
NASA/TP-20210024642

October 2022

Multi-Objective Low-Thrust Trajectory
Optimization With Robustness to Missed
Thrust Events

Chandrakanth Venigalla, Jacob A. Englander and Daniel J. Scheeres

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NTRS Registered
and its public interface, the NASA Technical
Reports Server, thus providing one of the largest
collections of aeronautical and space science STI
in the world. Results are published in both non-
NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

 TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counter-
part of peer-reviewed formal professional
papers but has less stringent limitations on
manuscript length and extent of graphic
presentations.

 TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

 TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page
at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Phone the NASA STI Information Desk at
757-864-9658

 Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

October 2022

NASA/TP-20210024642

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Multi-Objective Low-Thrust Trajectory
Optimization With Robustness to Missed
Thrust Events

Chandrakanth Venigalla
University of Colorado Boulder, Boulder, CO

Jacob A. Englander
NASA Goddard Space Flight Center

Daniel J. Scheeres
University of Colorado Boulder, Boulder, CO

Trade names and trademarks are used in this report for identification only. Their usage
does not constitute an official endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.
Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148
NASA’s Langley Research
Center Hampton, VA
23681-2199

National Technical Information
Service 5285 Port Royal Road
Springfield, VA 22161
703-605-6000

Available from

Multi-Objective Low-Thrust Trajectory Optimization With
Robustness to Missed Thrust Events

Chandrakanth Venigalla ∗

University of Colorado Boulder, Boulder, Colorado 80309

Jacob A. Englander†
NASA Goddard Space Flight Center, Greenbelt, Maryland 20771

Daniel J. Scheeres‡
University of Colorado Boulder, Boulder, Colorado 80309

This paper introduces a new technique for directly controlling the missed thrust recovery

margin (MTRM) of a low-thrust spacecraft trajectory. MTRM is defined here as the longest

amount of time a spacecraft may coast away from a nominal trajectory while still being

able to reach a terminal manifold once thruster operations are resumed. The "virtual

swarm" optimization technique developed here simultaneously optimizes the nominal spacecraft

trajectory along with many recovery trajectories. The objective can be to maximize the MTRM

of the nominal trajectory at its weakest point or to constrain the worst-case MTRM to be at or

above a desired level while optimizing a different value (e.g. mass, time of flight). The technique

is demonstrated for a direct Earth-Mars transfer and for a gravity-assist trajectory to the

asteroid Psyche. Further, a method for finding the Pareto front of MTRM, arrival mass, and

arrival date is presented to address the related multi-objective optimization problem.

Nomenclature

𝛽 = Missed thrust recovery margin: maximum shutdown time allowable at a given point, days

𝛾 = Worst-case missed thrust margin 𝛽 along a given trajectory, days

𝜂underload = Underload factor to reduce initial mass

𝜅 = Propellant margin, %

𝜈 𝑗 ,𝑘 = Binary variable set to 1 if a virtual spacecraft is spawned at segment j in phase k

𝜏 = Total number of impulses in a trajectory

𝜏𝑘 = Total number of impulses in phase 𝑘

∗Ph.D. Student, Department of Aerospace Engineering Sciences, 3775 Discovery Drive. AIAA student member. chve1854@colorado.edu
†Formerly an Aerospace Engineer, Navigation and Mission Design Branch, 8800 Greenbelt Road. Currently a Mission Design Engineer at The

Johns Hopkins University Applied Physics Laboratory.
‡A. Richard Seebass Endowed Chair Professor, Department of Aerospace Engineering Sciences, 3775 Discovery Drive. Fellow AIAA.

𝝍 = Function to constrain initial state of the spacecraft

𝒇 = Spacecraft state dynamics function

𝒈 = Constraint function

𝑖 = Index for spacecraft in the virtual swarm

𝐽 = Objective function

𝑗 = Index for impulses in a phase

𝑘 = Index for phases in a trajectory

𝑙 = Function dictating the maximum initial mass that can be launched to a given 𝐶3 value, kg

𝑀 = Function used to calculate 𝛽

𝑚 = Spacecraft mass, km

𝑁 = Total number of virtual spacecraft

𝑁𝑝ℎ = Total number of phases in a trajectory

𝒓 = Spacecraft position vector, km

𝑇max = Maximum spacecraft time of flight, days

𝑡𝑠𝑑 = Forced shutdown time (missed thrust event length), days

𝒖 = Spacecraft control vector, m/s2

𝒗 = Spacecraft velocity vector, km/s

𝒙 = Spacecraft state

I. Introduction

Low-thrust propulsion methods, especially solar electric propulsion (SEP), are becoming increasingly used in space

missions. These methods are useful for their efficiency and ability to, in many cases, deliver more massive payloads

to a target than traditional chemical propulsion methods. However, low-thrust methods typically require that a thruster

be on for long periods of time, whereas a chemical mission may only require the firing of a thruster for comparatively

fewer instances and shorter periods of time in each instance. In the event that some issue prevents a spacecraft with

low-thrust propulsion from following its nominal thrust profile (e.g., spacecraft transitions to safe mode and ceases

thrusting), the outage has the potential to render the desired target inaccessible given the available propellant on-board

and time available to reach the destination. In other words, a surprise loss of thruster operations may cause the mission

to fail if the nominal trajectory is not designed to be robust to such losses. In this work, we define the missed thrust

recovery margin (MTRM) as the longest amount of time a spacecraft may coast away from a nominal trajectory while

still being able to reach a terminal manifold once thruster operations are resumed. In other words, the MTRM at a given

point on a trajectory is the length (e.g., days) of the longest forced coast period that still allows the spacecraft to reach its

2

target. While MTRM is important in a variety of contexts, this work specifically focuses on the MTRM problem in

interplanetary trajectories. An Earth orbiting low-thrust spacecraft may rely less on precise timing and orbital periods

around Earth are relatively short, while an interplanetary low thrust spacecraft will likely be relying on relative phasing

of various celestial bodies and likely cannot afford to wait a full orbital period before resuming operations.

A great deal of work on trajectory optimization has focused on mass- and time-optimal trajectories, but there is a

gap in work on directly optimizing the MTRM of a trajectory in the literature. Laipert and Longuski [1] address the

missed thrust problem by evaluating how much additional propellant is needed to allow a certain amount of MTRM

throughout a given nominal trajectory. They also explore the trade-off between the additional propellant margin and how

late the spacecraft arrives at the target. Critically, however, their technique does not enable the re-shaping of the nominal

trajectory to be more robust to missed thrust events. While their technique enables the analysis of how much reserve

propellant is needed to meet robustness requirements, the result is not necessarily giving the most propellant optimal

way of doing so. Laipert and Imkin [2] analyze the potential impact of multiple missed thrust events using a monte-carlo

approach given historical data and statistics on missed thrust events in past space missions. This analysis similarly uses

propellant margin and lateness to measure the robustness of a given trajectory to the multiple missed thrust events.

Ozaki et. al. [3] explore a stochastic differential dynamic programming approach to dealing with uncertainty in

low-thrust spacecraft missions. However, the theory in its current form does not appear to have the ability to directly

account for the missed thrust problem. Instead, uncertainty is modeled as Gaussian disturbances. Olympio [4] also

takes a stochastic approach to the problem. Olympio and Yam [5] address the missed thrust problem with a constrained

optimization problem where the MTRM at each point in the nominal, mass-optimized trajectory is constrained to be

greater than or equal to some threshold MTRM value. MTRM in the optimization problem is calculated using an

approximation which is found by fitting a function to discrete points in state space where MTRM is evaluated. The

technique developed in the present work is not totally dissimilar, though does not use a function approximation to

constrain MTRM. As reported by Oh et. al. [6], the Dawn mission used a "rolling coast" method to ensure that a

minimum of 28 days of forced shutdown time was always possible at any point in the nominal trajectory. Ad hoc

methods include inserting coast arcs into more sensitive (low MTRM) parts of a nominal trajectory [7] and lowering the

planned thruster duty cycle for sensitive parts of a trajectory.

Concurrent with the development of the present work, McCarty and Grebow [8] also developed a similar method to

address the missed thrust problem. The "ghost" trajectories discussed in their work are quite similar to the "virtual"

trajectories developed in the present work. Ghost trajectories are applied in the three-body problem to make cis-lunar

trajectories more robust to missed thrust events. The virtual swarm method developed here in Sections II and III

is generally applicable across dynamical models, but the example results focus on interplanetary trajectories using

Keplerian dynamics (Sections IV - V). McCarty and Grebow use a fixed number of ghost trajectories (five) in targeted

locations to improve MTRM at points in the nominal trajectory known to have the worst robustness to missed thrust

3

events. The limited number of ghost trajectories reduces the number of trajectories that must be simultaneously

optimized to lessen the computational load, but does not necessarily allow MTRM to be fully constrained or optimized

across the entire trajectory. The virtual swarm method developed here requires a variable number of virtual spacecraft

to be added to the problem to ensure that worst-case MTRM is controlled across the entire nominal trajectory. Given the

more complex dynamics in the three-body problem, applying the virtual swarm method to cis-lunar trajectories would

likely be more challanging than the interplanetary example trajectories that are explored in the present work. Notably,

the ghost trajectories in [8] also appear to have a fixed thrusting structure, meaning that the optimization process cannot

uncover alternative thrust profiles that may be ideal for recovery trajectories. The Sims-Flanagan transcription used in

the examples here provides more freedom for the optimizer to select thrusting and coasting arcs.

Rather than relying on ad hoc, heuristic, or potentially over-conservative approaches to making a nominal low-thrust

trajectory robust, we instead aim to directly optimize or constrain the worst-case MTRM along a nominal, deterministic

trajectory. This allows a mission designer to either meet a given robustness constraint throughout a trajectory, or

allows them to understand the best possible value of the worst-case MTRM. The present work introduces a "virtual

swarm" technique where a nominal spacecraft trajectory is simultaneously optimized with a discrete number of recovery

trajectories with consideration for MTRM. The MTRM can either (1) be constrained in each recovery trajectory to be

some minimum value (enforce a shutdown of at least some amount of time) with some other variable being optimized, or

alternatively (2) the lower bound constraint on the MTRM for each recovery trajectory can be used as the optimization

variable to find a maximally robust nominal trajectory. Note that in this work, when optimizing MTRM, we specifically

are interested in optimizing the worst-case MTRM to ensure that the worst-case recovery time is as long as possible.

This is in line with typical requirements for past missions such as the Dawn mission (28 days minimum recovery time at

any point [9]), but if more uniformity or certain distributions of MTRM throughout a trajectory are desired, future work

may consider a different optimization objective.

In addition to addressing the single-objective problem of optimizing worst-case MTRM along a trajectory, this

work also addresses the multi-objective problem because such considerations are critically important in the mission

development phase. It is rare for a mission designer to have only a single objective to consider; frequently they are

dealing with many different aspects of the mission to find the "best" overall trajectory. Thus, the impact of optimizing

worst-case MTRM on other aspects of the trajectory is also of interest. The virtual swarm method developed here

allows a multi-objective analysis of the trade-off between worst-case MTRM along a nominal trajectory, delivered mass,

and target arrival date. Specifically, we aim to develop an automated method of generating a Pareto front for these

objectives that presents the best case scenario for one objective given that the other objectives are fixed. Solutions that

are represented along a Pareto front cannot improve one of the objectives without performing worse in another. A Pareto

front is perhaps one of the best ways to give decision makers the ability to weigh different objectives that may not have a

"correct" answer. For example, each mission may prioritize the competing objectives of missed thrust robustness and

4

payload mass in different ways, and an informed decision may be best made by considering the full curve of Pareto

optimal solutions. Further, methods that can be automated are important in allowing the efficient exploration of a trade

space; too much need for human intervention may make exploration of the trade space too difficult to do in a tractable

amount of time.

II. Problem Statements
First, consider the low-thrust spacecraft nominal trajectory optimization problem of maximizing the total delivered

mass to a target. In the terminology of optimal control, this is the problem of maximizing the objective

𝐽 = 𝑚 𝑓 (1)

with general state dynamics

¤𝒙 = 𝒇 (𝒙, 𝒖, 𝑡;𝜶) (2)

where 𝒙 is the spacecraft state

𝒙 =



𝒓

𝒗

𝑚


(3)

with Cartesian position 𝒓, Cartesian velocity 𝒗, and mass 𝑚. 𝒖 is the control vector provided by the propulsion systemn

and 𝜶 is a set containing spacecraft parameters (e.g. solar panel size, thruster performance, etc.). There is the terminal

constraint to match the state of the target at the final time

𝒈 𝑓 (𝒙𝑟𝑣 (𝑡 𝑓), 𝑡 𝑓) = 𝒙𝑟𝑣 (𝑡 𝑓) − 𝒙
target
𝑟𝑣 (𝑡 𝑓) = 0 (4)

where

𝒙𝑟𝑣 =


𝒓

𝒗

 (5)

refers only to Cartesian state, and there are inequality constraints on initial and final times

𝑡0,min ≤ 𝑡0 ≤ 𝑡0,max (6)

𝑡 𝑓 ,min ≤ 𝑡 𝑓 ≤ 𝑡 𝑓 ,max (7)

5

and potentially an inequality constraint to ensure that the time of flight (TOF) is less than a desired maximum TOF, 𝑇max

𝑡 𝑓 − 𝑡0 ≤ 𝑇max (8)

There is also a constraint on the initial state

𝒈0 (𝒙(𝑡0), 𝑡0) = 𝒙(𝑡0) − 𝝍(𝑡0, 𝝆) = 0 (9)

Where the function 𝝍 determines the initial state of the spacecraft as a function of time and as a function of the set of

auxiliary parameters 𝝆. The set 𝝆 can include parameters such as 𝐶3, launch asymptote, and related parameters. At its

simplest, 𝝍 may simply fix the initial state of the spacecraft on some orbit (e.g., Earth’s heliocentric orbit). Parameters

in 𝝆 may also have associated equality or inequality constraints.

The objective 𝐽 is optimized by selecting decision variables 𝒖, 𝑡0, 𝑡 𝑓 , and potentially some or all of the auxiliary

parameters 𝝆. This problem will be referred to as the "reference problem" or "mass-optimal" problem, and is frequently

a baseline problem being solved by mission designers who use a variety of additional methods to take into account other

mission objectives and constraints that are not explicitly accounted for in this formulation.

This work focuses on augmenting the reference problem with consideration for missed thrust recovery margin, which

can be considered as either a constraint or an objective. The missed thrust recovery margin 𝛽 at an arbitrary point in

state space 𝒙 at time 𝑡 is defined as

𝛽 = 𝑀 (𝒙, 𝑡; 𝒈(·), 𝒇 (·)) = max
𝒖𝒓 (·) ∈U

𝑡𝑠𝑑 (10)

where 𝑡𝑠𝑑 is the forced shutdown time when the spacecraft cannot thrust. There is the constraint

𝒖(𝑡) = 0 for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑠𝑑 (11)

enforcing that the spacecraft cannot thrust until 𝑡 > 𝑡𝑠𝑑 and the constraint

𝑚 𝑓 ≥ 𝑚 𝑓 ,min (12)

The maximization problem in Eq. (10) is also subject to the same state dynamics 𝒇 (·) as the reference problem and

the same Cartesian terminal constraint in Eq. (4). The values of 𝑡 𝑓 ,min, 𝑡 𝑓 ,max, and 𝑚 𝑓 ,min, however, can be selected

either to match the values used and found in the reference problem or selected to be more permissive to allow recovery

trajectories to have worse performance than the reference. For example, if 𝑚 𝑓 ,min is chosen to be the optimized value of

𝑚 𝑓 found in the reference problem and the same time bounds on 𝑡 𝑓 are used as in the reference problem, the value of 𝛽

6

represents the amount of time 𝑡𝑠𝑑 that is tolerable at the point in state space while still being able to deliver a mass of

𝑚 𝑓 to the target within the original time bounds. A more permissive approach would calculate 𝛽 with a longer allowed

time of flight and/or lower amount of delivered mass (e.g., if a missed thrust event occurs it is ok to arrive at the target

30 days later than the original 𝑡 𝑓 ,max).

The set U contains all control functions 𝒖(·) that generate a state trajectory 𝒙(𝒖(𝑡), 𝑡)∀𝑡 that satisfy the terminal

constraints given a starting point 𝒙 and 𝑡 as well as spacecraft parameters such as thruster performance characteristics.

Some optimal recovery control function 𝒖∗
𝒓 (·) ∈ U, will both meet the constraint in Eq. (11) and maximize 𝑡𝑠𝑑 . That is,

𝒖∗
𝒓 (·) is a function describing the recovery optimal control that will allow the longest forced shutdown period 𝑡𝑠𝑑 .

Though 𝛽 is a quantity that can be defined at arbitrary points in state space, here it is of interest when evaluated

along the nominal trajectory of a low-thrust spacecraft. Especially important in mission design is the worst-case missed

thrust margin of a nominal spacecraft trajectory. That is, considering all points along a nominal trajectory, what is the

shortest amount of time a spacecraft has to recover from a forced shutdown event before it can no longer reach its target.

For a given spacecraft state trajectory 𝒙(𝒖(𝑡), 𝑡), the worst-case missed thrust margin 𝛾 is

𝛾 = min
𝑡

𝑀 (𝒙(𝒖(𝑡), 𝑡), 𝑡; 𝒈(·), 𝒇 (·)) (13)

In other words, 𝛾 is the lowest value of 𝛽 found along a nominal trajectory as 𝑡 is varied from 𝑡0 to 𝑡 𝑓 .

Frequently, there is some lower bound requirement on 𝛾 for a low-thrust mission (e.g. 𝛾 ≥ 28 days for the Dawn

mission [6]). Thus, the problem of accounting for this can be considered as adding the constraint

𝛾 ≥ 𝛾min (14)

to the reference problem such that delivered mass is optimized while the trajectory is still forced to be robust. This is

referred to here as the robust-constrained problem. Alternatively, there may be some desired lower-bound constraint on

delivered mass (e.g. spacecraft design has been mostly finalized), and a mission designer may wish to maximize 𝛾 for a

trajectory. This is referred to here as the robust-optimal problem.

Current methods of accounting for these robustness considerations are frequently ad-hoc, rely on the experience and

intuition of the mission designer, and can require a significant time expenditure on the part of the designer. Further,

while current methods may enable a designer to meet the constraint in Eq. (14), such methods may not enable the

simultaneous optimization of delivered mass or other variables while also meeting the constraint.

In the present work a method is developed that can both optimize spacecraft delivered mass with a constraint on 𝛾

as well as optimize 𝛾 with constraint on delivered mass. The method can also be automated to enable more efficient

exploration of the engineering trade space and Pareto front of solutions. While the present work is focused on the lower

7

bound of 𝛽 throughout a trajectory, the method developed here is not incompatible with alternative criteria for 𝛽 or

alternative optimization objectives.

III. Virtual Swarm Method
The central idea of the virtual swarm method is to simultaneously optimize a nominal spacecraft trajectory along

with its recovery trajectories after simulated forced shutdown events. Each "virtual" spacecraft provides a method of

fixing or optimizing 𝛽 at discrete points along a nominal trajectory. Simultaneously optimizing the nominal trajectory

along with its recovery trajectories enables the nominal trajectory to be reshaped in conjunction with values related to

the recovery trajectory (e.g. recovery trajectory forced coast time, delivered mass).

A virtual spacecraft is one that has a fixed "spawn point" where its state 𝒙0 = 𝒙nominal (𝑡spawn) where 𝑡spawn is the

time along the nominal trajectory the virtual spacecraft is spawned. Each spawn point can be thought of as a discrete

control point for missed thrust recovery margin along the nominal trajectory. The virtual spacecraft themselves can

be equivalently thought of as spacecraft that have the same control history as the nominal spacecraft from 𝑡 = 𝑡0 to

𝑡 = 𝑡spawn. At 𝑡spawn, the virtual spacecraft has a forced shutdown/coasting period of 𝑡𝑠𝑑 days, after which it can resume

thrusting with controls and other decision variables (e.g. TOF, 𝑚 𝑓) that are independent of the nominal spacecraft

trajectory. The nominal and the virtual spacecraft must all satisfy the specified terminal constraints. An arbitrary

number 𝑁 of these recovery trajectories can be added, and here are indexed by the variable 𝑖. Care must be exercised

when selecting the number 𝑁 and spawn times of virtual spacecraft; this is discussed later in this section. At each

spawn point, a virtual spacecraft has a forced shutdown (coast) time of 𝑡𝑠𝑑,𝑖 , where 𝑖 = 1, 2, ..., 𝑁 . Let 𝑖 = 0 refer to the

nominal spacecraft. This method is illustrated in Fig. 1.

Te
rm

in
al

 m
an

ifo
ld

Spawn points

Nominal
trajectory

Virtual/recovery trajectory

Forced coast

Fig. 1 Illustration of the virtual swarm method

For the robust-constrained reference problem, the optimization is formulated as the minimization of

𝐽 = −𝑚 𝑓 ,min (15)

8

subject to

𝑡𝑠𝑑,𝑖 = 𝛾min 𝑖 = 1, 2, ..., 𝑁 (16)

𝑚 𝑓 ,𝑖 ≥ 𝑚 𝑓 ,𝑚𝑖𝑛 ∀𝑖 (17)

𝑡 𝑓 ,𝑚𝑖𝑛 ≤ 𝑡 𝑓 ,𝑖 ≤ 𝑡 𝑓 ,𝑚𝑎𝑥 ∀𝑖 (18)

While the nominal spacecraft still has the initial constraints of Eq. (9), each virtual spacecraft has the aforementioned

initial constraint

𝒙0,𝑖 = 𝒙nominal (𝑡spawn,𝑖) 𝑖 = 1, 2, ..., 𝑁 (19)

with

𝑡0,𝑖 = 𝑡spawn,𝑖 𝑖 = 1, 2, ..., 𝑁 (20)

In short, this formulation fixes 𝛾 by assigning that value to each 𝑡𝑠𝑑,𝑖 and then optimizes the lower bound on delivered

mass to ensure that the worst-case delivered mass is the highest possible. The lower bound is the focus because the

spacecraft design must be able to account for worst-case performance.

The resulting value of 𝑚 𝑓 ,min represents the worst-case delivered mass. While 𝑚 𝑓 ,𝑖 is a decision variable for all

spacecraft, in the results of the optimization problem only the limiting case 𝑚 𝑓 ,𝑖 = 𝑚 𝑓 ,min represents a maximum

delivered mass for that spacecraft. The other virtual spacecraft can be separately optimized to find the maximum

delivered mass for each case.

For the robust-optimal problem, the optimization is formulated as the minimization of

𝐽 = −𝑡𝑠𝑑,𝑚𝑖𝑛 (21)

subject to

𝑡𝑠𝑑,𝑖 ≥ 𝑡𝑠𝑑,𝑚𝑖𝑛 𝑖 = 1, 2, ..., 𝑁 (22)

𝑚 𝑓 ,𝑖 ≥ 𝑚 𝑓 ,𝑚𝑖𝑛 ∀𝑖 (23)

𝑡 𝑓 ,𝑚𝑖𝑛 ≤ 𝑡 𝑓 ,𝑖 ≤ 𝑡 𝑓 ,𝑚𝑎𝑥 ∀𝑖 (24)

Again, the nominal spacecraft still has the initial constraints of Eq. (9), and each virtual spacecraft has the aforementioned

initial constraint in Eq. (19).

This formulation fixes a lower bound on delivered mass 𝑚 𝑓 ,𝑖 , ensuring that the nominal, as well as all recovery

trajectories, deliver sufficient mass while ensuring that the lower bound value 𝛾 is as large as possible. This ensures

9

that the weakest point in the trajectory in terms of 𝛽 has the largest possible value. Similar to the robust-constrained

reference problem, 𝛽𝑖 = 𝑡𝑠𝑑,𝑖 only for the trajectory where 𝑡𝑠𝑑,𝑖 = 𝑡𝑠𝑑,𝑚𝑖𝑛. For other trajectories, 𝛽𝑖 ≥ 𝑡𝑠𝑑,𝑖 , and 𝛽 for

each point can be found by re-solving for it at each point along the nominal trajectory. If a sufficient number 𝑁 of virtual

spacecraft are used in proper spawn locations, then 𝑡𝑠𝑑,𝑚𝑖𝑛 = 𝛾.

Note that both the robust-optimal and robust-constrained problems can both be used to uncover the same solution.

Consider a robust-constrained problem where an optimal 𝑚 𝑓 ,min is found with fixed 𝑡𝑠𝑑,𝑖 . Using that same 𝑚 𝑓 ,min

as a fixed constraint value in the robust-optimal problem and optimizing 𝑡𝑠𝑑,min will result in 𝑡𝑠𝑑,min = 𝑡𝑠𝑑,𝑖 from the

robust-constrained problem. Solving both problems and ensuring that the solutions match as expected can increase the

confidence that a solution has been properly found.

The number and placement of the 𝑁 virtual spacecraft is extremely important in ensuring that the constraint of

𝛾 is properly met or in ensuring that the lower bound 𝛾 is properly optimized. Theoretically, an infinite number of

virtual spacecraft could be added such that one is spawned at each time of the nominal trajectory. A large number of

equally spaced virtual spacecraft could be added throughout the nominal trajectory in lieu of constraining every point.

However, a large number of virtual spacecraft will require a large number of decision variables that may slow efforts to

numerically converge on an optimal solution. Alternatively, virtual spacecraft can be iteratively added as constraint

violations are found. First, 𝑁init initial virtual spacecraft can be placed at locations in the nominal trajectory where it is

expected to be sensitive to missed thrust events (e.g. right before arrival at the final target, right before a gravity assist).

Then, more virtual spacecraft can be iteratively added as shown in Algorithm 1.
Algorithm 1: Iterative scheme of adding virtual spacecraft

Result: Optimized nominal and recovery trajectories

add 𝑁init virtual spacecraft;

solve Eq. (15) or Eq. (21);

evaluate 𝛽 at each point along the trajectory, calculate 𝛾;

while 𝛾 < 𝛾min do

add 𝑁𝑤 virtual spacecraft, one at each the 𝑁𝑤 worst violations points where 𝛽 < 𝛾min;

solve Eq. (15) or Eq. (21);

evaluate 𝛽 at each point along the trajectory, calculate 𝛾;

end

This is the same scheme used for many optimization problems where explicitly implementing all constraints can be

computationally expensive. It does not, however, dilute the result of the solution; constraints need not be explicitly

enforced as long as they are not violated in the final solution. Algorithm 1 can be automated or done manually by the

mission designer.

10

IV. Low Thrust Trajectory Transcription
While the virtual swarmmethod can be implemented numerically using a number of different trajectory transcriptions,

in the present work low-thrust trajectories will be described using a multiple phase version of the well known Sims-

Flanagan direct transcription of the low-thrust trajectory optimization problem [10, 11]. This transcription is well suited

to global optimization problems and enables faster convergence on local optima for low-thrust trajectories. While it

is relatively low fidelity, it enables efficient exploration of wide search spaces and provides initial guesses for higher

fidelity methods that are not as able to explore wide regions of state space. This is especially important for efficient

exploration of virtual swarm solutions because they can be very high-dimensional problems.

Initial
state at

Target
state at

Match point
constraintSegment

Fig. 2 Single phase represented with a Sims-Flanagan transcription

In the Sims-Flanagan transcription, low-thrust control is modeled as a series of impulsive maneuvers spaced

throughout a trajectory in discrete segments as seen in Fig. 2. In this work, a single phase is represented by a

Sims-Flanagan transcribed trajectory with forward shooting from the initial body, and backward shooting from the

final body. The forward and backward parts of the trajectories are constrained to match at the midpoint of the phase,

and Keplerian dynamics are used to propagate the trajectory between impulses. The universal variable formulation

from Bate, Mueller, and White [12] is used for the Keplerian propagation. Multiple phases can be connected to give a

trajectory with one or more gravity assists; a single phase mission here goes directly from the initial body to the final

body. In a multi-phase mission, the final state of one phase is the initial state of the next phase. Phases are indexed from

𝑘 = 1, 2, ..., 𝑁𝑝ℎ. In each phase, there are 𝜏𝑘 impulses numbered from 𝑗 = 1, 2, ..., 𝜏𝑘 , each of which is centered in the

segment with the same number identifier. The magnitude of each impulsive Δ𝑉 is limited in proportion to how much

Δ𝑉 a low thrust engine may be able to provide in the time period of the segment. The method is summarized for a

single spacecraft in Fig. 2. The total number of impulses 𝜏 is

𝜏 =

𝑁𝑝ℎ∑︁
𝑘=1

𝜏𝑘 (25)

and the time period of each segment is

𝑞 =
𝑡 𝑓 − 𝑡0

𝜏
(26)

Because continuous periods of low-thrust acceleration are approximated by impulsive Δ𝑉s, virtual spacecraft are only

11

spawned at the start time of a segment. For similar reasons, the maximum number of virtual spacecraft spawned is

𝑁max = 𝜏. For 𝑁 > 𝜏, virtual spacecraft will spawn from points inside segments, where thrust is theoretically being

applied but is not actually apparent until the impulse in the center of the segment. These points inside segments have

larger differences from a higher fidelity, finite burn approximation of the low thrust trajectory than points at the start of

segments. For greater control and fidelity, 𝜏 can be increased.

Terminal manifold

Match

Virtual forced
coast

Nominal

Virtual/
recovery

Spawn point

A B C

Fig. 3 Detail on a single virtual/recovery trajectory

Figure 3 shows a detailed view of how a single recovery trajectory is handled in conjunction with the nominal

trajectory. A virtual spacecraft can be added to the start of any segment, and is uniquely described by the nominal phase

and segment it spawns from. While in general virtual trajectories immediately diverge from the nominal trajectory at the

spawn point (see Fig. 1), when applied in a Sims-Flanagan transcription the virtual trajectory does not deviate from

the nominal until one of the two spacecraft applies an impulse. In the notional example shown in Fig. 3, the nominal

and virtual trajectories do not deviate until the nominal spacecraft applies an impulse at point B. Alternatively, the

deviation could be caused by the first impulse applied by the virtual spacecraft (point C), in which case the full effect of

the missed thrust event would not impact the virtual spacecraft trajectory. This occurs when

𝑡𝑠𝑑,𝑖 +
𝑞𝑖

2
<

𝑞0

2
(27)

where the time length of a single segment of the nominal trajectory is 𝑞0 and the time length of a single segment of the

virtual trajectory is 𝑞𝑖 . The times 𝑞0 and 𝑞𝑖 are frequently of similar magnitude, and usually 𝑡𝑠𝑑,𝑖 > 0 is desired; both

factors lead to the condition in Eq. (27) not holding.

For a virtual spacecraft spawned at segment 𝑗 of phase 𝑘 , the total number of impulses 𝜏virtual 𝑗,𝑘 it has for its mission

lifetime is

𝜏virtual 𝑗,𝑘 = max{(𝜏𝑘 − 𝑗 + 1), 𝜏𝑘,min} +
𝑁𝑝ℎ∑︁
𝑘+1

𝜏𝑘 (28)

The virtual spacecraft typically gets the same number of impulses as remain in the phase for the nominal trajectory,

including the spawn segment, and has the full number of impulses the nominal spacecraft has in subsequent phases. A

lower bound 𝜏𝑘,min on the number of impulses in the spawn phase is included, however, so that virtual spacecraft always

12

have some minimum control authority to change thrust direction. In this work, 𝜏𝑘,min = 5 is generally used, though Fig.

3 shows 𝜏𝑘,min ≤ 3.

The transcription introduces a number of constraints. These include explicit matchpoint constraints to ensure the

trajectory is continuous and explicit control magnitude constraints (see Ellison [11] for details). Note that the terminal

constraint in Eq. (4) and the position component of the initial constraint in Eq. (9) are implicitly satisfied by the

transcription and thus do not need to be explicitly stated in the problem set up for the NLP solver.

Launch auxiliary decision variables are shown in Table 1. The launch 𝐶3 and maximum allowable 𝑚0 value are

related by a function 𝑚0,max = 𝑙 (𝐶3). Here, a polynomial fit to publicly available launcher data provided by NASA

Launch Services Program∗ is used to model that function. The underload factor 𝜂underload ∈ (0, 1] is used when the

initial mass is not fixed, and is instead based on the maximum possible payload mass for the selected launcher and 𝐶3

value. When the underload factor is used, 𝑚0 = 𝜂underload𝑙 (𝐶3).

Table 1 Launch auxiliary decision variables

Variable Description
𝐶3 Characteristic energy
RLA Right ascension of launch asymptote
DLA Declination of launch asymptote
𝜂underload Launch mass underload factor

For the robust-constrained reference problem, the additional decision variables are shown in Table 2. The number of

entries contributed to the decision vector for each variable is listed in the "Number of Values" column. To express the

number of decision variables, a binary variable 𝜈 𝑗 ,𝑘 ∈ {0, 1} is used to express if a virtual spacecraft is spawned at

segment 𝑗 in phase 𝑘 of the nominal trajectory. If 𝜈 𝑗 ,𝑘 = 1, a virtual spacecraft is spawned at that point. The binary

variable relates to the total number of virtual spacecraft 𝑁 with the relation

𝑁 =

𝑁𝑝ℎ∑︁
𝑘=1

𝜏𝑘∑︁
𝑗=1

𝜈 𝑗 ,𝑘 (29)

Table 2 Robust-constrained reference problem decision variables

Variable Description Number of Values
𝑡0 Initial time at start of each phase 𝑁 + 1
TOF Time of flight from 𝑡0 to 𝑡 𝑓 𝑁 + 1
𝒖 Control vector components 3𝜏 +∑𝑁𝑝ℎ

𝑘=1
∑𝜏𝑘

𝑗=1 3𝜈 𝑗 ,𝑘𝜏virtual 𝑗,𝑘
𝑚 𝑓 Final mass at end of each phase 𝑁 + 1
𝑚 𝑓 ,𝑚𝑖𝑛 Minimum delivered mass constraint 1

For the robust-optimal problem, the additional decision variables are are shown in Table 3.
∗https://elvperf.ksc.nasa.gov/Pages/Query.aspx

13

https://elvperf.ksc.nasa.gov/Pages/Query.aspx

Table 3 Robust-optimal problem decision variables

Variable Description Number of Values
𝑡0 Initial time at start of each phase 𝑁 + 1
TOF Time of flight from 𝑡0 to 𝑡 𝑓 𝑁 + 1
𝒖 Control vector components 3𝜏 +∑𝑁𝑝ℎ

𝑘=1
∑𝜏𝑘

𝑗=1 3𝜈 𝑗 ,𝑘𝜏virtual 𝑗,𝑘
𝑚 𝑓 Final mass at end of each phase 𝑁 + 1
𝑡𝑠𝑑,𝑖 Coast times 𝑁

𝑡𝑠𝑑,𝑚𝑖𝑛 Minimum coast time 1

Given the discrete optimization variables and constraints from the transcription, the resulting nonlinear programming

problem is solved here using the commercial optimization package SNOPT [13]. While analytic partial derivates of

objectives and constraints with respect to decision variables are available in prior work [11, 14], for fast development the

tool created for this analysis (named the N Spacecraft Trajectory Optimizer, or NSTOP) uses automatic differentiation

[15, 16] and all functionality is written in the Julia programming language. Automatic differentiation provides exact,

machine precision partial derivatives without user specification of analytic partials. However, this comes at the cost of

slower run time speed as compared to using analytic partials only. The NLP solver is augmented with monotonic basin

hopping in an outer loop for a stochastic search, similar to methods previously used [14, 17, 18]. The stochastic search

is parallelized by running multiple processes with a stochastic search at the same time. Each process shares its best

result with the other processes, so all workers use the current consensus best solution as a starting point for continued

stochastic searching. Basin hopping alone enables convergence on a solution even with a very poor initial guess, but the

speed of the process is further improved with parallelization. The use of a stochastic search in general also gives a

measure of ability to find an approximate global optimum as opposed to only being able to find a local optimum with

the NLP solver alone. NSTOP has been validated against the open source version of NASA Goddard’s Evolutionary

Mission Trajectory Generator (EMTG) [19] and produces nearly identical optimal trajectories when the same problem

is posed in both tools.

V. Examples
All examples here use the same polynominal XR-5 Hall thruster model as in earlier work by Laipert [1]. Maximum

thrust and mass flow rates are estimated by polynomials that are functions of available power. The thrust function is

𝑇 (𝑃) = (−8.597 + 77.34𝑃 − 2.119𝑃2 − 1.151𝑃3 + 0.1739𝑃4) × 10−3 (30)

where 𝑇 is thrust in newtons and 𝑃 is power in kilowatts limited to the range 0.302 ≤ 𝑃 ≤ 4.839. The mass flow

function is

14

¤𝑚(𝑃) = (3.524 + 68.48𝑃 − 16.32𝑃2 + 2.351𝑃3 − 0.1195𝑃4) × 10−7 (31)

where ¤𝑚 is the mass flow rate in kg/s. Two thrusters are used on the spacecraft at a 95% duty cycle, and the power per

thruster is limited to the range of 0.302 kW to 4.839 kW. The power system modeling, thruster switching (maximum

number), and thruster smoothing logic used here are described by Ellison [14], with solar array coefficients taken from

the example used by Laipert [1]. The solar array coefficients used result in the power expression

𝑃(𝑟) = 𝑃0

𝑟2

(
1.321 − (0.108/𝑟) − (0.117/𝑟2)

1 + 0.108𝑟 − 0.013𝑟2

)
(32)

where r is the spacecraft distance from the sun in astronomical units and 𝑃0 is the power available when the spacecraft is

at a distance of 1 AU from the Sun. The Falcon 9 ASDS model is used for launch vehicle performance and constraints;

the polynomial relating 𝐶3 (km2/s2) to the maximum possible launch mass (kg) is

𝑚0,max (𝐶3) = 0.7226𝐶23 − 116.14𝐶3 + 3310.8 (33)

and is valid for 𝐶3 ∈ [0, 10] km2/s2. In all examples a mandatory 30 day coasting period immediately after launch

is enforced. Thus, any virtual spacecraft are only spawned after that initial coast, and evaluation of MTRM occurs

afterward. States of target celestial bodies are approximated using spline fits to ephemeris data provided by JPL and the

SPICE toolkit.

A. Evaluating Missed Thrust Recovery Margin for a Nominal Trajectory

Given a trajectory transcription, now the optimization problem of evaluating 𝛽 in Eq. (10) can be solved. Note that

in evaluating 𝛽, the initial state 𝒙0 is fixed. In this case, 𝑥0 is generated by selecting specific points along the nominal

trajectory. Evaluating 𝛽 within a Sims-Flanagan segment has limited utility, because in each segment the impulsive

Δ𝑉 is a surrogate for distributed thrusting throughout the segment. For this reason, non-physical discontinuities in 𝛽

are found when it is evaluated within a segment. Instead, 𝛽 is only evaluated at the start points of segments in order

to more accurately approximate the value of MTRM along the trajectory. As in the nominal case, a larger number of

Sims-Flanagan segments can be used when greater accuracy in modeling the true low-thrust problem is desired. A

"non-permissive" example of evaluating the MTRM along a low-thrust mass optimal trajectory from Earth to Mars can

be seen in Fig. 4. Earth launch occurs at the circular point in Fig. 4a, a mandatory 30 day post-launch coast is shown

by a blue dotted line, impulsive Δ𝑉 vectors are shown with red lines, and arrival at Mars is shown with a blue square.

Vertical lines indicate the MTRM 𝛽 at the start of each segment, with taller, green lines indicating larger 𝛽 values and

shorter, orange lines indicating smaller 𝛽 values. Numeric values of 𝛽 can be seen more clearly in Fig. 4b.

15

Earth Launch
Mars Arrival
Control Direction
Planet Orbit

(a) Vertical lines are drawn proportional to how much MTRM
there is at each point in the trajectory; larger lines indicate
more MTRM

0 100 200 300 400 500
Days Past Launch

0

20

40

60

80

100

M
is

se
d

Th
ru

st
 M

ar
gi

n
 (d

ay
s)

(b) Shaded region indicates a coasting period

Fig. 4 Missed thrust recovery margin along an Earth-Mars low-thrust transfer

In this non-permissive example, 𝛽 is optimized with the same limit 𝑡 𝑓 ,max as the nominal trajectory and had the

constraint that 𝑚 𝑓 ,recovery ≥ 𝑚 𝑓 ,nominal. While in this specific case, the nominal trajectory had 𝑡 𝑓 < 𝑡 𝑓 ,𝑚𝑎𝑥 by 11 days,

the additional time is not enough to allow 𝛽 > 0 at all points along the nominal trajectory. Indeed, one indicator that the

nominal trajectory is truly mass optimal is that there is at least one point along the trajectory where it cannot withstand

any amount of forced coasting time without inducing an additional mass penalty in the recovery trajectory. From

0.42TOF (𝛽 = 106 days) to 0.62TOF (𝛽 = 12.17 days) the spacecraft is coasting, so forced coasts starting at those times

overlap with planned nominal coasts and the decline in MTRM should be linear. In this evaluation the decline is close to,

but not exactly, linear due to the discrete number of impulses used to approximate the post-forced-shutdown trajectory.

A more permissive example of evaluating 𝛽 along a low-thrust mass optimal trajectory from Earth to Mars can be

seen in Fig. 5. In this case, the same time bound 𝑡 𝑓 ,max from the nominal case is used, but the lower bound on the

recovery delivered mass is 𝑚 𝑓 ,recovery ≥ 𝑚 𝑓 ,nominal − 30 kg. With more permissive bounds, the spacecraft can withstand

longer forced shutdown periods at each point along its nominal trajectory, at the expense of using more propellant. This

method could be used in a similar manner as in previous work [1] to evaluate the robustness of a nominal trajectory and

determine how much additional propellant margin is needed to make a given nominal trajectory robust. However, note

that towards the end of this example trajectory very little robustness is gained with 30 kg of additional fuel use; more

must be done to gain robustness.

16

Earth Launch
Mars Arrival
Control Direction
Planet Orbit

(a) Vertical lines are drawn proportional to how much MTRM
there is at each point in the trajectory; larger lines indicate
more MTRM

0 100 200 300 400 500
Days Past Launch

0

20

40

60

80

100

M
is

se
d

Th
ru

st
 M

ar
gi

n
 (d

ay
s)

(b) Shaded region indicates a coasting period

Fig. 5 Permissive missed thrust recovery margin along an Earth-Mars low-thrust transfer

B. Earth-Mars Transfer

1. Single Example

The first example of solving the robust-constrained reference problem shown here is an Earth-Mars transfer using 30

impulses in the nominal spacecraft’s trajectory transcription. User-specified values for the reference problem without

robustness considerations compared to User-specified values for the related robust-constrained problem are given in

Table 4, while details of the optimal results are given in Table 5. In this case, the robust-constrained reference problem

solved here enforces 𝛾min = 20 days by setting a fixed forced shutdown time 𝑡𝑠𝑑,𝑖 for all virtual spacecraft. The maximum

arrival date is set to 25 days later than in the reference problem, and the lower bound on delivered mass for all spacecraft

in the swarm is optimized. To use a common measure, the propellant margin 𝜅 needed for the robust trajectory can be

calculated as

𝜅 =
𝑚 𝑓 ,mass optimal only − 𝑚 𝑓 ,min,swarm

𝑚propellant,mass optimal only
(34)

Here the propellant margin is how much additional propellant, as compared to the mass optimal only solution, is needed

to recover from the worst-case missed thrust event. However, this requires that the robust-constrained trajectory be

flown. If the mass optimal only trajectory is flown with the additional propellant margin, it cannot be guaranteed to

recover from the worst-case missed thrust event with the given propellant margin.

In the robust-constrained solution, the optimizer has reduced the launch mass from 3038 kg in the reference problem

17

Table 4 Robust-constrained Earth-Mars transfer problem: user specified & constant values

Parameter Reference problem Robust-constrained
Nominal SC number of impulses 30 30
Power available at 1AU 10 kW 10 kW
𝑡0 bounds (lower, upper) Aug. 11, 2024 - Oct. 10, 2024 Aug. 11, 2024 - Oct. 10, 2024
𝑡 𝑓 bounds (lower, upper) Nov. 7, 2025 - Jan. 6 2026 Nov. 7, 2025 - Jan. 31 2026
Virtual spacecraft spawn segments - 1-4, 18-30
Virtual spacecraft 𝑡𝑠𝑑 - 20 days
Number of decision variables 97 794
Number of constraints 38 424

Table 5 Robust-constrained Earth-Mars transfer problem: optimizer selected values

Parameter Reference problem Robust-constrained
Launch date Aug. 11, 2024 Aug. 11, 2024
Nominal SC arrival date Dec. 25, 2025 Dec. 27, 2025
Nominal SC delivered mass 2343 kg 2304 kg
Nominal SC propellant mass 695 kg 673 kg
Launch mass 3038 kg 2977 kg
𝐶3 2.38 km2/s2 2.92 km2/s2
Optimized 𝑚 𝑓 ,min - 2272 kg
Propellant margin 𝜅 - 10%

to 2977 kg in the robust-constrained problem. This has the effect of enabling a higher 𝐶3 and giving the low-thrust

system more control over acceleration due to the lighter initial mass. The robust-constrained solution, however, has little

qualitative difference from the reference solution, as seen in Fig. 6. Figure 6 shows the reference solution in orange

and the robust-constrained solution in blue. Figure 6b shows the distance of both solutions from the Sun over time,

with their respective time limits on 𝑡0 and 𝑡 𝑓 shown with vertical lines. While the robust-constrained spacecraft arrives

two days later than the reference spacecraft, it still arrives considerably before its 𝑡 𝑓 ,max. This allows virtual/recovery

trajectories spawned later in the nominal trajectory to have time to arrive at Mars within the allowed limits.

Figure 7b demonstrates how the control profile of the robust-constrained trajectory shifts as compared to the

mass-optimal reference trajectory. The mass-optimal trajectory for the most part has the familiar bang-bang control

structure; the short segment where the thrust is neither full nor zero is likely due to the approximate nature of the

Sims-Flanagan transcription. that is slightly off due to the transcription. The robust trajectory coasting time is

comparatively shorter and earlier, and thrusting is no longer at 100% in the lead up to arrival at the target. Instead, the

thrust level steps down as it nears arrival and reaches 50% immediately before 𝑡 𝑓 . These changes make the trajectory

much less sensitive to missed thrust events. Figure 7a shows how the control profiles of the nominal and virtual

spacecraft evolve over time. Figure 8 shows individual delivered mass and arrival dates for both the nominal trajectory

and each virtual trajectory in the robust-constrained case. Note that nearly all virtual spacecraft spawned in the second

half of the trajectory have arrival dates and arrival mass that match the limiting value. In the case of delivered mass

18

1 0 1
ECLIPJ2000 X (AU)

1.5

1.0

0.5

0.0

0.5

1.0

EC
LI

PJ
20

00
 Y

 (A
U

)
Robust-Constrained
Reference

(a) X-Y planar view of the Earth-Mars trajectories

0 200 400
Days Past Launch

1.0

1.1

1.2

1.3

1.4

1.5

1.6

D
is

ta
nc

e
fr

om
 S

un
 (A

U
)

Robust-Constrained
Reference

(b) Distance from sun vs. time of the Earth-Mars trajectories

Fig. 6 Reference optimal transfer (orange) vs. robust-constrained nominal (blue) Earth-Mars low-thrust
transfer. Vertical lines show limits on 𝑡0 and 𝑡 𝑓 for their corresponding trajectory

shown in Fig. 8a, the values shown don’t necessarily represent the maximum possible arrival mass for each recovery

trajectory. This is because only the lower bound for the whole swarm is being optimized.

Finally, Fig. 9 shows 𝛽 evaluated at each segment start point along the nominal robust-constrained trajectory.

Evaluated values of 𝛽 are shown as blue circles, while the value of 𝑡𝑠𝑑 for each virtual spacecraft included in the swarm

is shown with red squares. Because each value of 𝛽 ≥ 𝑡𝑠𝑑 , the number and placement of virtual spacecraft in this case

was sufficient to constrain 𝛾 ≥ 𝛾min = 𝑡𝑠𝑑 .

19

0 100 200 300 400 500
0.0

0.5

1.0

|u
| (

%
,0

-1
)

a)

Spawn Point Phase End Point

0 100 200 300 400 500
Days Past Launch

0.0

0.5

1.0

|u
| (

%
,0

-1
)

b)

Robust
Reference

Fig. 7 a) control history of all swarm (multi-colored) and reference (thick blue) spacecraft. b) control history of
reference mass-optimal transfer (orange) vs. optimal robust-constrained nominal (blue) Earth-Mars low-thrust
transfer

0 100 200 300 400 500
Spawn Date (days past launch)

2275

2280

2285

2290

2295

2300

2305

A
rr

iv
al

 M
as

s (
kg

)

N
om

in
al

 M
ar

s A
rr

iv
al

 D
at

e

(a) Spawn date vs. delivered mass

0 100 200 300 400 500
Spawn Date (days past launch)

460

480

500

520

540

A
rr

iv
al

 D
at

e
(d

ay
s p

as
t l

au
nc

h)

N
om

in
al

 M
ar

s A
rr

iv
al

 D
at

e

(b) Spawn date vs. arrival date

Fig. 8 Results for nominal and virtual spacecraft in the robust-constrained Earth-Mars problem; colors
correspond to the virtual spacecraft colors in Fig. 7a

20

0 100 200 300 400 500

Days Past Launch

20

40

60

80

100

M
is

se
d

T
h

ru
st

M
ar

gi
n
β

(d
ay

s)

tsd

β

Fig. 9 𝛽 values calculated along the robust-constrained Earth-Mars trajectory. The shaded region indicates
coasting, and a dashed horizontal line is placed at the desired minimum 𝛽 value of 20 days.

21

2. Pareto Front

To explore the optimal trade-offs between maximum arrival date, 𝛾, and delivered mass, the robust-constrained

problem can be solved many times with different fixed values of 𝑡 𝑓 ,max and 𝑡𝑠𝑑 . This will provide the Pareto front

for this trade space. The same information could be gathered by optimizing 𝛾min and constraining 𝑚 𝑓 ,min and 𝑡 𝑓 ,max,

though in this example 𝑚 𝑓 ,𝑚𝑖𝑛 is the optimization variable. Other parameters of interest could also be varied to give an

understanding of how different parameters impact a trajectory. To give an easy reference for how robust trajectories

compare to the mass optimal only reference trajectory, the Pareto fronts in Fig. 10 are shown in terms of propellant

margin 𝜅 instead of in terms of delivered mass. Each point represents a single solution to the robust-constrained problem

with different constraints. Each curve has a corresponding 𝛾, which is enforced in each solution through fixed 𝑡𝑠𝑑 in

numerous virtual spacecraft. For each solution, 𝛽 has been calculated throughout the trajectory to ensure that 𝛾 = 𝑡𝑠𝑑 .

The x-axis describes how many days past the reference problem 𝑡 𝑓 ,max that the swarm spacecraft were allowed to arrive

at the target. The point solution described in more detail in the previous section is at 𝛾 = 20 days, with an allowable

arrival date of 25 days past the reference problem and a propellant margin of 10.2%.

The propellant margin needed if the spacecraft is not allowed to arrive any later than the reference 𝑡 𝑓 ,max can be

quite high, especially as 𝛾 is increased to 25 days and beyond. The propellant margin drops off relatively quickly as

𝑡 𝑓 ,max is increased from 0, though it does level off with changes from 𝑡 𝑓 ,max = +50 to 𝑡 𝑓 ,max = +100 being mostly minor.

This is likely because a local minimum is found at a certain arrival date due to the relative positions of Earth and Mars

at launch. However, as 𝛾 is increased, greater benefits in propellant margin 𝜅 are seen as 𝑡 𝑓 ,max is increased.

0 25 50 75 100
Lateness (days past reference max. arrival date)

10

20

30

40

Pr
op

el
la

nt
 M

ar
gi

n
(%

,0
-1

00
)

 = 25.0 days
 = 20.0 days
 = 15.0 days
 = 10.0 days

Fig. 10 Earth-Mars Pareto front, 𝛾, 𝑡 𝑓 ,max, propellant margin

22

C. Earth-Mars-Psyche Transfer

1. Single Example

The same procedure can be applied to a trajectory that includes a gravity assist. In this example, an Earth-Mars-Psyche

mission is used to demonstrate the technique. This trajectory is unrelated to the NASA Psyche mission, and while it

is similar to the gravity assist in Laipert [1], the reference trajectory is different. A twenty day coasting period prior

to arrival at the Mars gravity assist is enforced for all trajectories to allow for navigation and targeting maneuvers to

occur. This applies to nominal spacecraft and any virtual spacecraft that spawn prior to the gravity assist; if a missed

thrust event occurs before the gravity assist, the spacecraft must be able to withstand a shutdown of at least 𝛾min days

in addition to the twenty-day forced coast prior to arrival at the gravity assist. It is also possible to allow recovery

trajectories to have a shorter pre-gravity assist coast than the nominal spacecraft to potentially reduce the propellant

needed for the worst-case recovery trajectory at the expense of reduced time to perform pre-gravity assist operations in

recovery scenarios. Such a strategy, however, is not used in these results. Details of the problem set up and optimal

results for the reference problem without robustness considerations and the robust-constrained problem are given in

Tables 6 and 7. The robust-constrained result is allowed to arrive 75 days later than the reference problem, and its lower

bound mass 𝑚 𝑓 ,min is optimized with a fixed 𝑡𝑠𝑑 = 20 days for all virtual spacecraft. Note that this robust-constrained

solution again has a lower launch mass and higher 𝐶3 than the reference problem, as was found in the Earth-Mars

transfer.

Table 6 Robust-constrained Earth-Mars-Psyche transfer problem: user specified & constant values

Parameter Reference problem Robust-constrained
Nominal SC number of impulses 60 60
Power available at 1AU 20 kW 20 kW
𝑡0 bounds (lower, upper) Aug. 5, 2024 - Feb. 1, 2025 Aug. 5, 2024 - Feb. 1, 2025
𝑡 𝑓 bounds (lower, upper) Oct. 4, 2028 - Feb. 11 2029 Oct. 4, 2028 - Apr. 27 2029
Virtual SC phase 1 (Earth-Mars)
spawn segments

- 28, 30

Virtual SC phase 2 (Mars-Psyche)
spawn segments

- 1, 21, 23, 25-30

Virtual SC 𝑡𝑠𝑑 - 20 days
Number of decision variables 194 680
Number of constraints 78 358

In the gravity assist case, as visualized in Fig. 11, qualitative differences between the reference and robust solutions

are clearly evident. The nominal gravity assist date has been moved earlier in the robust case, which allows recovery

trajectories enough time to make corrections and arrive at the gravity assist before it becomes infeasible. The robust

nominal trajectory also remains closer to the Sun than the reference trajectory providing more power for thrusting. The

control profile shown in Fig. 12 interestingly shows the robust trajectory does have some thrusting immediately prior to

the gravity assist, while the reference trajectory is coasting for a long period of time prior to its gravity assist. The large

23

Table 7 Robust-constrained Earth-Mars-Psyche transfer problem: optimizer selected values

Parameter Reference problem Robust-constrained
Launch date Aug. 5, 2024 Aug. 5, 2024
Nominal SC Mars gravity assist date May 19, 2026 Apr. 10, 2026
Nominal SC Psyche arrival date Feb. 11, 2029 Apr. 26, 2029
Nominal SC delivered mass 1891 kg 1580 kg
Nominal SC propellant mass 1333 kg 1523 kg
Launch mass 3224 kg 3103 kg
𝐶3 0.75 km2/s2 1.81 km2/s2
Optimized 𝑚 𝑓 ,min - 1575 kg
Propellant margin 𝜅 - 24%

spike in applied control immediately before the robust spacecraft’s gravity assist is largely applied in the anti-velocity

direction (see Fig. 11a). This indicates that the control for the robust trajectory at this point is largely being applied

to control the timing for the nominal and virtual spacecraft near the gravity assist. In the second phase from Mars to

Psyche, the robust trajectory has more control applied earlier in the phase, and again steps the control magnitude down

as it approaches its target, much like the Earth-Mars example.

3 2 1 0 1 2
ECLIPJ2000 X (AU)

3

2

1

0

1

EC
LI

PJ
20

00
 Y

 (A
U

)

Robust-Constrained
Reference

(a) X-Y planar view of the Earth-Mars-Psyche trajectories

0 500 1000 1500
Days Past Launch

1.0

1.5

2.0

2.5

3.0

D
is

ta
nc

e
fr

om
 S

un
 (A

U
)

Robust-Constrained
Reference

(b) Distance from sun vs. time of the Earth-Mars-Psyche
trajectories

Fig. 11 Reference optimal transfer (orange) vs. robust-constrained nominal (blue) Earth-Mars-Psyche low-
thrust transfer. Mars gravity assists are marked by square-enclosed circles, vertical lines show limits on 𝑡0 and 𝑡 𝑓
for their corresponding trajectory

Figure 13 shows the swarm arrival dates and masses for the gravity assist case. Note that in Fig. 13a the virtual

spacecraft spawned immediately prior to the gravity assist and the virtual spacecraft spawned immediately prior to

arrival at Psyche are the limiting factors in the optimization of 𝑚 𝑓 ,min. This is in line with our understanding of the

24

problem; the point where the gravity assist occurs is highly sensitive to missed thrust events. Figure 13b shows that

several, but not all spacecraft in the swarm arrive at roughly 𝑡 𝑓 ,max. Finally, Fig. 14 shows 𝛽 along the nominal trajectory

to verify that 𝛾 = 𝑡𝑠𝑑 .

0 500 1000 1500
0.0

0.5

1.0

|u
| (

%
,0

-1
)

a)

Spawn Point Phase End Point

0 500 1000 1500
Days Past Launch

0.0

0.5

1.0

|u
| (

%
,0

-1
)

b)

Robust
Reference

Fig. 12 a) control history of all swarm spacecraft (thin multi-colored) and reference spacecraft (thick blue). b)
control history of reference optimal transfer (orange) vs. robust-constrained nominal (blue) Earth-Mars-Psyche
low-thrust transfer

25

0 500 1000 1500
Spawn Date (days past launch)

1575

1580

1585

1590

1595

A
rr

iv
al

 M
as

s (
kg

)

N
om

in
al

 M
ar

s A
rr

iv
al

 D
at

e

N
om

in
al

 P
sy

ch
e

A
rr

iv
al

 D
at

e

(a) Spawn date vs. delivered mass

0 500 1000 1500
Spawn Date (days past launch)

1550

1600

1650

1700

A
rr

iv
al

 D
at

e
(d

ay
s p

as
t l

au
nc

h)

N
om

in
al

 M
ar

s A
rr

iv
al

 D
at

e

N
om

in
al

 P
sy

ch
e

A
rr

iv
al

 D
at

e

(b) Spawn date vs. arrival date

Fig. 13 Results for nominal and virtual spacecraft in the robust-constrained Earth-Mars-Psyche problem;
colors correspond to the virtual spacecraft colors in Fig. 12a

0 250 500 750 1000 1250 1500 1750

Days past launch

50

100

150

200

250

300

350

M
is

se
d

T
h

ru
st

M
ar

gi
n
β

(d
ay

s)

M
ar

s
A

rr
iv

al

P
sy

ch
e

A
rr

iv
al

tsd

β

Fig. 14 𝛽 values calculated along the robust-constrained Earth-Mars-Psyche trajectory

26

2. Pareto Front and Sensitivity

0 50 100 150
Lateness (days past reference max. arrival date)

20

22

24

26

28

30

32

Pr
op

el
la

nt
 M

ar
gi

n
(%

,0
-1

00
)

 = 25.0 days
 = 20.0 days
 = 15.0 days
 = 10.0 days

Fig. 15 Earth-Mars-Psyche Pareto front for 𝛾, 𝑡 𝑓 ,max, and propellant margin

A Pareto front can be generated for this case using the same method as the Earth-Mars example discussed in Sec.

V.B.2. The result is shown in Fig. 15. Note that the lowest propellant margin found in this example is significantly

higher than the lowest propellant margin found in the Earth-Mars case seen in Fig. 10. This speaks to the additional

sensitivity to missed thrust events introduced by using gravity assists in an interplanetary trajectory. Importantly,

individual gravity-assist opportunities (i.e. a specific launch date and sequence of flyby locations and dates) will each

have varying levels of sensitivity to missed thrust events; these examples are not necessarily representative of how much

propellant margin is generally required to ensure trajectories are robust.

To visualize how the sensitivity of the trajectory to missed thrust events changes from the mass-optimal case to the

robust constrained case, sensitivity plots are given in Figs. 16 - 18. In these plots, missed thrust events are simulated at

various points along the nominal trajectory with varying lengths. After the simulated missed thrust event, a mass-optimal

trajectory is generated with the initial state fixed to the post-shutdown state and no constraints on robustness. This

gives insight into what the optimal delivered mass will be for missed thrust events occurring at different points and for

different lengths of time. The sensitivity of the Psyche mass-optimal reference trajectory is shown in Fig. 16, where

each recovery trajectory is allowed to arrive at Psyche up to 75 days late but the nominal trajectory still arrives at the

date given in Table 7. The sensitivity of the 20-day robust and up to 75-day late Earth-Mars-Psyche trajectory discussed

in detail in this section is shown in Figs. 17 - 18. While the robust trajectory was only constrained to be 20 days robust,

shutdown events of up to 25 days were simulated to understand the sensitivity beyond the constrained robustness. In the

contour plots (Figs. 17 and 16), white unshaded space indicates that a feasible solution was not found, likely indicating

27

0 200 400 600 800 1000 1200 1400 1600
Forced Shutdown Start Time (days past launch)

0

5

10

15

20

25

Fo
rc

ed
 S

hu
td

ow
n

D
ur

at
io

n
(d

ay
s)

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

O
pt

im
iz

ed
 D

el
iv

er
ed

 M
as

s (
kg

)

Fig. 16 Sensitivity of a reference mass-optimal Earth-Psyche trajectory to missed thrust events; recovery
trajectories can arrive up to 75 days later than the nominal maximum arrival date

that such a trajectory is not possible. The discrete points where optimization problems were solved in order to generate

the contours are shown with black points, and the contour colors correspond to the optimized mass delivered to Psyche.

Figure 18 shows the same data as Fig. 17 but in a different format to more clearly show which case is limiting.

In the mass-optimal case, Fig. 16, there are very significant regions where a missed thrust event would render the

target unreachable, even with significant additional propellant expenditure. Contrast this with the robust-constrained

case in Figs. 17 - 18, where nearly all points are feasible though many have significant propellant requirements to arrive

at the target. The point immediately prior to the gravity assist (575 days past launch, the purple steeply downward-sloped

line in Fig. 18b) indicates that a missed thrust event just prior to the gravity assist is the limiting case where the least

amount of mass can be delivered to Psyche. A missed thrust event immediately prior to Psyche arrival is similarly

sensitive (but slightly less so) to 20-day missed thrust events than the point prior to the gravity assist. The significantly

steeper slope of the pre-gravity assist delivered mass vs shutdown length curve demonstrates how much more sensitive

the point is than others. Information in Fig. 13a similarly shows these two points to be sensitive, but does not show

how much mass might be saved if a shorter missed thrust event occurs at those points. Information like this can be

used to decide if a lesser guarantee on allowable missed thrust event length can be used at highly sensitive points in the

trajectory in order to reduce the amount of contingency propellant needed to account for missed thrust events. With the

robust-constrained virtual swarm method, each point can have different constraints on the missed thrust margin, so in

28

0 250 500 750 1000 1250 1500 1750
Forced Shutdown Start Time (days past launch)

0

5

10

15

20

25

Fo
rc

ed
 S

hu
td

ow
n

D
ur

at
io

n
(d

ay
s)

1540.0

1576.7

1613.5

1650.2

1686.9

1723.7

1760.4

1797.1

1833.9

1870.6

O
pt

im
iz

ed
 D

el
iv

er
ed

 M
as

s (
kg

)

Fig. 17 Sensitivity of a robust-constrained (20-day robustness, up to 75 days late arrival) Earth-Psyche trajectory
to missed thrust events

this case the 20 day requirement may be relaxed for the pre-gravity assist point if the resulting decrease in contingency

propellant mass is deemed more important. Alternative mitigations for missed thrust events at such points may include

standing up additional ground support resources during times when the trajectory is less robust and additional spacecraft

testing to ensure nominal operations during less robust points in the trajectory. These system-level decisions can be

supported by using the virtual swarm method to understand the optimal propellant trade-offs with time, robustness, and

other parameters of interest.

29

0 5 10 15 20 25
Forced Shutdown Event Length (days)

1550

1600

1650

1700

1750

1800

1850

O
pt

im
iz

ed
 D

el
iv

er
ed

 M
as

s (
kg

)

250

500

750

1000

1250

1500

Fo
rc

ed
 S

hu
td

ow
n

St
ar

t D
at

e
(d

ay
s p

as
t l

au
nc

h)

(a) All optimized delivered mass values shown

0 5 10 15 20 25
Forced Shutdown Event Length (days)

1560

1580

1600

1620

1640

O
pt

im
iz

ed
 D

el
iv

er
ed

 M
as

s (
kg

)

250

500

750

1000

1250

1500

Fo
rc

ed
 S

hu
td

ow
n

St
ar

t D
at

e
(d

ay
s p

as
t l

au
nc

h)

(b) Detail view of lower delivered mass values

Fig. 18 Sensitivity of a robust-constrained (20-day robustness, up to 75 days late arrival) Earth-Psyche trajectory
to missed thrust events, line plot views

30

VI. Discussion
The virtual swarm method that has been developed here is able to describe the optimal trade-offs between 𝛾, 𝑡 𝑓 ,max,

and delivered mass, without requiring excessive user intervention. Additional trade-offs can be explored in a similar

manner by varying other parameters of interest (e.g. launch vehicle, thruster model, etc.) and optimizing the problem.

Pareto fronts using the robust-constrained formulation could also consider optimizing other continuous variables not

considered here, such as target flyby speed in missions where arrival at the final target is a flyby. The case without a

gravity assist, which is less sensitive than the gravity assist case, is particularly amenable to automation. Using a poor

initial guess, even with a large number of virtual spacecraft included in the swarm, does not prevent the optimizer from

converging on a solution in a relatively short amount of time. Because of this, the method is well suited for trade space

exploration. Note that neither the Earth-Mars transfer nor the Psyche transfer examples shown here are specifically

selected for amenability to being robust to missed thrust events. Rather, these examples show how a nominal trajectory

is transformed once MTRM is constrained along the trajectory. Wide searches using this method can potentially be used

to identify specific launch opportunities where the propellant margin penalty for a robust mission as compared to a

mass-optimal only mission is less than the penalties found in the examples presented here.

The gravity assist (multi-phase) case presents greater challenges in searching for solutions. While controlling

the robustness of the trajectory immediately prior to arrival at the gravity assist introduces high sensitivities into the

problem, controlling this point alone does not require too much computational time. However, in this case each virtual

spacecraft can potentially have many more impulses, and consequently many more decision variables, than virtual

spacecraft spawned in a single-phase trajectory. The introduction of more decision variables creates a wider search

space, and additionally slows linear algebra operations performed with the Jacobian matrix of partial derivatives of

constraints with respect to decision variables. In the present work these linear algebra operations are performed by the

NLP solver SNOPT. Further, because automatic differentiation is being used in this work, the inclusion of more decision

variables translates into a greater amount of time spent calculating derivatives.

These problems are not insurmountable, and have not prevented automated searches for multi-phase trajectories as

was done to generate Fig. 15. These barriers do, however, motivate more careful selection of initial guesses to speed

up convergence and enable wider searches of the state space as problems become more complex. For more complex

problems each virtual spacecraft can be initialized by optimizing its mass or initial coast time based on a static initial

state on a nominal reference trajectory. This would provide the optimizer a feasible trajectory as a starting point, instead

of it initially having to make the trajectories both feasible and optimal. Complex missions may also benefit from using

fewer virtual spacecraft to start with and only adding one or two spacecraft at a time where constraint violations occur

(use a small 𝑁𝑤 in Algorithm 1). There is a balance to be struck there, however, because while it can take some time

to converge on a solution with many virtual spacecraft, there is also a time cost to repeatedly evaluating 𝛽 along the

nominal trajectory. Another strategy is to start with a smaller number of Sims-Flanagan segments to reduce the number

31

Table 8 Computation times for each example

Case Number of
Decision
Variables

Number of
Constraints

Constraint Evalu-
ation Time (ms)

Constraint Jaco-
bian Evaluation
Time (ms)

Earth-Mars mass optimal 97 38 0.7004 12.0108
Earth Mars robust-constrained (17 vir-
tual spacecraft)

794 424 9.0954 139.7524

Earth-Mars-Psyche mass optimal 194 78 1.7909 43.3259
Earth-Mars-Psyche robust-constrained
(11 virtual spacecraft)

680 358 6.8641 665.0238

of decision variables, then progressively increase the fidelity as solutions are found.

The general computation speed of the virtual swarm method is difficult to describe for a number of reasons. First,

varying problems will have varying sensitivities to missed thrust events, and thus will require different numbers of virtual

spacecraft to adequately constrain the nominal trajectory. Further, the additional computational complexity introduced

by each virtual spacecraft is different depending on its spawn point when using the Sims-Flanagan transcription; virtual

spacecraft that spawn earlier will have more control parameters to add to the problem than virtual spacecraft that

spawn later. The stochastic monotonic basin hopping method also makes each optimization run non-deterministic, and

sometimes a fortuitous hop occurs early in the process that greatly speeds up how soon a solution is found. Because

of this stochasticity, reporting single run times from start to finish are of limited utility. To give a rough idea of how

computationally expensive adding the additional virtual spacercaft are, however, Table 8 includes the time to evaluate

all problem constraints and constraint Jacobian for each example. The constraints are the most expensive part of each

iteration in the NLP solver; the objective function and gradient of the objective function are trivial to compute because

the objective is directly a decision variable. Each time is an average over 100 trials of the same computation for a

more accurate measurement, and a desktop machine with an Intel Core i7 9700k processor is used for the calculations.

Finally, note that the NSTOP tool developed for this work was primarily developed with the intention of proving the

virtual swarm concept to be viable, and was not specifically optimized for fast evaluation in large trade studies or large

individual problems. There are many areas in which the code could be improved to have a faster run time, such as using

analytic derivatives or optimizing the speed of the trajectory propagation function which is run many times as the NLP

solver iterates.

Also note that models of varying fidelity can be used in the virtual swarm method. For example, virtual spacecraft

could use smaller numbers of Sims-Flanagan segments or analytic approximations for low-thrust dynamics. Conversely,

where a higher fidelity solution is of interest, larger numbers of Sims-Flanagan segments could be used or the low-thrust

equations of motion could be integrated using finite-burn thruster modeling. The correct model to use depends largely

on the use case and the overall goals of the mission designer, but the virtual swarm method can support a number of

32

different options. The low-fidelity Sims-Flanagan transcription is the focus of the present work to efficiently search a

wider space and to provide better initial guesses for higher fidelity optimization problems.

The virtual swarm technique can also theoretically account for an arbitrary number of sequential missed thrust events.

Throughout this work only a single missed thrust event is accounted for, but it is possible that a recovery trajectory

also has a missed thrust event along its nominal path so a second layer of virtual spacecraft could be used to constrain

robustness to the second event. The recovery trajectory from the second missed thrust event could also have a third

missed thrust event, so a third layer of virtual spacecraft could be spawned, and so on. The NSTOP tool built to do the

analysis in this paper can compute solutions with an arbitrary number of missed thrust events, though including too

many virtual spacecraft will present challenges to finding optimal and feasible solutions. The exponential growth of

the number of virtual spacecraft needed to adequately constrain robustness across multiple missed thrust events will

make handling multiple missed thrust events with this method difficult. One potential solution is to use the method as

described in the present work as a way to provide an initial guess for a series of indirect optimization problems for

spacecraft in the swarm. An indirect formulation of the optimization problem is more sensitive and difficult to find

solutions for, but has fewer decision variables to optimize and thus may scale to larger numbers of spacecraft better.

Once indirect solutions are found for the swarm at one level of missed thrust, the next level of missed thrust robustness

might be constrained with either direct- or indirect-optimized virtual spacecraft. Alternatively, it may be most prudent to

use real world data [2] to guide the placement of virtual spacecraft to ensure that 𝛽 is constrained at the most important

locations along the trajectory. If the robustness need not be constrained at all points along a trajectory, accounting

for multiple missed thrust events with virtual spacecraft becomes much easier. The method presented here takes a

deterministic view of the robustness problem, which has the benefit of giving concrete recovery trajectories, but makes

accounting for an arbitrary number of missed thrust events more difficult. A fully stochastic optimal control approach

would be ideal to constrain successful arrival probability (e.g. 99% chance of successfully arriving given a known

distribution of multiple possible missed thrust events), but current methods are not able to incorporate missed thrust

events into a stochastic optimal control problem with chance constraints.

This method could also be used to analyze the safe-mode robustness of spacecraft using solar sails for propulsion.

During a safe mode event for a spacecraft equipped with a solar sail, the thrust level will not necessarily be zero until the

spacecraft resumes normal operations. An interesting avenue to explore is what the ideal attitude or attitude control

law would be during a safe-mode event, assuming the spacecraft can maintain some desired attitude instead of simply

pointing radially away from the Sun. This safe-mode attitude would need to be balanced against other spacecraft health

needs such as pointing solar panels towards the sun. Finally, the tools developed for this work easily extend to real

spacecraft swarms. Perhaps the most directly applicable real swarm that this method extends to is one in which a

low-thrust parent spacecraft launches one or more child spacecraft along its trajectory. These child spacecraft could be

destined for the same or different targets than the parent.

33

VII. Conclusion
The missed thrust recovery margin of a low-thrust spacecraft trajectory can be constrained or optimized using

the virtual swarm method developed here. The virtual swarm method simultaneously optimizes a nominal trajectory

with its recovery trajectories, enabling the nominal trajectory to be reshaped to account for robustness constraints or

objectives. This has the benefit of allowing a mission designer to either optimize delivered mass with path constraints

for a minimum missed thrust margin along the way, or it allows a mission designer to optimize worst-case missed thrust

recovery margin with a constraint that nominal and recovery trajectories must deliver a minimum amount of mass. The

process can be automated to enable efficient search space exploration and the generation of Pareto fronts to give decision

makers information about optimal trade-offs between different objectives.

Acknowledgments
This work was supported by a NASA Space Technology Research Fellowship.

References
[1] Laipert, F. E., and Longuski, J. M., “Automated Missed-Thrust Propellant Margin Analysis for Low-Thrust Trajectories,”

Journal of Spacecraft and Rockets, Vol. 52, No. 4, 2015, pp. 1135–1143. https://doi.org/10.2514/1.A33264, URL https:

//doi.org/10.2514/1.A33264.

[2] Laipert, F. E., and Imken, T., “A Monte Carlo Approach to Measuring Trajectory Performance Subject to Missed Thrust,” 2018

Space Flight Mechanics Meeting, 2002. https://doi.org/10.2514/6.2018-0966, URL https://arc.aiaa.org/doi/abs/10.2514/6.2018-

0966.

[3] Ozaki, N., Campagnola, S., Funase, R., and Yam, C. H., “Stochastic Differential Dynamic Programming with Unscented

Transform for Low-Thrust Trajectory Design,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 377–387.

https://doi.org/10.2514/1.G002367, URL https://doi.org/10.2514/1.G002367.

[4] Olympio, J. T., “Designing robust low-thrust interplanetary trajectories subject to one temporary engine failure,” Proceedings

of the 20th AAS/AIAA Space Flight Meeting, 2010, pp. 10–171.

[5] Olympio, J. T., and Yam, C. H., “Deterministic method for space trajectory design with mission margin constraints,” 61st

International Astronautical Congress, International Astronautical Federation Prague, 2010.

[6] Oh, D., Landau, D., Randolph, T., Timmerman, P., Chase, J., Sims, J., and Kowalkowski, T., “Analysis of System Margins on

Deep Space Missions Using Solar Electric Propulsion,” 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

2008. https://doi.org/10.2514/6.2008-5286, URL https://arc.aiaa.org/doi/abs/10.2514/6.2008-5286.

[7] Rayman, M. D., and Williams, S. N., “Design of the First Interplanetary Solar Electric Propulsion Mission,” Journal of

Spacecraft and Rockets, Vol. 39, No. 4, 2002, pp. 589–595. https://doi.org/10.2514/2.3848, URL https://doi.org/10.2514/2.3848.

34

https://doi.org/10.2514/1.A33264
https://doi.org/10.2514/1.A33264
https://doi.org/10.2514/1.A33264
https://doi.org/10.2514/6.2018-0966
https://arc.aiaa.org/doi/abs/10.2514/6.2018-0966
https://arc.aiaa.org/doi/abs/10.2514/6.2018-0966
https://doi.org/10.2514/1.G002367
https://doi.org/10.2514/1.G002367
https://doi.org/10.2514/6.2008-5286
https://arc.aiaa.org/doi/abs/10.2514/6.2008-5286
https://doi.org/10.2514/2.3848
https://doi.org/10.2514/2.3848

[8] McCarty, S. L., and Grebow, D. J., “Missed Thrust Analysis and Design for Low Thrust Cislunar Transfers (AAS 20-535),”

2020 AAS/AIAA Astrodynamics Specialist Conference, 2020.

[9] Rayman, M. D., Fraschetti, T. C., Raymond, C. A., and Russell, C. T., “Coupling of system resource margins through the

use of electric propulsion: Implications in preparing for the Dawn mission to Ceres and Vesta,” Acta Astronautica, Vol. 60,

No. 10, 2007, pp. 930 – 938. https://doi.org/https://doi.org/10.1016/j.actaastro.2006.11.012, URL http://www.sciencedirect.

com/science/article/pii/S0094576506004255.

[10] Sims, J., and Flanagan, S., “Preliminary design of low-thrust interplanetary missions,” Advances in the Astronautical Sciences,

Vol. 103, Univelt Inc., Escondido, CA, 1999, p. 538–548.

[11] Ellison, D. H., Conway, B. A., Englander, J. A., and Ozimek, M. T., “Analytic Gradient Computation for Bounded-Impulse

Trajectory Models Using Two-Sided Shooting,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 7, 2018, pp.

1449–1462. https://doi.org/10.2514/1.G003077, URL https://doi.org/10.2514/1.G003077.

[12] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics, Courier Dover Publications, 1971.

[13] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM Rev.,

Vol. 47, 2005, pp. 99–131. https://doi.org/10.1137/S0036144504446096.

[14] Ellison, D. H., Conway, B. A., Englander, J. A., and Ozimek, M. T., “Application and Analysis of Bounded-Impulse Trajectory

Models with Analytic Gradients,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 8, 2018, pp. 1700–1714.

https://doi.org/10.2514/1.G003078, URL https://doi.org/10.2514/1.G003078.

[15] Revels, J., Lubin, M., and Papamarkou, T., “Forward-Mode Automatic Differentiation in Julia,” arXiv:1607.07892 [cs.MS],

2016. URL https://arxiv.org/abs/1607.07892.

[16] Rall, L. B., and Corliss, G. F., “An introduction to automatic differentiation,” Computational Differentiation: Techniques,

Applications, and Tools, Vol. 89, 1996.

[17] Englander, J. A., and Englander, A. C., “Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as

Applied to Low-Thrust Trajectory Optimization,” 24th International Symposium on Space Flight Dynamics, 2014.

[18] Yam, C., Lorenzo, D., and Izzo, D., “Low-thrust trajectory design as a constrained global optimization problem,” Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 225, No. 11, 2011, pp. 1243–1251.

https://doi.org/10.1177/0954410011401686.

[19] Englander, J. A., Knittel, J. M., Williams, K., Stanbridge, D., and Ellison, D. H., “Validation of a Low-Thrust Mission Design

Tool Using Operational Navigation Software (AAS 17-204),” 27th AAS/AIAA Space Flight Meeting, 2017.

35

https://doi.org/https://doi.org/10.1016/j.actaastro.2006.11.012
http://www.sciencedirect.com/science/article/pii/S0094576506004255
http://www.sciencedirect.com/science/article/pii/S0094576506004255
https://doi.org/10.2514/1.G003077
https://doi.org/10.2514/1.G003077
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.2514/1.G003078
https://doi.org/10.2514/1.G003078
https://arxiv.org/abs/1607.07892
https://doi.org/10.1177/0954410011401686

	Introduction
	Problem Statements
	Virtual Swarm Method
	Low Thrust Trajectory Transcription
	Examples
	Evaluating Missed Thrust Recovery Margin for a Nominal Trajectory
	Earth-Mars Transfer
	Single Example
	Pareto Front

	Earth-Mars-Psyche Transfer
	Single Example
	Pareto Front and Sensitivity

	Discussion
	Conclusion
	Template.pdf
	PACE_vol9_app_sci_intro.pdf
	pace_applications_plan_v1-2.pdf
	1 Introduction
	1.1 Purpose
	1.2 PACE Mission Overview

	2 PACE applications program
	3 PACE applications team and working group
	3.1 PACE Applications team: roles and responsibilities
	3.2 PACE Applications Working Group
	3.3 Interactions between the PACE AWG and the PACE mission

	4 PACE applications plan implementation strategy
	4.1 Engagement with Early Adopters
	4.2 Applications Plan Notional Schedule
	4.3 Coordination with PACE validation and other field activities
	4.4 Communication and engagement strategies
	4.5 Performance evaluation
	Appendix A Abbreviations and acronyms

	Report Template.pdf
	Blank Page

