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The non-ordinary state-based peridynamics theory combines non-local dynamic techniques
with a desirable correspondence material principle, allowing for the use of continuummechan-
ics constitutive models. Such an approach presents a unique capability for solving problems
involving discontinuities (e.g., strain localization, fracture, and fragmentation). However, the
correspondence-based peridynamicsmodels often suffer from zero-energymode instabilities in
numerical implementation, primarily due to the approximations of the non-local deformation
gradient tensor. This paper focuses on a computational scheme for eliminating the zero-energy
mode oscillations using a choice of influence functions that improve the truncation error in a
higher-order Taylor series expansion of the deformation gradient. The novelty here is a tensor-
based derivation of the linear constraint equations, which can be used to systematically identify
the particle interaction weight functions for various user-specified horizon radii. In this paper,
the proposed higher-order stabilization scheme is demonstrated for multi-dimensional exam-
ples involving polycrystalline and composite microstructures, along with comparisons against
conventional finite element methods. The proposed stabilization scheme is shown to be highly
effective in suppressing the spurious zero-energy mode oscillations in all numerical examples
while enabling efficient simulations of strain localizations across material interfaces.
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Nomenclature

Xx = reference bond vector
Xy = deformed bond vector
X = horizon size
X8 9 = Kronecker delta
ΔG = minimal grid size
ΔC = incremental time step
# = number of material particles within self-centered horizon,Hx
ℎ = particle spacing for an uniform discretization
l = weighting coefficients of neighboring particles in self-centered horizon,Hx
g = shear stress
/ = bond vector
u = displacement vector
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f = force vector
K = symmetric positive-definite shape tensor
F = deformation gradient tensor
T = force vector state
L = total force per unit reference volume due to interaction of neighboring material particles
b = body force density
P = first Piola-Kirchoff stress tensor

I. Introduction

Modeling mechanical performance of metallic alloys for aerospace applications remains an ongoing area of research
in the material science community [1]. One of the popular numerical techniques for modeling polycrystalline

aggregates is the crystal plasticity finite element (CPFE) technique [2, 3], which describes dislocation motions and their
interactions using continuum mechanics principles. Finite element (FE) modeling of polycrystalline materials using
crystal plasticity (CP) theory [4–7] has allowed for a greater understanding of mechanical behavior (e.g., stress and
strain response), texture evolution, and crystallographic slip response. Such a capability has led to the development
of high-strength aluminum alloys [8, 9], soft magnetic materials with low hysteresis [10], and multi-functional alloys
with high-field induced strains [11–13]. Nonetheless, the standard FE models often run into difficulties when modeling
the local mechanical response of materials in the presence of discontinuities (e.g., voids, cracks, and soft precipitates).
Additionally, the magnitude of mechanical quantities computed by the standard finite element method (FEM) is
highly dependant on the elemental size [1, 14], necessitating costly iterative mesh refinement procedures along with
considerable experimental efforts for numerical calibration [15, 16]. Improvements have been continuously proposed
for CPFE models to address the issue of mesh dependency. The extended-FEM (X-FEM) and variational multiscale
method (VMM) enriches the computational space by introducing a sharp, discontinuous interpolating function to trigger
strain localizations at the crack tip [17, 18]. Nevertheless, these techniques are not capable of predicting small-scale
localizations naturally as a consequence of the underlying principles. Hence, imperfections are often imposed to
trigger the strain localizations [19]. Alternatively, the mesh-free state-based peridynamics (PD) technique [20–23],
which replaces the traditional differential equations with an integral form of the non-local continuum mechanics theory,
has attracted significant attention for predicting damage nucleation and propagation with an intrinsic characteristic
length-scale [19, 24–26].

In the initial version of the bond-based PD technique [20], forces in-between material particles were assumed to be
pairwise, i.e., equal and direction-reversed. A more comprehensive state-based PD scheme was subsequently proposed
in which force states are defined by the interactions between the material particles [27]. Hence, the non-locality is
conveniently introduced without the need to alter the underlying constitutive principles [22]. This paper employs a
non-ordinary state-based version of the PD theory to model microstructural domains consisting of material particles
(i.e., pixels in 1D/2D and voxels in 3D) with a uniform discretization interacting across a finite horizon radius. The
non-locality is introduced at the level of the governing equilibrium equations via the method of PD [21, 27]. The
interacting forces in-between the material particles are computed from the stress tensors obtained by the crystal plasticity
constitutive model. This approach has been proven to be efficient in modeling discontinuities when compared to the
conventional continuum mechanics models [22, 23, 28].

Despite all, a particular drawback of the non-ordinary state-based PD using correspondence material models is the
presence of zero-energy (also known as hourglass) instability modes due to the weak coupling of material point particles
[29–31]. Such instability modes often worsen with enlarged horizon interactions and regions with high strain gradients.
Recently, different frameworks have been proposed tomitigate the spurious instability oscillations by introducing fictitious
bonds in-between material particles [32, 33]. These bond-based stabilization techniques are highly susceptible to particle
spacing and require additional parameters that need to be calibrated on a case-by-case basis through repetitive numerical
simulations [34]. Alternatively, in Luo et al. [35], each finite horizon within a nearest-neighbor PD family is assigned with
a stress point (i.e., integration point) at which derivatives of field variables are computed in order to enhance the particle
connectivity. Such an approach is further enhanced in Cui et al. [36] by introducing a higher-order peridynamic deriva-
tives, incorporating horizon sizes beyond nearest-neighbor interactions. Subsequent improvements are also introduced
based on higher-order operators to solve the non-local PD equations up to an arbitrary degree of accuracy [37–39]. These
techniques often require extensive computational efforts, reducing the general applicability of the stabilization procedures.
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Fig. 1 Experimental instrumentations such as scanning electron microscopy with the combination of digital image
correlation (SEM-DIC) have shown microscale strain localizations on the surface of polycrystalline aggregates can act
as precursors for damage nucleation and degradation in material strength. Unlike conventional CPFE models, CPPD
models are shown to be capable of predicting such localizations naturally as a consequence of the underlying physics
[19].

In microstructural simulations, uniform pixel or voxel-based structured discretizations are conveniently obtained from
microscopy, and numerical acquisition techniques [3, 40]. As a result, this paper primarily focuses on developing particle
interaction weight functions for uniformly structured grids based on a basic non-ordinary state-based PD implementation
via Newmark’s dynamic method with artificial damping [41]. Here, a tensor formulation of the constraint equations
on discrete influence weight functions for both 1D and higher-dimensional problems is presented based on Taylor
series expansion of the deformation gradient [42]. Four numerical examples are subsequently studied to demonstrate
the applicability of the proposed higher-order weight functions for mitigation of the zero-energy mode oscillations.
Elasticity problems are tested first in order to understand the numerical behavior of the algorithm comprehensively. The
PD solver is compared against the CPFE methods for predicting the stress and strain localization, texture development,
and homogenized stress-strain response. It is demonstrated that the proposed high-order formulation is effective in
suppressing the zero-energy mode oscillations in materials with long-range particle interactions, consisting of both
polycrystalline and composite microstructures.

The paper is organized as follows. A review of the non-ordinary state-based PD is first outlined in Section II.A. In
Section II.B, a brief explanation on the origin of zero-energy modes follows. The higher-order approximation theory of
deformation gradient is then proposed in Section II.C. Numerical examples are shown and discussed in Section III. In
the 1D example, the higher-order approximation results for a number of long-range interactions are compared against the
analytical solutions, and PD methods without any stabilization control [43]. Effects of zero-energy mode oscillations
on 2D polycrystalline microstructures involving texture evolution are then introduced in Section III.B. Thereafter, the
PD numerical results are examined against conventional CPFE techniques in modeling fine length-scale shear bands
across polycrystalline aggregates. This is followed by Sections III.C-III.D that respectively demonstrate 3D examples
of composite and polycrystalline microstructures subjected to Dirichlet boundary conditions. Here, the proposed PD
technique is shown to be superior to CPFE models in simulating the sharp small-scale strain localization across the
microstructural interface.

II. Methodology
In this section, the non-local state-based PD theory is briefly reviewed. Thereafter, the discretization process along

with an overview of the numerical algorithm is outlined. Next, the zero-energy mode oscillation and its relationship
with the material point interactions are discussed. In Section II.C, a novel solution for suppressing the zero-energy
instability noise for 1D, 2D, and 3D problems using higher-order approximations of deformation gradients is introduced.
Next, in Section II.D, a boundary treatment based on constant deformation gradient is introduced that encompasses
large horizon interactions.
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A. Non-Ordinary State-Based Peridynamics
The non-ordinary state-based PD theory forms the foundation of the present work. This model was first proposed by

Siling et al. [27] and consists of a non-local integral reformulation of the classical continuum mechanical theory. Unlike
previous bond-based PD models [20, 44] that are restricted to a specific Poisson’s ratio, the current state-based PD
theory can be generalized to include various classical constitutive material models, enabling the integration with crystal
elastoplasticity [19].

Consider a material point in the reference configuration at position x, which can only interact with its neighboring
points in a self-centered horizonHx, within a finite radius X. Given the displacement field u of the material point at x, the
deformed location of corresponding material point in the current configuration is represented as y = x + u. Here, as de-
picted in Fig. 2, the reference configuration of the body is denoted asB0 at time C = 0 and the deformed configuration asB1.

Let x′ denote the position of a particular material point belonging toHx, and / = x′ − x denote a bond between the
respective material particle at x′ and the center particle at x. The deformation vector state, indicated as Y[x, C]〈x′ − x〉,
maps the bond / in the reference configuration to its deformed counterpart, i.e., Y[x, C]〈x′ − x〉 = y′ − y. Hence, the
corresponding deformation gradient tensor F(x, C), can be defined in terms of Y[x, C]〈x′ − x〉, as follows:

F(x, C) =
( ∫
Hx

l(Y[x, C]〈x′ − x〉 ⊗ /)3+x′

)
K−1 (x) (1)

where l is a weight function, quantifying the impact of neighboring particles on the center particle at x. Here, the
weight function, l, can be selected as a radially-symmetric parameter based on the initial bond length, i.e., l = l( |/ |).
Also, K(x) is a symmetric, positive-definite shape tensor, defined as:

K(x) =
∫
Hx

l(/ ⊗ /)3+x′ (2)

Hence, the governing equations of state-based PD at time C can be formulated as follows:

d ¥u(x, C) = L(x, C) + b(x, C)

L(x, C) =
∫
Hx

(T[x, C]〈x′ − x〉 − T[x′, C]〈x − x′〉)3+x′ (3)

where T[x, C]〈x′ − x〉 is a force vector state, operating on the bond / for the particle at position x and time C. Here,
L(x, C) is the summation of the forces per unit reference volume due to the interactions of the particle at location x with
its neighboring particles inside the self-centered horizonHx. Furthermore, vector b(x, C) denotes the body force density
corresponding to the material particle at x and time C, while d refers to the material density.

Fig. 2 Kinematics of non-ordinary state-based PD. B0 denotes the reference configuration of the body, while B1
is the deformed configuration. The particle at x is bonded to its neighboring particles, located at x′, x′′, and x′′′,
within a finite regionHx. The body deforms so the particle at x displaces to y. The mapping can be described by a
corresponding deformation gradient F(x, C). T = T[x, C]〈x′ − x〉 and T′ = T[x′, C]〈x − x′〉 are force vector states in the
reference configuration for particles locating at x and x′, respectively. In the non-ordinary state-based PD theory, these
two force vectors are not necessarily parallel and can be obtained from the classical stress tensor.
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In correspondence with the classical continuum theories, the force state T[x, C]〈x′ − x〉 is related to the first
Piola-Kirchoff (PK-I) stress tensor, denoted as P(x, C), via the following equation:

T[x, C]〈x′ − x〉 = lP(x, C)K−1 (x)/ (4)

Hence P(x, C) can be computed from a classical constitutive model using the deformation gradient F(x, C). Compared
with the governing equations of classical continuum mechanics, no spatial derivative appears in Eqn. (3). This places
fewer restrictions on the regularity properties of deformation descriptors. Furthermore, it is worth noting that despite the
current PDmodel being non-ordinary, the balance of angular momentum is ensured due to the relation in Eqn. (4) [19, 27].

In this paper, an explicit dynamic relaxation method with the quasi-static assumption and a careful time-step
selection, as outlined in Appendix A, is adopted. Non-linear problems involving static solutions can alternatively be
solved iteratively as a dynamics problem using artificial damping.

1. Numerical Discretization Scheme and Algorithm
Assume there are # neighboring particles surrounding the central material point located at x, then Eqn. (3) can be

discretized for a specific time frame C = C= as in the following, while neglecting the body force b(x):

L(x) =
#∑
8=1

(
T[x]〈x′8 − x〉 − T[x′8]〈x − x′8〉

)
+x′

8
= 0 (5)

where x′
8
is the location of the 8th neighboring particle in x’s horizon, and +x′

8
is its corresponding volume. Next, the

deformation gradient, F(x), for the material particle at x at the specific time frame C= can be discretized as:

F(x) =
( #∑
8=1

l8 (y′8 − y) ⊗ (x′8 − x)+x′
8

)
K−1 (x) (6)

where y′ and y represents the images (i.e., the deformed positions) of material points at x′ and x, respectively, and the
l8 denotes the weight function of the 8th particle within the horizon of the center particle at x. Similarly, the shape
tensor, K(x), can be computed as:

K(x) =
#∑
8=1

l8 (x′8 − x) ⊗ (x′8 − x)+x′
8

(7)

Given the constitutive model, represented by an operator F , the force states T[x]〈x′
8
− x〉 for the particle at x and

T[x′
8
]〈x − x′

8
〉 for the particle at x′, as found in Eqn. (5), can be obtained from:

T[x]〈x′8 − x〉 = lF
(
F(x)

)
K−1 (x) (x′8 − x)

T[x′8]〈x − x′8〉 = lF
(
F(x′8)

)
K−1 (x′8) (x − x′8) (8)

Yet, in order to acquire F(x′
8
) and K(x′

8
) for the particle at x′

8
, information about the 8th particle’s horizon needs to

be known. Fig. 3 is an illustration of interactions of one particle with its nearest neighbors in a 2D material domain.

With all force vector states obtained, the adaptive dynamic relaxation scheme (ADRS), as elaborated in Appendix A,
is applied to solve the equation L(x) = 0. For a 2D problem, the global equation of motion can be organized as a
vector system with a size of 2 × #total, where #total is the total number of particles in the simulation. Since L(x) is
completely dependent on the current field, the system can be explicitly started with an initial guess of displacement,
velocity, and acceleration fields. During dynamic iterations in one loading step, two absolute errors, denoted as Y1 and
Y2, are calculated at each iteration with the definitions as:

Y1 =
‖L(x)‖2
#total

and Y2 =
‖Xu‖2
#total

(9)
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Fig. 3 Particle interactions with closest neighbors in a 2D PD model. Particles 8 = 2, 3, 4, 5 are the nearest neighbors
of the particle 1 (denoted as the center particle at x); while particles 8 = 1, 9, 10, 11 are the nearest neighbors of the
particle 4 (denoted as the particle at x′

8
). In this case, all 13 particles shown above should be included in order to obtain

L(x) at particle x in Eqn. (5).

where ‖.‖2 denotes a Euclidean norm. The first error, Y1, describes the degree to which L(x) approaches zero, while the
second error, Y2, denotes the magnitude of displacement increments between two adjacent iteration steps. In order to
normalize the error from initial guesses, two corresponding relative errors 41 and 42 are then monitored, as computed
below:

41 =
Y1

Y0
1
and 42 =

Y2

Y0
2

(10)

where Y0
1 and Y0

2 are the initial absolute errors in each loading step. Iterations stop only when both criteria are satisfied,
i.e., 41,2 < 4; with 4; = 10−6. All quantities are then updated into the next loading step. To improve the computation
performance, parallel libraries such as OpenMP and Open MPI, are adopted in the code. Given that kinematic properties,
such as the displacement u and deformation gradient F, are known beforehand due to use of an explicit method,
the constitutive model can be applied on different particles in parallel. In other words, the computation involved in
acquiring P(x) = F

(
F(x)

)
and P(x′) = F

(
F(x′)

)
corresponding to the material particles at x and x′, respectively,

are completely independent. The computation domain is therefore partitioned into several groups with each group
calculating its own stress tensor. Finally, all information is gathered in the assembly of the vector system L(x). The
flowchart in Fig. 4 summarizes the important numerical steps within the non-local state-based PD scheme described above.
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Fig. 4 Flowchart for the explicit non-local state-based PD scheme using ADRS.
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In the presented PD framework, a crystal elastoplasticity model with deformation twinning is incorporated, where
a generalized Hooke’s law characterizes the elastic behavior of the microstructure and is accompanied by a rate-
independent CP formulation to model the plastic constitutive behavior [14]. The rate-independent CP constitutive model
implementation is elaborated in detail in [19].

B. Zero-Energy Modes
The PD technique used in this paper incorporates a correspondence material model in determining the bond forces

from the PK-I stress tensor. The inherent stability issue of zero-energy modes is essentially the result of weak couplings
among material particles [35, 42, 45]. To better understand the origin of zero-energy numerical oscillations, a simple
example is discussed next. Consider a 2D uniform lattice as illustrated in Fig. 5, where x and x′ indicate the positions of
the central material particle and one of its neighbors, respectively, at the original configuration. Let Fold (x, C) denote
the initial deformation gradient, while Fnew (x + ud, C) represent the deformation gradient after a small displacement
disturbance ud applied to the center particle at x. The new deformation gradient Fnew (x + ud, C) can be then calculated
based on Eqn. (1) as:

Fnew (x + ud, C) =

(∫
Hx

l(Ynew [x + ud, C]〈x′ − x − ud〉 ⊗ /)3+x′
)
K−1 (x)

=

(∫
Hx

l
[
(Yold [x, C]〈x

′ − x〉 − ud) ⊗ /
]
3+x′

)
K−1 (x)

= Fold (x, C) − ud ⊗
( ∫
Hx

l/3+x′
)
K−1 (x) (11)

With the assumption of a regular lattice discretization and a spherically-symmetric influence function l, the
integration term on the right-hand side becomes zero. This is the case of admissible displacement fields producing the
same deformation gradient and potential energy, which is appropriately called the zero-energy mode. This is a common
stability issue when using correspondence material methods with mesh-free discretizations [46–48].

x x� udud

at center

Fold Fnew

Fig. 5 An illustration of zero-energy modes in a 2D regular lattice. A small disturbance is applied to the center
particle has no impact on the calculation of the deformation gradient.

In Section II.C, a thorough discussion on the accuracy and stability of an explicit numerical scheme, termed
higher-order approximation theory, towards the elimination of the zero-energy mode oscillations is described.

C. Higher-Order Approximation Theory
The higher-order approximation method was initially proposed in Yaghoobi et al. [42] for 2D lattice structures. The

basic idea is to adjust the influence function weights based on a Taylor series approximation to better approximate
the deformation gradient. This approach is shown to be highly effective in suppressing spurious zero-energy mode
oscillations. In addition, higher-order approximations are easily implementable within the state-based PD framework,
where larger horizon sizes can be used. A brief background is given below.

In the continuum mechanics, the relation between the deformed bond Xy = y′−y, and the reference bond Xx = x′−x,
as illustrated in Fig. 2, can be expressed via the Taylor series expansion, as follows:
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y′ − y =
my
mx
(x′ − x) +$ [(x′ − x)2] (12)

where the notation $ denotes the order of the leading error term. Here, my
mx is equivalent to the deformation gradient

tensor. In order to incorporate the state-based PD deformation gradient, a tensor product on the reference bond x′ − x is
first performed on both sides of Eqn. (12), and the result is then integrated over the initial horizonHx, as follows:∫

Hx

l[(y′ − y) ⊗ (x′ − x)]3+x′ =

∫
Hx

my
mx
l[(x′ − x) ⊗ (x′ − x)]3+x′ +$ [(x′ − x)3] (13)

Therefore, the deformation gradient tensor at time C can be approximated by:

F(x, C) = my
mx

=

(∫
Hx

l[(y′ − y) ⊗ (x′ − x)]3+x′

)
K−1 (x) +$ (x′ − x) (14)

Once the the error term, i.e., $ (x′ − x), is eliminated, Eqn. (14) becomes the same as Eqn. (1), where K(x) is
defined as the shape tensor in the state-based PD model. Note that the leading error term in Eqn. (14) is of the first order
of the distance between material particles located at x′ and x. In order to achieve a more accurate deformation gradient,
appropriate influence function values l, for the required horizon can be chosen to artificially increase the leading error
order. This is explained for multi-dimensional domains in Section II.C.1. The specific contribution area of this paper
is the development of a set of higher-order tensor equations to efficiently identify the constraint formulations for the
influence weight functions when using higher-order approximation method.

1. Multi-Dimensional Discrete Formulation
The multi-dimensional Taylor series expansion is applied for deriving weight function values l across 1D, 2D,

and 3D material domains with a constant particle spacing ℎ for X ≤ 3ℎ, where X denotes the interacting horizon
radius. This paper only incorporates a uniform particle discretization, i.e., equally-spaced particles along a line in 1D,
quadrilateral discretizations in 2D, or cubic patterns in 3D having a constant particle spacing ℎ with a particle volume
Δ+ . Accordingly, the influence function values l are always assumed to be spherically-symmetric, i.e., l = l( |/ |).
For the sake of simplicity, the Einstein tensor notation is adopted in the following discussion. Hence, the shape tensor
K(x) in Eqn. (2), and deformation gradient tensor F(x, C) in Eqn. (1) can alternatively be expressed in Einstein notation,
as follows:

 8 9 =

∫
Hx

lXG8XG 93+x′ (15)

�?@ = (
∫
Hx

lXH?XG 93+x′) −1
9@ (16)

However, due to the symmetric nature of the particle discretizations, the shape tensor in Eqn. (15) can be reformulated
as:

 8 9 =

#∑
0=1

l0 (XG8XG 9 )0Δ+ = Ω(l1, l2, l3, ...)ℎ2Δ+X8 9 (17)

where # is the total number of neighboring material particles within the horizonHx, X8 9 is the Kronecker delta function,
and Ω is a function of all independent l1, l2, ..., l# in the horizon. For instance, consider a 2D quadrilateral particle
discretization as depicted in Fig. 6, with a horizon size X = 2ℎ. While there are a total of 12 neighboring material
particles within the given horizon radius X = 2ℎ, due to the radially-symmetric nature of discretization pattern, only
three independent weight function values are labeled, i.e., l1 = l(ℎ), l2 = l(

√
2ℎ), and l3 = l(2ℎ).

Consequently, by substituting Eqn. (17) into Eqn. (16), the deformation gradient can be reformulated as:

�?@ =
X 9@

ℎ2ΩΔ+

∫
Hx

lXH?XG 93+x′ =
1
ℎ2Ω

#∑
0=1

l0 (XH?XG@)0 (18)
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h
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Fig. 6 Independent weight function values on a 2D quadrilateral particle pattern. Here, l is a radially-symmetric
weight function on neighboring material particles. The horizon radius is X = 2ℎ, with ℎ denoting the distance between
nearest particles.

Hence, a multi-dimensional Taylor series expansion of the deformed bond Xy on the reference bond Xx is required.
The first three leading terms are claimed here without showing the derivation:

XH? = �?8XG8 +
1
2!
� ?8 9XG8XG 9 +

1
3!
�?8 9:XG8XG 9XG: +$ (ℎ4) (19)

where �?8 =
mXH?
mXG8

is the deformation gradient; � ?8 9 =
m2 XH?
mXG8 XG 9

and �?8 9: =
m3 XH?

mXG8 XG 9 XG:
are the second-order and

third-order derivatives, respectively.

Finally, by substituting Eqn. (19) into Eqn. (18), the deformation gradient then turns into:

�?@ = �?@ +
1

2!ℎ2Ω
� ?8 9

#∑
0=1

l0 (XG8XG 9XG@)0 +
1

3!ℎ2Ω
�?8 9:

#∑
0=1

l0 (XG8XG 9XG:XG@)0 +$ (ℎ3) (20)

Accordingly, it is possible to achieve higher-order approximations by selecting explicit weight functions in Eqn. (20).
It is worth noting that in a spherically-symmetric and intact discretization, for every bond (Xx)<, there is another bond
(Xx)= symmetric about the origin such that (Xx)< = −(Xx)=. Hence, in case there are odd XG-products, the summation
terms in Eqn. (20) yield to:

#∑
0=1

l0 (XG8XG 9 . . . XG<)0 = 0 (21)

As odd XG-product summation vanishes, symmetric particle patterns with intact horizons always lead to accuracy
order equal or greater than $ (ℎ2). However, one additional equation, as formulated below, needs to be satisfied to
obtain a higher truncation error in the order of $ (ℎ4):

�8 9:; =

#∑
0=1

l0 (XG8XG 9XG:XG;)0 = 0 (22)

Furthermore, the satisfaction of the following two equations leads to higher accuracy, in the order of $ (ℎ6):{
�8 9:; =

∑#
0=1 l0 (XG8XG 9XG:XG;)0 = 0

�8 9:;AB =
∑#
0=1 l0 (XG8XG 9XG:XG;XGAXGB)0 = 0

(23)

Criteria outlined in Eqns. (22) and (23) hold true regardless of the material dimensions, i.e., 1D line, 2D quadrilateral,
or 3D cubic patterns. Additionally, the final selection of weight function values should satisfy the constraint inequality
Ω(l1, l2, l3, ...) ≠ 0 to ensure the shape tensor K(x) obtained in Eqn. (17) is invertible. It is worth noting that larger
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horizon sizes with more independent weight function values often lead to increased orders of truncation error.

The weight function values for a 1D particle-discretized bar with a constant spacing ℎ, and horizon sizes up to X = 4ℎ
are tabulated in Table 1. For the sake of simplicity and unity, the weight function value corresponding to the particle
closest to the center particle is set to be 1, i.e., l1 = 1. Additionally, the order of leading truncation error increases
when the horizon size X grows, providing a more accurate deformation gradient. For a 1D bar with a horizon X = 2ℎ as
depicted in Fig. 7, there are five material points at G8+ 9 for 9 = 0,±1,±2 with only two independent weight functions l1
and l2 pertaining to particles at G8±1 and G8±2, respectively. Hence, setting l1 = 1 and l2 = −1/16 produces a fourth-
order leading error of the form$ (ℎ4) in the Taylor series expansion of the deformation gradient in Eqn. (20) when X = 2ℎ.

ω3 ω2 ω1 ω1 ω2 ω3

xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

δ = 2h

Fig. 7 1D particle-discretized bar with a constant spacing ℎ. Here, l is a symmetric weight function. Dashed box
X = 2ℎ illustrates the horizon of center particle G8 , including only the nearest four particles.

Table 1 Higher-order approximation weight functions for 1D particle discretization with a constant spacing ℎ.

Horizon Size Weight Function Values Leading Error
l1 l2 l3 l4

X = ℎ 1 0 0 0 $ (ℎ2)

X = 2ℎ 1 -1/16 0 0 $ (ℎ4)

X = 3ℎ 1 -1/10 1/135 0 $ (ℎ6)

X = 4ℎ 1 -1/8 1/63 -1/896 $ (ℎ8)

Next is a brief discussion on the number of non-trivial components in the fourth-order tensor �8 9:; for a 2D
quadrilateral discretization pattern. First of all, it is worth noting the subscript indices can be swapped, as follows:

�8 9:; = � 98:; = �8 9;: (24)

Consequently, in the case of 2D quadrilateral particle pattern, where subscript indices can only take on values 1 and
2, only six components of tensor �8 9:; are independent. These independent elements are �1111, �2111, �2211, �2221, and
�2222.

Secondly, due to the axis symmetry of the horizon and particle discretization, the coordinate index 1 and 2 can be
swapped, yielding to the following two constraints:

�1111 = �2222 and �2111 = �1112 (25)

Thirdly, assume that there is a bond with rectangular coordinates (G, H) and a weight function l1. Owing to the
symmetry of coordinate axes, three other bonds with respective coordinates (−G, H), (−G,−H), and (G,−H) are expected
to be in the same horizon as well. Hence, based on the definition in Eqn. (22), the �2221 entry becomes:

�2221 = l1H
2 (GH − GH + GH − GH) = 0 (26)

Eventually, only two components of the fourth-order tensor �8 9:; are non-zero. These components are �1111 and �2211.
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Consistent with 1D discretizations, the weight function value corresponding to the particle closest to the center
particle is set to be 1, i.e., l1 = 1. In order to achieve $ (ℎ4), two more independent weight function values (i.e., l2
and l3) need to be calculated. Consequently, the horizon with radius X = 2ℎ in Fig. 8 is the smallest horizon size that
can achieve a truncation error in the order of $ (ℎ4) in the 2D quadrilateral pattern. In terms of horizons with excess
independent weight functions, but not enough to achieve higher-order truncation errors, the weight function values are
generally not unique. These horizon selections could possibly bring noise or numerical oscillations to the ultimate
solutions. As a result, the numerical simulations in Section III primarily focus on horizon sizes with unique weight
function values, as tabulated in Tables 2-3. Typically, the magnitude of weight function values decrease from the closest
particles to distant particles, and the value on the farthest particle should be a non-zero.

For 2D quadrilateral patterns, horizon sizes up to X = 3ℎ are studied. Fig. 8 illustrates all possible spatial distributions
of neighboring particles for different horizon sizes. Here, only a quarter of the interacting circular space is depicted
due to the symmetric nature of material particle discretization. The unique weight function values for these horizon
sizes are obtained using the following process. First, the constraint equations for the weight function values to achieve
the desired leading error, such as Eqns. (22) and (23), are identified. These constraints however, typically lead to a
multiple non-unique set of weight functions for a given horizon size X. As such, additional equations from the following
higher-order leading error that do not contain the l1 term are added on to the existing set of constraint equations. The
solution to such a constraint set leads to a unique set of weight function values for the specific material interaction.
Table 2 shows these unique weight function values to achieve the corresponding higher-order accuracy for the 2D
quadrilateral discretization. The constraint solutions that have either resulted in a zero influence function value at the
material particle farthest from the center particle or led to a non-invertible shape tensor are excluded from Table 2.

Fig. 8 All possible 2D horizon shapes with a quadrilateral particle discretization up to X = 3ℎ. Since the weight
function l is radially-symmetric, only a quarter of interacting circular regions are depicted for each horizon size X.

Table 2 Higher-order approximation weight functions for a 2D quadrilateral discretization pattern with a constant
spacing ℎ. Here, horizon sizes in Fig. 8 that either encompass a zero influence function value at the farthest material
particle within the given horizon radius or lead to a non-invertible shape tensor are excluded.

Horizon Size Weight Function Values Leading Error
l1 l2 l3 l4 l5 l6

X = ℎ 1 0 0 0 0 0 $ (ℎ2)

X = 2ℎ 1 0 -1/16 0 0 0 $ (ℎ4)

X = 3ℎ 1 0 -1/10 0 0 1/135 $ (ℎ6)

Similarly, for 3D cubic patterns, the horizon sizes up to X ≤ 3ℎ are investigated, where ℎ represents the spacing
between nearest particles. Fig. 9 illustrates all possible distributions of neighboring material particles for different horizon
sizes X. Here, similar to the 2D quadrilateral distribution, only a small portion of interacting sphere is illustrated due to
the symmetric nature of l. Subsequently, a similar procedure as for 2D quadrilateral discretization is employed to derive
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the most optimal unique weight function values. Weight function values that either result in a zero value for the material
particle farthest within the horizon shape or lead to a non-invertible shape tensor are disregarded in numerical sim-
ulations. Table 3 shows the unique weight function values to achieve corresponding higher accuracy for 3D cubic patterns.

𝜔1

𝛿 = ℎ

center particle 

neighbor particle 

ℎℎ

ℎ𝜔2 𝜔3

𝜔6
𝜔5

𝜔4

𝜔7

𝜔8

𝛿 = 2ℎ 𝛿 = 3ℎ 𝛿 = 2ℎ

𝛿 = 5ℎ 𝛿 = 6ℎ 𝛿 = 2 2ℎ 𝛿 = 3ℎ

Fig. 9 All possible 3D horizon shapes with a cubic particle discretization up to X = 3ℎ. Since the weight function l is
spherically-symmetric, only one eighth of the interacting spherical regions are depicted for each horizon size X.

Table 3 Higher-order approximation weight functions for a 3D cubic discretization pattern with a constant spacing
ℎ. Here, horizon sizes in Fig. 9 that either encompass a zero influence function value at the farthest material particle
within the given horizon radius or lead to a non-invertible shape tensor are excluded.

Horizon Size Weight Function Values Leading Error
l1 l2 l3 l4 l5 l6 l7 l8

X = ℎ 1 0 0 0 0 0 0 0 $ (ℎ2)

X = 2ℎ 1 0 0 -1/16 0 0 0 0 $ (ℎ4)

X = 3ℎ 1 -80/267 16/89 -25/178 14/267 -8/267 -2/267 1/267 $ (ℎ6)

D. Boundary Treatment
Conventional constraint conditions, such as Dirichlet and Neumann boundary conditions, are supposed to be imposed

in different forms, as the PD governing equations are applied in non-local formulation. In the case of simulations
with no boundary treatment, defect horizons can still approximate the deformation gradient across the boundary
layer. However, as the horizon size X increases, irregular defects ultimately lead to disordered and unstable solutions
around the marginal particles. Since higher-order approximations are derived using the internal particles with a fully
symmetric horizon, defect horizons along the external boundary are expected to give rise to numerical errors when
approximating the deformation gradient. One possible solution, as suggested by Macek and Silling [49], is to apply
an inward fictitious material layer along the boundary layer. As illustrated in Fig. 10(a), the thickness or depth of the
fictitious boundary layer should be equal to the horizon size X, to ascertain that prescribed constraints are sufficiently
forced on the real material region. Same discretization spacing is supposed to be applied in both the fictitious bound-
ary layer and real material domain. Shadow particles are therefore introduced in the fictitious layer, as shown in Fig. 10(b).
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Fig. 10 Boundary treatment on a 2D polycrystalline domain. (a) The fictitious boundary layer is inward possessing
a thickness equal to the prescribed horizon radius X. (b) A horizon of X = ℎ is illustrated in this plot, where ℎ is the
particle spacing.

Considering no information is provided outside the original boundary, Madenci et al. [22] suggested that the
prescribed displacement vector should be the same as that of the closest material particle at the boundary. However, this
operation results in zero strain and stress across the fictitious boundary layer. An alternative option is to apply a constant
deformation gradient across the fictitious boundary layer. Hence, in this paper, displacements on shadow particles are
prescribed based on a constant deformation gradient. Consequently, stress at shadow particles can be calculated by the
correspondence constitutive model. This special boundary treatment has been particularly effective when larger-horizon
interactions are applied, encompassing simulations beyond the nearest-neighbor PD family [35]. With such a boundary
treatment procedure, all information (e.g., displacement and stress) on shadow particles are presumably known, in
contrast with boundary particles where only displacement field is given [22].

III. Results and Discussion
In the Section III.A, the non-local state-based PD algorithm is examined for a 1D elastic bar with a varying Young’s

modulus of elasticity. The resultant displacements of PD scheme with the higher-order stabilization approach are
compared against analytical solutions as well as numerical algorithms with no stability implementation. Thereafter,
2D and 3D numerical schemes are tested for different microstructures. Comparisons are performed against analytical
and FEM solutions as needed. The examples aim to demonstrate that increasing the order of interactions in material
particles can improve the accuracy of the numerical solution and reduce the hourglass instability modes of the non-local
state-based PD framework.

A. 1D Cantilever Bar
The classic 1D cantilever elastic bar example [32, 35, 42], as depicted in Fig. 11(a), is conducted for validation of the

higher-order implementation. Here, the bar has a total length !C>C , and a constant cross-sectional area �. Displacement
constraints are applied on each side of the bar, i.e., D(G = 0) = 0 and D(G = !tot) = Dend. In this 1D example, D4=3 is set
to be 0.005!tot. A variable Young’s modulus, as plotted in Fig. 11(b), is also adopted as follows:

� (G) =

�0 0 ≤ G ≤ !tot/2

�0

(
1 + V

2U
1√

G/!tot−1/2

)−1
!tot/2 < G ≤ !tot

(27)

Consequently, the corresponding analytical displacement D(G) can be computed to be as follows:

D(G) =
{
UG 0 ≤ G ≤ !tot/2
UG + V!tot

√
G/!tot − 1/2 !tot/2 < G ≤ !tot

(28)
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where parameters are set as U = 0.001, V = 0.004
√

2, !tot = 1, and �0 = 1.

Ltot

1 2 n− 1 n

uend

x

A,L A,L A,L

(a) 1D elastic bar

x/Ltot0 0.5 1

E(x)

E0

(b) Young’s Mudulus along x

(a) 1D elastic bar

Ltot

1 2 n− 1 n

uend

x

A,L A,L A,L

(a) 1D elastic bar

x/Ltot0 0.5 1

E(x)

E0

(b) Young’s Mudulus along x(b) Variable Young’s modulus

Fig. 11 1D cantilever bar. (a) A 1D elastic bar under tension with displacement constraints is used to study the effect
of using higher-order approximations of deformation gradient. (b) The example exhibits a varying Young’s modulus
along the G-axis.

Subsequently, a uniform mesh with 500 equally-distant material particles is employed to study the effect of using
higher-order approximations framework on the resultant axial displacements D(G), under outward displacement constraint
D4=3 = 0.005!tot. A comparison between the higher-order approximation solutions and those with no stabilization control
method is shown in Fig. 12. Since a higher-order approximation approach only takes effect in large-horizon families, i.e.,
X > ℎ, two horizon selections X = 2ℎ and X = 3ℎ, are illustrated in Fig. 12. As the horizon size increases, the hourglass os-
cillations grow dramatically if no control method is applied. However, the higher-order approximation method is shown to
suppress the numerical oscillations in both cases (i.e., X = 2ℎ and X = 3ℎ) and dampens the zero-energy modes effectively.
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→
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No control, δ∕h=3
Higher-order, δ∕h=3

(a) X = 2ℎ

𝑢
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𝛼
𝐿
to
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→

𝑥/𝐿tot →

𝑢
/(
𝛼
𝐿
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t)

→

𝑥/𝐿tot →

Exact
No control, δ∕h=3
Higher-order, δ∕h=3

(b) X = 3ℎ

Fig. 12 Effect of zero-energy modes on the displacement field of 1D bar obtained from the higher-order approximation
approach with two different horizon sizes (a) X = 2ℎ and (b) X = 3ℎ. Results are based on a uniform mesh with 500
material particles.

B. 2D Polycrystalline Microstructure
Here, a 1 × 1 <<2 polycrystalline microstructure with 21 grains, synthetically generated by Voronoi tessellation [3],

is considered. In this example, 12 different orientation angles from the interval [−c/2, c/2) are distributed randomly
among grains. The discretized computational domain, as depicted in Fig. 13, is based on a uniform 50 × 50 particle
discretization for PD technique and 50 × 50 square-faced elements for FEM. With the number of material particles
being the same as the number of elements, the material particles in the PD model are located at the center of elements in
the FE model. Consequently, each material particle occupies a constant area in the reference configuration equal to
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the corresponding enclosed FE area. Linear basis functions and traditional implicit solvers are employed in the FEM.
Although different solvers are applied in PD and FE models, the same constraint on errors is set, i.e., 4; = 10−6. The
particular hardening law is chosen as follows [14]:

ℎUV = ℎ
V

0
(
@ + (1 − @)XUV

) (
1 − B

V (C)
B
V
B

)0
(29)

where ℎV0 , B
V (C), and BVB are the hardening coefficient, the current slip resistance, and the saturation resistance of

slip system V, respectively; XUV is the Kronecker delta function; 0 and @ are constant parameters. These hardening
parameters are taken to be identical for both slip systems and are listed below:

ℎ0 = 10 MPa, B(0) = 10 MPa, BB = 200 MPa, 0 = 2, @ = 1.4 (30)

where B(0) is the initial value of slip system resistance. Furthermore, a compression velocity gradient, as shown below,
with plane strain assumptions is applied on microstructure boundaries to simulate the process of H-axis compression:

L = [

[
1 0
0 −1

]
(31)

where [ = 0.0020 denotes a constant strain rate. Each simulation is performed over 30 steps with the corresponding
velocity gradient leading to a final strain around 0.06. The isotropic elastic stiffness matrix is taken as �11 = 2, �12 = 1,
and �33 = 2 (in �%0).

The inward boundary treatment, as elaborated in Section II.D, is then applied to constrain the velocity gradient of the
fictitious boundary particles to that shown in Eqn. (31) for the PDmodel. As the horizon radius X grows, the boundary layer
thickness (equal to the horizon radius) increases, and the number of material particles within the computational domain
decreases. Fig. 13 provides an example illustrating the effect of enforcing the inward boundary treatment. In Fig. 13(a),
low-magnitude stress values are captured around the external edges without the fictitious boundary layer. This is mainly
because of the erroneous deformation gradient approximated by the defect horizons. In contrast, the stress field ob-
tained from the boundary enforcement, as depicted in Fig. 13(b), shows no spurious values along the four outermost edges.

𝑦
→

𝑥 →

(a) no boundary treatment

𝑦
→

𝑥 →

(b) boundary enforcement

void

80

70

60

50

40

30

20

10

0

𝜎𝑥𝑥 (𝑀𝑃𝑎)

Fig. 13 The effect of boundary treatment on PD stress distributions with a horizon size X = 3ℎ.

Next, Fig. 14 provides a comparison of PD and FE techniques for modeling crystal orientation changes of the same
polycrystal under a H-axis compression test, using three different horizon selections in Table 2. In the following, the
quantification of the crystal orientation changes is briefly explained. In 2D polycrystals, each grain can be characterized
by a rotation tensor, denoted as R, relating the local crystal lattice frame to the reference sample frame. Given an
orientation \ (i.e., the angle between crystal and sample axes), the associated rotation matrix supports parametrization as
R = cos(\)I − sin(\)E, where E is a 2D alternator (i.e., �11 = �22 = 0, �12 = −�21 = 1), and I is a 2D identity tensor.
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Consequently, the rotation tensor can be evaluated through a polar decomposition of the elastic deformation gradient
as F = RU. The spin tensor � can then be expressed as � = RRT = − ¤\E, where ¤\ = m\

mC
is the crystal reorientation

velocity. Alternatively, in the component form, the crystal reorientation velocity can be expressed as ¤\ = (Φ21 −Φ12)/2.
Accordingly, using the reorientation velocity, the crystal texturing is tracked by Δ\ = ¤\ΔC at each time step.

Reorientation of grains predicted by PD and FE models are compared in Fig. 14 at the final strain value of 0.06.
The overall reorientation contours and locations of the shear bands are mostly similar between the two models at the
same degree of mesh refinement. However, the localized shear bands seen from FE simulations are comparatively more
diffuse due to the lack of an internal length-scale. Along the direction of arrows, the width of a shear band obtained
by PD simulations is smaller, and its boundary is more conspicuous, which are qualitatively closer to those seen in
experiments [19, 50–52]. It is clear from the Fig. 14 that zero-energy modes are effectively suppressed in all long-range
horizon selections. This is in agreement with the 1D elastic bar tension test seen previously in Section III.A, where the
higher-order stabilization implementations are compared against the solutions with no stabilization control.
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Fig. 14 Orientation changes for 2500 particles under a H-axis compression test for FE and PD results with three
different horizon sizes at final strain of 0.06. Along the direction of arrows, sharper and more number of shear bands
can be seen in PD results. Here, X is the horizon radius, and ℎ is the distance between the nearest material particles.
The margin around the boundary in PD models is due to the inward boundary treatment.

Additionally, as evident from PD simulations in Fig. 14, larger horizon interactions tend to make the shear
bands sharper and more concentrated. This paper primarily emphasizes on the unique weight function values for
horizon sizes listed in Table 2 and excludes horizon shapes in Fig. 8 where the optimum weight function solution
is non-unique and/or does not improve the truncation error. Nevertheless, it is shown in Yaghoobi et al. [42]
that by including more neighboring particles, the stabilization framework may lead to less stable results if the in-
creased horizon size is not able to obtain a greater accuracy (e.g., X = ℎ vs. X =

√
2ℎ). This is different from the

1D bar test in Section III.A, in which larger horizon sizes consistently reduced the spurious zero-energy mode oscillations.

C. 3D Matrix with Soft Precipitate
For the first 3D example, a cubic matrix of dimensions 3 × 3 × 3 <<3 along with a central spherical precipitate with

a diameter 0.875 << having a lower modulus, as illustrated in Fig. 15, is modeled using both FE and PD techniques.
The transversely-isotropic elastic matrix is endowed with the following stiffness constants: �<0C11 = 59.3, �<0C12 = 25.7,
�<0C13 = 21.4, �<0C33 = 61.5, and �<44 = 16.4 (in �%0). Contrarily, the stiffness constants assigned to the spherical
precipitate are reduced by a factor of 10, i.e., � ??C

8 9
= 0.1 × �<0C

8 9
, where � ??C

8 9
denotes the (8, 9) entry of the elastic

stiffness tensor pertaining to the precipitate particles. Here, both materials are assumed to be elastic under a small
deformation. Thus, strain tensor is computed as n = 1

2 (F+F) ) − I, where I is the identity tensor. Also, Cauchy stress ten-
sorf = C : n is used in lieu of P in Eqn. (4), assuming a small deformation, whereC represents the elastic stiffness tensor.

The cubic material domain represented in Fig. 15(a) is discretized into a 48 × 48 × 48 structured particle grid. A
similar discretization refinement is adopted for the FE simulation, where each linear hexahedral volumetric element
encompasses the material particle in the PD model. In addition, Dirichlet boundary conditions dictated by the following
diagonal velocity gradient, are applied to the microstructure boundaries to simulate an G-axis tension up to 0.02 strain:
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Fig. 15 3D matrix with soft precipitate. (a) A 3D matrix microstructure (colored in blue) with dimension ; = 3 <<
consisting of a soft precipitate (colored in red) with diameter 3 = 0.8750 << locating at the center. The material
domain is discretized into 48× 48× 48 particles with a constant inter-particle spacing ℎ = 62.5 `<. (b) This illustration
provides the interior information along the slice I = 1.5 <<. The spherical precipitate is fully retained for a better
visualization.

L =


1.0 0 0
0 −0.5 0
0 0 −0.5

 (32)

Subsequently, numerical PD simulations are carried out using the higher-order influence weight functions tabulated
in Table. 3 for X = ℎ, 2ℎ, 3ℎ, and weighting value coefficients without any stabilization framework for X = 2ℎ, 3ℎ [43].
An inward boundary treatment, as outlined in Section II.D, is then enforced to constrain the velocity gradients of the
shadow particles in PD models. Fig. 16 depicts the variations in H-displacement contours at the midsection I = 1.5 <<
for stabilized PD framework using horizon sizes of X = ℎ, 2ℎ, and 3ℎ at the final strain value 0.02. FEM simulation
prediction is also included for comparison. Although the overall displacement fields are mostly similar between PD and
FE models, the localizations around the precipitate as obtained from FEM simulation are comparatively more diffuse
due to the lack of an internal length-scale.
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(b) PD, X = ℎ
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(c) PD, X = 2ℎ
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(d) PD, X = 3ℎ
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Fig. 16 Comparison of H-displacements (in `<) between FE and PD techniques with X = ℎ, 2ℎ, and 3ℎ along
midsection at I = 1.5 << at final strain.
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Next, Fig. 17 depicts the variations in the G-displacement contours for PD technique with and without the stabilization
control of zero-energy modes, across the midsection I = 1.5 << using horizon sizes X = 2ℎ and 3ℎ at the final strain
value 0.02. For the case of PD scheme without any control of zero-energy modes (termed ‘no control’), an influence
function of the form l = 1

‖/ ‖2 is employed [43], where / denotes the bond vector associated with neighboring material
particles. While ‘no control’ simulations tend to produce significant increases in erroneous zero-energy modes with
successive horizon sizes, the resultant displacements with higher-order approximation scheme (termed ‘higher-order’)
illustrates stabilized solutions for both horizon sizes X = 2ℎ and 3ℎ. Fig. 18 depicts the profiles of G-displacements
through centerline along the G-direction for the contours shown in Fig. 17. The plots here are also compared against the
FEM solution as seen in Fig. 16(a). Fig. 18(a) exhibits the emergence of the instability modes for the ‘no control’ case
of X = 2ℎ right across the interface of soft precipitate and stiff matrix, as the hourglass oscillations grow dramatically
within the spherical precipitate. In the case of X = 3ℎ shown in Fig. 18(b), the hourglass oscillations significantly
worsens for ‘no control’ procedure, affecting the displacements even along the stiff matrix. In both horizon sizes, the
resulting contours pertaining to the higher-order approximation scheme effectively dampen the hourglass oscillations
and remain close to the FEM solution.

x

y

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

u

0.06

0.056

0.052

0.048

0.044

0.04

0.036

0.032

0.028

0.024

0.02

0.016

0.012

0.008

0.004

0

Size scatter: 1.6% circle
𝑥 →

𝑦
→

Size scatter: 1.75% square

h2_lm1_Ux_NoHOS

(a) No control, X = 2ℎ

x

y

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5
u

0.06

0.056

0.052

0.048

0.044

0.04

0.036

0.032

0.028

0.024

0.02

0.016

0.012

0.008

0.004

0

Size scatter: 1.6% circle
𝑥 →

𝑦
→

Size scatter: 1.75% square

h2_lm1_Ux

(b) Higher-order, X = 2ℎ

x

y

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5 u

0.06

0.056

0.052

0.048

0.044

0.04

0.036

0.032

0.028

0.024

0.02

0.016

0.012

0.008

0.004

0

Size scatter: 1.6% circle
𝑥 →

𝑦
→

Size scatter: 1.75% square

h3_lm1_Ux_NoHOS

(c) No control, X = 3ℎ
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(d) High-order, X = 3ℎ
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Fig. 17 Contours of G-displacements (in `<) obtained from PD models with no control of zero-energy modes against
proposed higher-order stabilization approach with X = 2ℎ and 3ℎ along midsection at I = 1.5 << at final strain.
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Fig. 18 Contours of G-displacements through centerline along the G-direction for two horizon interactions (a) X = 2ℎ
and (b) X = 3ℎ, respectively at final strain.
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Thereafter, four additional stiffness constants are assigned to the spherical precipitate using the following ratios:
A2 = 10−5, 10−4, 10−3, and 10−2, where � ??C

8 9
= A2 × �<0C8 9

. As the stiffness ratio decreases, the precipitate properties
tend toward the properties of a void with a zero modulus. As observed in the previous examples, the interface between
a stiff and soft material has particularly sharp gradients in the strain and stress fields. Hence, a non-local theory has
advantages in capturing discontinuities without enforcing any traction boundary conditions around the precipitate
interface. Fig. 19 illustrates G- and I- component displacements along the midsection I = 1.5 << as obtained from
the stabilized non-local PD simulation using the horizon size X = 3ℎ for all the stiffness ratios considered. As the
stiffness of the precipitate decreases towards that of a void, one would expect a decreased force transmission across
the precipitate interface, and consequently, a decreased displacement at the void’s center. As demonstrated in Fig. 19,
the stabilized higher-order PD model correctly captures the zero displacements at the center as the elastic modulus
pertaining to the spherical precipitate decreases.
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Fig. 19 Comparison of (a)-(d) G-displacements and (f)-(i) I-displacements (both in `<) along midsection I = 1.5 <<
for varying stiffness ratios as obtained from the high-order stabilized PD model with X = 3ℎ.

Fig. 20 denotes the plots for component-wise displacements at the center of the precipitate as a function of the
stiffness ratio A2 , for different horizon sizes X. Here, the FEM predicts close to a constant non-zero displacement at
the center. However, one would expect convergence toward a zero-displacement since no force transmission occurs
across the precipitate interface in the case of a zero-modulus material, e.g., vacuum. Despite that, PD, a non-local
method, depicts a faster convergence toward a zero center-displacement with growing horizon sizes X, as the stiffness
ratio A2 decreases. For a given horizon size X, the absolute value of all the displacement components decreases with
reducing stiffness ratio A2 . The ability to capture the zero-displacement at the center depends on the horizon size
X. This is expected as the non-local horizons utilize the information from both sides (i.e., low and high stiffness
particles) to capture the sharp strain gradient. Additionally, with a given stiffness ratio A2 , the absolute values of the
displacement components drop with increasing horizon size X. As the horizon size X increases, the sharp gradient
around the void’s interface is captured more efficiently since there are more particles to decide upon the interface behavior.
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Fig. 20 Variations in the displacement components at the center of the spherical precipitate in terms of the stiffness
ratio A2 for different horizon sizes X.

D. 3D Polycrystalline Microstructure with Spherical Void
The previous 3D example demonstrates the efficacy of the higher-order stabilization scheme in the case of an elastic

matrix. Here, the example includes an elastoplastic 3D model of the polycrystalline aggregates using a soft precipitate
with a stiffness ratio A2 = 0.1. Specifically, a 3D polycrystalline microstructure consisting of 78 grains with dimensions
; = 3 <<, and a soft precipitate with diameter 3 = 0.8750 << at the center is considered here. The 3D material domain
is discretized into 48 × 48 × 48 particles with a constant inter-particle spacing ℎ = 62.5 `< as shown in Fig. 21(a).
Moreover, Fig. 21(b) illustrates the interior cross-section of the 3D polycrystalline microstructure along slice I = 1.5 <<
without depicting the precipitate region. The polycrystal is simulated with properties of WE43 alloy-T5 temper, as
provided in Lakshmanan et al. [19] with 18 slip systems, including 3 basal< 0 >, 3 prismatic< 0 >, 6 pyramidal< 0 >,
and 6 pyramidal< 2+0 > slip systems. The boundary conditions are the same as those considered in the previous example.
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Fig. 21 3D polycrystalline microstructure with spherical void. (a) A 3D polycrystalline microstructure consisting of
78 grains with dimensions ; = 3 << and a soft precipitate with diameter 3 = 0.8750 << at the center. (b) Interior
of the 3D microstructure along slice I = 1.5 <<. The spherical precipitate at the center is removed for a better
visualization. Grains with similar orientation ID share the same Rodrigues orientation vector. The black lines denote
grain boundaries.
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Fig. 22 depicts the G- and H- strains, with and without control of zero-energy modes, along the midsection I = 1.5<<
using a horizon size X = 3ℎ. For the case of PD scheme without any control of zero-energy modes (termed ‘no control’),
an influence function l = 1

‖/ ‖2 is employed [43] similar to the previous example in Section III.C. The ‘no control’ case
shows patchy/pixellated locations not just along the precipitate interface (similar to the elastic matrix example) but also
within the grains, where one can expect strain localizations across grain boundaries due to property variations as a
function of crystal orientations (i.e., across hard and soft grains depending on their crystal orientations relative to the
loading direction). Nevertheless, the results associated with the higher-order stabilization scheme (termed ‘higher-order’)
show an effective control of the erroneous zero-energy mode oscillations.
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(e) High-order, nHH
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Fig. 22 Contours of (a)-(b) nGG and (c)-(d) nHH (in %) obtained from PD models with no control of zero-energy modes
against proposed higher-order stabilization approach with X = 3ℎ along midsection at I = 1.5 << at final strain value.

Next, the PD results are compared against the FEM solution in Fig. 23, which depicts the profile of equivalent strain
at midsection I = 1.5 << for horizon sizes X = ℎ, 2ℎ, and 3ℎ. Compared to the 2D polycrystalline microstructure
in Section III.B, where the FEM solution showed qualitatively similar strain localizations within the grains (e.g., see
Fig. 14), here, there are significant strain concentrations along the interface of the precipitate instead. Correspondingly in
the FEM solution, the interfacial strain localizations are computed to be significantly more pronounced than the granular
strain localizations within each crystal. Contrastingly, the PD solution is able to capture both strain localizations, i.e.,
along the precipitate boundary as well as granular interfaces. Additionally, the PD results are stable across the three
horizon sizes X = ℎ, 2ℎ, and 3ℎ. Implementation of the higher-order stabilization control in these examples required no
additional computational cost per time step, as the influence function values are explicitly adjusted for each user-defined
horizon interaction X. However, as shown in Silling et al. [44], the maximum stable time step for PD is, in general, also
a function of the PD horizon radius for long-range interactions (i.e., X > ℎ) and needs to be scaled based on the von
Neumann stability analysis as the horizon radius X rises [35].
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(b) PD, X = ℎ
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(c) PD, X = 2ℎ
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(d) PD, X = 3ℎ
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Fig. 23 Comparison of equivalent strain (denoted as n4@) (in %) between FE and PD techniques with X = ℎ, 2ℎ, and
3ℎ along the midsection at I = 1.5 << at final strain.

21



IV. Conclusion
In this paper, a higher-order approximation to the non-local deformation gradient is developed to suppress zero-

energy instability modes in PD models beyond nearest-neighbor interactions. In microstructural simulations, pixel or
voxel-based structured discretizations are often preferred as they can be readily obtained directly from microscopy,
tomographic imaging, or numerical acquisition techniques. As a result, a mesh-less non-ordinary state-based im-
plementation of PD via Newmark’s dynamic method with artificial damping is employed for solving deformation
and stress fields on structured grids. However, such correspondence-based PD models often suffer from zero-energy
mode oscillations, which, as studied in this paper, can be effectively mitigated by choosing material weight functions
via a Taylor series expansion of the deformation gradient. The novelty here is a tensor-based derivation of the
linear constraint equations, which can be used to systematically identify the particle interaction weight functions
for various user-specified horizon radii. It is demonstrated that unique weighting value coefficients can be obtained
by combining the governing equations to achieve the desired leading truncation error, along with additional set of
constraint equations from the next higher-order approximations that do not contain first-order interaction weight functions.

The efficacy of the higher-order stabilization method is first demonstrated for a simple 1D elastic cantilever bar,
where results are compared with exact and PD solutions with no stabilization control. The zero-energy modes are
demonstrated to be effectively dampened using the proposed higher-order particle interaction weight functions. Next, in
the case of 2D polycrystalline microstructures, observed shear bands are shown to be stable across different horizon
sizes while being relatively sharper and more localized within inter-granular regions relative to the FEM solution. The
proposed higher-order stabilization scheme is also demonstrated for examples involving 3D composite and polycrystalline
microstructures, along with comparisons against FE technique. In addition to the stabilization scheme effectively
suppressing the zero-energy mode oscillations, it is shown that PD approach, unlike FEM, enables the simulations of
sharp discontinuities without the explicit enforcement of interface traction boundary conditions. Overall, the presented
stabilization scheme can lead to high-quality and consistent non-ordinary state-based results for PD simulations beyond
nearest-neighbor interactions. All the codes and examples constituting the current CPPD implementation will be
available in an open-source platform to the community upon publication of the work.
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A. Appendix - Adaptive Dynamic Relaxation Scheme
In the absence of body forces, the equation of motion, as shown in Eqn. (3) can be rewritten in a vector form, as

follows:

¥u(x, C) + 2 ¤u(x, C) = f (u, x, C) (A.1)
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where 2 is a damping coefficient, and the force vector f is defined as f (u, x, C) = �−1L(x, C), in which � is a diagonal
fictitious density matrix. Based on the adaptive dynamic relaxation method, the most desired density matrix and
damping coefficient can be determined using Greschgorin’s theorem and Rayleigh’s quotient, respectively [53].

Let u=, ¤u=, ¥u=, and f= denote the displacement, velocity, acceleration, and force vector fields for a given material
point at C = C=, respectively. In the central difference scheme, the velocity and acceleration vectors can be approximated
as follows:

¤u= ≈ u=+1 − u=−1

2ΔC
(A.2)

¥u= ≈ u=+1 − 2u= + u=−1

ΔC2
(A.3)

where ΔC refers to the incremental time step. Substituting Eqns. (A.2) and (A.3) into Eqn. (A.1), while rearranging the
terms yields to an updated scheme for the displacement field:

u=+1 =
2ΔC2f= + 4u= + (2ΔC − 2)u=−1

2 + 2ΔC (A.4)

Accordingly, Eqn. (A.5) is employed to estimate u−1 for initialization of the displacement update:

u−1 = u0 − ΔC ¤u0 + ΔC
2

2
¥u0 (A.5)

where u0, ¤u0, and ¥u0 are the initial displacement, velocity, and acceleration vectors, respectively. The velocity and
acceleration vectors may subsequently be updated using Eqns. (A.2) and (A.3). With the assumption of a unit diagonal
matrix �, the time step ΔC can be selected based on Greschgorin’s theorem [53], as expressed in the following:

ΔC ≤
√

4Λ88∑
9 | 8 9 |

=

√
4∑
9 | 8 9 |

=

√
4
| |K| |∞

(A.6)

where Λ88 represents the diagonal coefficients of the density matrix, K denotes the stiffness matrix of the system, and
| | · | |∞ denotes the vector-induced matrix∞ norm. Since the stiffness matrix  8 9 is not explicitly computed, another
approximation scheme can be applied for the computation of time step size. An appropriate value of ΔC for the 1D PD
model is based on the wave speed, denoted as 2s, using the Courant-Friedrichs-Lewy (CFL) condition [47]:

ΔC ≤ 2ΔG
2s

(A.7)

where ΔG represents the minimal grid size, or the minimal bond length in PD modeling. In higher-dimensional problems
however, the CFL condition becomes stringent. Hence, for an =-dimensional problem with a uniform grid, the critical
ΔC may be estimated as:

ΔC ≤ 2ΔG
=

√
d

�<0G
(A.8)

where �<0G is the largest eigenvalue of the elastic stiffness matrix. It is worth noting that the CFL condition in Eqn. (A.8)
can be conservative since the derivation is based solely on the nearest neighbors [44].

Next, the damping ratio, 2, is selected based on the lowest frequency of the system using Rayleigh’s quotient [53]:

2= = 2

√
(u=)Tk=u=

(u=)Tu=
(A.9)

where k= is a diagonal local stiffness matrix given by:

:=88 = −
1
Λ88

5 =
8
− 5 =−1

8

D=
8
− D=−1

8

= −
5 =
8
− 5 =−1

8

D=
8
− D=−1

8

(A.10)
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Here, 5 =
8
is the 8th component of the force vector f, at time C = C=. Since the local stiffness matrix calculation

involves division by the difference of displacements in consecutive time steps, it is plausible to encounter a division
by zero. Accordingly, the local stiffness :=

88
is set to zero, when the difference between displacement fields vanishes.

Finally, a guess damping ratio, 20, can be chosen to start the computation.
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