Advanced Air Mobility (AAM): An Overview and Brief History

Michael Patterson, PhD

Dec 10, 2021
Presentation Outline:
I. Overview of AAM
II. Brief History of AAM

Disclaimer: any opinions expressed in this presentation or subsequent discussions are solely those of the presenter and do not necessarily reflect the views of the US Government or NASA
Overview of AAM
Advanced Air Mobility (AAM) Mission

- Distribution Center/Warehouse
- Inter-City eV/STOL
- Inter-city eCTOL
- Cargo Delivery
- Medical Transfer
- On Demand Air-Taxi
- Cross-metro Transfer
- Airport Transfer
- Air Ambulance
- Urban Operations
- Regional Network
- Cargo Delivery
- Rural Operations
- High Density Corridor
- Urban Operations
- Fleet Operations
- Safe, sustainable, affordable, and accessible aviation for transformational local and intraregional missions
Advanced Air Mobility (AAM): Bringing Aviation into Daily Life

- **Three primary mission categories:**
 - **Urban Air Mobility (UAM)**
 - “Local” missions up to ~75 miles around metropolitan areas
 - Largely novel “vertiport” infrastructure
 - eVTOL, potentially eSTOL or eCTOL aircraft
 - 1 to ~6 passengers or equivalent cargo
 - **Small Unmanned Aircraft Systems (sUAS)**
 - Local missions for aerial work or small cargo delivery (e.g., food, small packages)
 - Range of required takeoff/landing infrastructure from none to specialized
 - Typically VTOL-capable aircraft
 - **Regional Air Mobility (RAM)**
 - “Intraregional” missions up to ~500 miles
 - Primarily utilize existing (smaller) airports
 - eCTOL and eSTOL aircraft
 - Up to 19 passengers or equivalent cargo

- AAM is generally enabled by electrification & automation
- Many potential uses, including
 - Passenger transport
 - Cargo/package delivery
 - Emergency services/public good (e.g., air ambulance, EMT transport, etc.)
 - Aerial work (e.g., infrastructure inspection, photography, tourism, etc.)
Addressing AAM Challenges

Vehicle Development and Operations
Airspace Design and Operations
Community Integration

NASA and key partners are collectively taking on the most difficult mission challenges to enable industry to flourish by 2030

- Research and Development Portfolio
- AAM National Campaign Series
- Robust Ecosystem Partnerships

NASA to deliver long term technical solutions and architecture requirements for the industry and regulatory communities
AAM Ecosystem Working Groups

Align on a common vision for AAM

Collectively identify and investigate key hurdles and associated needs

Learn about NASA’s research and planned transition paths

Develop AAM system and architecture requirements

Adopt a strategy for engaging the public on AAM

Support regulatory and standards development

Form a connected stakeholder community

See https://nari.arc.nasa.gov/aam-portal/ for more information

Accelerate the development of safe and scalable AAM flight operations by bringing together the broad and diverse ecosystem.
Brief History of AAM
AAM can be traced back to the early 2000s. Interest has grown exponentially since the late 2010s.
Discussion
BACK-UP
What is an eVTOL aircraft?

- eVTOL = electric vertical takeoff and landing
 - Mix of all-electric, hybrid-electric, fuel cell power systems
- Many configurations – no clear “dominant configuration”
 - Multirotor, (multi) tiltwing, (multi) tiltrotor, fan-in-wing, separate lift + cruise, compound helicopter, tiltduct, blown flap/tiltduct, advanced rotorcraft, etc.
- Common characteristics:
 - 1 to 6 person payload
 - Shorter hover duration than typical rotorcraft
 - Often considerably shorter ranges than conventional aircraft

All images are NASA reference aircraft: https://sacd.larc.nasa.gov/asab/asab-projects-2/uam.refs/
Airport/Vertiport Integration Considerations
Airport Considerations: Electrification

- Installation of chargers
 - Accessible locations for all operations
 - Consider use also for ground vehicles
 - Ongoing charging standardization discussions
 - How to monetize charging?

- Connectivity to electrical grid
 - Potentially large additional power requirements (multi-MW)
 - Long lead times

- Microgrids/renewables
 - Potentially large available land area
 - Sustainable energy supply for aviation and/or to improve local electricity grid

Note: ongoing NASA-funded research by Georgia Tech assessing potential energy demand for RAM and potential for on-airport renewables to generate needed electricity

Roanoke Airport diagram from FAA’s Chart Supplement

Solar arrays outside of runway object free area at Chattanooga Airport (CHA)

Imagery from NationalMap.gov
Other Airport Considerations

• Improved multi-modal connectivity for FBOs
 – AAM operations *not* likely to use existing Part 121 passenger terminals
 – Mode change times need to be kept small
 – RAM and some UAM ops likely to utilize existing airport runways
 – FBOs may partner with indirect/direct air carriers

• Consider inclusion of new vertipads at airports
 – Ideally direct passenger access to existing passenger terminals (at larger airports)
 – Enable deconflicted approach/departure paths with existing air traffic

Notional vertipad locations on a parking garage at RIC

Imagery from Google Maps
©2021 Commonwealth of Virginia, Maxar Technologies, USDA Farm Service Agency
Vertiports

• Many potential locations
 – Greenfield sites
 – Rooftops
 – Parking garages
 – Barges
 – New overpasses / cloverleafs?
 – Etc.

• Many siting considerations
 – Multi-modal connectivity
 – Noise
 – Utilities (electric grid)
 – Proximity of other vertiports/pads
 – Equity
 – Etc.

• Vertiport design guidelines under development