radiant energy budget is a fundamental metric for planets and moons. Using the 50 

observations from the Cassini spacecraft, we first look at Titan’s global radiant energy budget and 51 

its seasonal variations. Our study suggests Titan’s global radiant energy budget is not balanced at 52 

the time scales of Earth years and Titan’s seasons. The energy imbalance can help us better 53 

understand the characteristics of Titan (e.g., seasonal variations). Titan’s energy imbalance also 54 

suggests that it is possible that there are more terrestrial planets and moons having unbalanced 55 

radiation budgets. Finally, Titan’s time-varying radiant energies imply that the internal heat of the 56 

giant planets needs to be re-examined by considering the temporal variations of radiant energies.  57 

1. Introduction  58 

The radiant energy budget of a planet or a moon, which is determined by the absorbed solar 59 

energy and the emitted thermal energy (Conrath et al., 1989), plays a critical role in determining 60 

thermal characteristics of the astronomical body. Such a radiant energy budget can help us 61 

understand the geology of terrestrial planets (e.g., polar ices of Mars) (McCleese et al., 2007), 62 

internal heat related to the formation and evolution of giant planets (e.g., Smoluchowski, 1967; 63 

Hubbard, 1980), and sub-surface intrinsic heat driving the jet plumes on some moons (e.g., Howett 64 

et al., 2011; Spencer and Nimmo, 2013). For terrestrial bodies with atmospheres, the radiant energy 65 

budget at the top of atmosphere also sets critical boundary conditions for the atmospheric systems 66 

(Peixoto and Oort, 1992). The transfer and distribution of radiant energies (i.e., the absorbed solar 67 

energy and the emitted thermal energy) within the atmospheric systems modify the thermal 68 

structure to generate available potential energy. The available potential energy can be converted 69 
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into kinetic energy to drive atmospheric circulation and the related weather and climate (e.g., 70 

Lorenz, 1955; Schubert and Mitchell, 2013; Read et al., 2016).  71 

Currently, Earth and Titan are the only two astronomical bodies with significant 72 

atmospheres and surface seas in our solar system. For our home planet, some recent studies 73 

(Hensene et al., 2005; Trenberth et al., 2016) revealed a small energy imbalance: the absorbed 74 

solar energy exceeds the emitted thermal energy by a magnitude of 0.2-0.4% of the emitted energy. 75 

These studies further suggest that the small energy imbalance is related to global warming and 76 

climate change on Earth. Compared with numerous studies of the radiant energy budget on our 77 

home planet, observational studies of Titan’s global radiation budget are relatively lacking. Titan 78 

is similar to Earth in many ways (e.g., surface pressure, liquid lakes/oceans on the surface, and 79 

greenhouse atmosphere). On the other hand, the orbit around the Sun is much more elliptical for 80 

Titan (eccentricity ~0.057) than for Earth (eccentricity ~ 0.017). Titan’s large eccentricity means 81 

that the solar flux at Titan varies beyond 20% on its orbital path. Therefore, Titan probably has a 82 

much more dynamical radiant energy budget than that of Earth. Here, we want to examine the 83 

temporal variations of Titan’s radiant energy budget to see if there is any energy imbalance.   84 

The Cassini spacecraft (Jaffe and Herrell, 1997) was an international orbiter that explored 85 

the Saturn system including Titan from 2004 to 2017. The Cassini multi-instrument observations 86 

have made it possible to precisely examine the global radiant energy budget of Titan for the first 87 

time. In this study, we use observations from the Imaging Science Sub-system (ISS) (Porco et al., 88 

2004) and the Visual and Infrared Mapping Spectrometer (VIMS) (Brown et al., 2004) to examine 89 

Titan’s Bond albedo, which is defined as defined as the ratio between the reflected (or scattered) 90 

solar radiation and the incident solar radiation. At each wavelength, we further define such a ratio 91 

as monochromatic Bond albedo (Li et al., 2018). The Cassini ISS observations were used to 92 
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examine different behaviors of Titan’s reflected solar irradiance between low and high phase 93 

angles (Garcia Munoz et al., 2018), but Titan’s Bond albedo and its temporal variations in the 94 

Cassini epoch have not been examined yet. The Cassini ISS and VIMS observations have many 95 

advantages over previous observations (e.g., better spatial resolution, better coverage of phase 96 

angle, and better coverage of wavelength) (Li et al., 2010, 2011, 2018; Creecy et al., 2019), so we 97 

expect to get the best measurements of Titan’s Bond albedo and hence the absorbed solar power. 98 

Combined with our measurements of Titan’s emitted thermal power (Creecy et al., 2019), we can 99 

determine Titan’s global radiant energy budget. Furthermore, long-term Cassini observations 100 

(2004-2017) provide a great opportunity to take a first look at the seasonal variations of Titan’s 101 

radiant energy budget. 102 

The methodology of computing Titan’s Bond albedo and hence the absorbed solar power 103 

is briefly introduced in the section of Materials and Methods. The Cassini observations and the 104 

other data sets used in this study are introduced and summarized in Supporting Information Table 105 

S1 and Figs. S1-S7. Titan’s troposphere and stratosphere, which play dominant roles in absorbing 106 

the solar irradiance, extend to a few hundred kilometers. Therefore, Titan’s optical radius in which 107 

the solar irradiance is effectively absorbed and reflected (i.e., effective radius) is substantially 108 

larger than its solid radius (~ 2575 km) (Zebker et al., 2009). The effective radius, which varies 109 

with wavelength, is discussed in detail in the Supporting Information (Figs. S8-S15). We basically 110 

follow a method from a previous study (Smith, 1980), in which the maximal radiance contrast is 111 

used to determine the edge of the effective radius. We first validate the method using Cassini 112 

observations of Enceladus (Fig. S8). Then we apply the method to measure Titan’s effective radius 113 

as a function of wavelength (Figs. S9-S12), which are consistent with previous observational and 114 

theoretical studies (Figs. S13-S15).  115 
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We then calculate Titan’s full-disk albedo by integrating the ISS and VIMS calibrated 116 

radiance over the disks with the effective radii, which is also discussed in Supporting Information 117 

(Figs. S16-S31). The comparison of Titan’s full-disk albedo between the ISS and VIMS analyses 118 

(Fig. S16) suggests that the two instruments provide consistent results. We also conduct the 119 

comparisons of Titan’s full-disk albedo between the Cassini analyses and previous analyses based 120 

on other observations (Figs. S17-S19), which also validate the Cassini analyses.  After validating 121 

the computation of full-disk albedo, we organize the Cassini data in the two-dimensional domain 122 

of time and phase angle (Fig. S20). There are observational gaps in phase angle and wavelength 123 

in the Cassini ISS and VIMS observations, and we use least-squares fitting (Belington and 124 

Robinson, 2003; Li et al., 2018) to fill in the observational gaps (Figs. S21-S29). Then, we obtain 125 

Titan’s full-disk albedo in the two-dimensional domain with complete coverage of phase angle 126 

and wavelength for each year from 2004-05 to 2017 (Fig. S30). Finally, we have the 127 

monochromatic geometric albedo, the monochromatic phase integral, and the monochromatic 128 

Bond albedo at each wavelength for the Cassini epoch (Fig. S31). Based on the distribution of the 129 

monochromatic Bond albedo (Fig. S31), we can compute Titan’s Bond albedo by weighting the 130 

monochromatic Bond albedo with the solar spectral irradiance.  131 

The uncertainties in the measurements of Titan’s Bond albedo and hence the absorbed solar 132 

power mainly come from the calibration errors of the Cassini ISS and VIMS data, the uncertainties 133 

related to filling the observational gaps, and the uncertainties in determining Titan’s effective radii 134 

at different wavelengths. We discuss these uncertainties in Supporting Information (Figs. S32-135 

S47). We also discuss the uncertainties of Titan’s emitted power (the other component of Titan’s 136 

radiant energy budget), even though such uncertainties were already investigated in our previous 137 

studies of Titan’s emitted power (Li et al., 2011; Creecy et al., 2019). It should be mentioned that 138 
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we have consider all possible uncertainty sources to the best of our ability but it is still possible 139 

that there are more uncertainty sources. 140 

 141 

Results 142 

Figure 1 shows Titan’s Bond albedo during the Cassini epoch. Titan’s Bond albedo 143 

continuously decreased from 0.2640.003 in 2004-05 to 0.2520.002 in 2010 by a percentage 144 

change of 4.61.4%. After that, it increased from 0.2520.002 in 2010 to 0.2650.003 in 2017 by 145 

5.21.4%. The non-monotonic variation of Bond albedo is probably related to the 15-year 146 

oscillations of Titan’s full-disk albedo examined in limited wavelengths (e.g., Younkin, 1974; Neff 147 

et al., 1985). Furthermore, the non-monotonic variation makes Titan’s Bond albedo slightly 148 

increase by 0.41.6% during the Cassini epoch.   149 

Titan’s Bond albedo was measured in previous studies (Younkin, 1974; Neff et al., 1985), 150 

but these studies were based on observations with very limited coverage of wavelength and phase 151 

angle. The Cassini observations are much better than these previous observations, so the analysis 152 

based on the Cassini observations provides improved measurements of Titan’s Bond albedo. The 153 

temporal variations of Titan’s monochromic Bond albedos at some wavelengths were explored in 154 

previous studies (Sromovsky et al., 1981; Lockwood and Thompson, 2009), but the investigations 155 

of the temporal variations of Titan’s Bond albedo had not been done before. The Cassini long-term 156 

observations provide the first examination of the seasonal variations of Titan’s Bond albedo and 157 

hence the radiant energy budget.  158 

Combining Titan’s measured Bond albedo and the known solar power at Titan, we can 159 

compute the total reflected solar power and the total absorbed solar power, which are shown in 160 

Fig. 2. The total solar power at Titan continuously decreased ~ 18.6% from 4.3071014 W in 2004-161 
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05 to 3.5081014 W in 2017, which is much stronger than the temporal variations of Bond albedo 162 

shown in Fig. 1. The temporal variations of the total reflected solar power (panel B) and the total 163 

absorbed solar power (panel C) basically follow similar variations of the total solar power (panel 164 

A). The total reflected solar power continuously decreased by 18.11.4% from 165 

(1.1360.013)1014 W in 2004-05 to (0.9300.010)1014 W in 2017. Correspondingly, the total 166 

absorbed solar power decreased by 18.7+0.5% from (3.1700.013)1014 W in 2004-05 to 167 

(2.5770.010)1014 W in 2017.  168 

Figure 3 shows the comparison between the absorbed power from this study and the 169 

emitted power measured in our previous study (Creecy et al., 2019). The decrease in the absorbed 170 

power (18.7+0.5%) is much stronger than the decrease of emitted power (6.80.4%) for the Cassini 171 

epoch. The ratio between the net radiant energy (i.e., the absorbed power – the emitted power) and 172 

the emitted power changed from 10.70.7% in 2004-05 to −3.40.6% in 2017. Therefore, Titan’s 173 

radiant energy budget is significantly dynamic. There is an energy excess (i.e., the absorbed solar 174 

energy > the emitted thermal energy) at some seasons and an energy deficit (i.e., the absorbed solar 175 

power < the emitted thermal power) at other seasons.  At the time scale of an Earth year, the radiant 176 

energy imbalance can be more than 10% sometimes (e.g., 2005). Titan’s significant energy deficit 177 

and excess at the relatively short time scales (e.g., an Earth year and a season) are caused by its 178 

large orbit eccentricity (~ 0.057), and hence largely varying distance between Titan and the Sun. 179 

With the varying distance, the solar flux changes quickly  (solar flux is proportional to 1/r2, where 180 

r is the distance between Titan and the Sun). The combination of the dramatic change of solar flux 181 

and the relatively weak variation of Bond albedo (Fig. 2) means that the absorbed solar power 182 

varies strongly. On the other hand, the temporal variation of the emitted power is relatively weak 183 

because of the large thermal inertial and long radiative time constant of the atmospheric layers 184 
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mainly contributing to Titan’s emitted power (Li et al., 2011; Creecy et al., 2019). The change of 185 

emitted power cannot match the change in the absorbed solar power at the time scales of Earth 186 

years and Titan’s seasons. Therefore, the energy deficit and excess occur in these time scales.  187 

We also integrate the absorbed solar power and the emitted thermal power over the time 188 

period of 2004-2017 to get the total absorbed solar energy and the total emitted thermal energy 189 

during the Cassini epoch. The total absorbed solar energy (1.2080.008)1023 J is larger than the 190 

total emitted thermal energy (1.1740.005)1023 J, which suggests that they are not balanced even 191 

for the Cassini epoch. The difference between the two energies ((0.0340.009)1023 J) is 2.90.8% 192 

of the total emitted thermal energy.  193 

The Cassini observational time (~ 14 years) is about one half of Titan’s year (~ 29.424 194 

years). To gain further insight of the annual radiant energy budget of Titan, we extrapolate the 195 

Cassini results to a complete Titan year by fitting the observed absorbed and emitted powers with 196 

an assumption that the seasonal cycles of the absorbed and emitted powers follow sine functions 197 

(Fig. S48 in Supporting Information). Such fitting suggests an even larger energy imbalance 198 

(5.02.1% of the total emitted thermal energy) between the total absorbed solar energy and the 199 

total emitted thermal energy over a complete Titan year. However, the extrapolated result should 200 

be used with caution. First, it is likely that Titan’s radiant energies (especially the emitted thermal 201 

energy) do not follow simple sinusoidal functions. Second, the Cassini observations show that 202 

Titan’s emitted power has significant fluctuation with time (Fig. 3) and we cannot rule out that 203 

such fluctuation is even stronger at the times outside the Cassini epoch.  204 

 205 

Discussion  206 
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Whether or not Titan’s radiant energy budget is balanced in a Titan year or longer times, 207 

the Cassini observations suggest that Titan’s radiant energy budget is not balanced at the time 208 

scales of Earth years and Titan’s seasons. In particular, the energy imbalance can be beyond 10% 209 

at the time scale of Earth years (Fig. 3). Such a large energy imbalance will significantly affect 210 

Titan’s atmospheric circulation and weather. To better characterize the effects of the energy 211 

imbalance on Titan’s atmosphere and surface, we need further information (e.g., the vertical and 212 

meridional distributions of the energy imbalance inside atmosphere and possible energy imbalance 213 

at the surface). Considering that the stratospheric hazes play important roles in Titan’s radiant 214 

energy budget (e.g., Read et al., 2016) and the stratosphere has a relatively short radiative time 215 

constant (Flasar et al., 1981; Bezard et al., 2018), the energy imbalance would trigger some quick 216 

responses (e.g., warming) of Titan’s stratosphere if the revealed energy imbalance mainly happens 217 

in the stratosphere. The radiative time constants can be longer than a Titan year for Titan’s lower 218 

troposphere (Bezard et al., 2018), so the response will take longer time if the energy imbalance 219 

mainly happens in the troposphere. It is also possible that the energy imbalance can reach the 220 

surface and affect its thermal characteristics.  221 

The responses of Titan’s atmosphere and surface to the energy imbalance can help warm 222 

up Titan’s atmosphere (or surface) and hence increase Titan’s emitted power, which can 223 

potentially serve as a restoring force to help equilibrate the radiant energy budget after the Cassini 224 

epoch. It is hard to estimate Titan’s response time due to lacking information on the vertical 225 

distribution of energy imbalance. In addition, we do not know if the responses are strong enough 226 

to compensate the energy imbalance during the Cassini epoch to equilibrate Titan’s radiant energy 227 

budget. We cannot rule out the possibility that Titan’s energy imbalance exists at time scales of a 228 

Titan year and even longer. If Titan has an energy imbalance at long time scales, such an energy 229 
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imbalance can contribute to climate change, similar to what happens on Earth. On Earth, oceans 230 

are the main reservoir for the radiant energy imbalance (Hansen et al., 2005; Levitus et al., 2000). 231 

On Titan, the hazes in the atmosphere are significant absorbers of solar irradiance (Read et al., 232 

2016). These hazes along with Titan’s surface that has lakes/oceans both can possibly serve as the 233 

reservoir for the radiant energy imbalance.  234 

If the energy imbalance at the time scales of a Titan year and longer really exists on Titan, 235 

a question should be asked: what is the cause of such an imbalance? Compared to the seasonal 236 

variations of solar flux at Titan (Fig. 2), the temporal variations of Titan’s Bond albedo are small 237 

(Fig. 1), so the absorbed solar power basically follows the seasonal variations of solar flux (Fig. 238 

2). The comparison of Titan’s full-disk Bond albedo between the Cassini observations and the 239 

observations before the Cassini epoch (Younkin, 1974; Neff et al., 1985) suggests that Titan’s 240 

Bond albedo is relatively stable with time even though cloud bands can modify Titan’s regional 241 

albedo (see Fig. S, so we expect that the temporal variations of Titan’s absorbed solar power will 242 

basically follow the seasonal cycle of solar flux even at time scales longer than one Titan year. In 243 

other words, Titan’s absorbed solar power has stable periodic variations. So the energy imbalance 244 

revealed in the Cassini epoch and the possible long-term energy imbalance most likely come from 245 

the behaviors of emitted power. The hazes and greenhouse gases play important roles in modifying 246 

the thermal structure of Titan’s atmosphere and surface by anti-greenhouse and greenhouse effects 247 

(McKay et al, 1991), respectively. The hazes and the greenhouse gases vary at Titan’s seasons 248 

(Aharonson et al., 2009; West et al., 2018) and longer time scales (Lorenz et al., 1997), in which 249 

the temporal variations of haze distribution and methane abundance are driven by not only the 250 

eccentricity of Titan’s orbit around the Sun but also the long-term interaction between Titan’s 251 

atmosphere and surface. Some of the strong temporal variations can potentially modify Titan’s 252 
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thermal structure and hence the emitted power to a certain extent and dis-equilibrate Titan’s radiant 253 

energy budget. It should be mentioned that it is still possible there are other unidentified factors, 254 

which can trigger and/or maintain the possible long-term energy imbalance on Titan.  255 

The energy imbalance revealed in this study can help us better understand the roles of 256 

Titan’s radiant energy budget in the system of Titan. Due to lacking observation, an assumption 257 

of a balanced radiant energy budget is used in the current theories and models (e.g., Schubert and 258 

Mitchell, 2013; Read et al., 2016; Goody, 2007). It will be useful for theories and models of Titan’s 259 

atmosphere and climate (e.g., Newman et al., 2011; Lebonnois et al., 2012; Lora et al., 2015) to 260 

examine the impacts of the revealed energy imbalance at the time scales of Earth years and Titan’s 261 

seasons on Titan’s seasonal variations and the related processes. The analysis of Titan’s radiant 262 

energy budget also suggests that it is possible that there are more terrestrial planets and moons 263 

having unbalanced radiant energy budgets at different time scales. There are relatively few 264 

observations and studies for the radiant energy budgets of the planets and moons other than Earth 265 

and Titan. The global radiant energy budgets of Mars and Venus are assumed to be balanced in 266 

current theories and models (e.g., Schubert and Mitchell, 2013; Read et al., 2016; Goody, 2007), 267 

but our Titan results show it is important to examine this assumption. Considering the importance 268 

of the radiant energy budget and the critical roles of the possible energy imbalance in climate 269 

change, we propose more missions and observations to measure the radiant energy budgets of 270 

terrestrial planets and moons.  271 

Finally, the temporal variations of Titan’s radiant energy budget illustrate that the radiant 272 

energy budget is a dynamic process. Most of the previous measurements of the radiant energy 273 

budgets of planets and moons are based on snapshot observations, and the temporal variations of 274 

the radiant energies were not adequately addressed. Our analyses suggest that the temporal 275 
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variations of radiated energies must be considered when examining the radiant energy budget 276 

especially for the planets and moons with relatively large eccentricities. The radiant energy budget 277 

has also been used to estimate the internal heat on the giant planets (Conrath et al., 1989), but the 278 

temporal variations of radiant energies have not been considered yet for the estimates of the 279 

internal heat. That means the internal heat of the giant planets needs to be critically examined by 280 

considering the temporal variations of the radiant energies.  281 

 282 
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Figure Captions 515 

 516 

 517 

Figure 1. Titan’s Bond albedo from 2004-05 to 2017. Vertical lines represent measurement 518 

uncertainties. There are only three months (October-December) of high-quality observations in 519 

2004, so the 2004 observations are combined with the 2005 observations.  520 

 521 

 522 

Figure 2. Titan’s total solar power, reflected power, and absorbed solar power from 2004-05 to 523 

2017. (A) Total solar power over Titan. (B) Total solar power reflected by Titan. (C) Total 524 

absorbed power absorbed by Titan. Vertical lines in the three panels represent measurement 525 

uncertainties. 526 

 527 

 528 
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Figure 3. Comparison between Titan’s absorbed solar power and emitted thermal power during 529 

the Cassini epoch. (A) Comparison between the absorbed solar power (red line) and the emitted 530 

thermal power (blue line). The measurements of Titan’s emitted power are from our previous study 531 

(20). (B) The ratio between the net radiant energy (i.e., absorbed power – emitted power) and the 532 

emitted power. The horizontal dashed line is the reference line with the ratios equating zero. The 533 

vertical lines in the two panels represent measurement uncertainties.  534 
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