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John K. Ramsey and David E. (Dutch) Myers 
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Cleveland, Ohio 44135 

Summary 
This report presents the derivation of the factored interaction equations for preloaded bolts in two- or 

three-dimensional load-ratio space. This is an extension of the previous work of the first author, which 
covered factored interaction equations consisting of load or stress ratios that were either solely constant or 
solely varying quantities. In this report, the factored interaction equations for preloaded bolts consist of an 
axial load ratio that is a combination of a constant quantity, comprising the preload and thermal load at 
preload, and a varying quantity, comprising the tensile and nonplastic bending loads; this was not covered 
in the previous work. Two forms of the factored interaction equations for preloaded bolts, arising from 
two perspectives, are presented and compared. Closed-form solutions for the tensile, shear, and bending 
loads as functions of the other concurrent loads are presented that produce a margin of safety of 0. 

Introduction 
Reference 1 presented the derivation of the relationship between the factor of safety (FS), margin of 

safety (MS), and a given interaction equation in two- or three-dimensional stress-ratio (or load- or 
moment-ratio) space. Interaction equations characterize combinations of stress, loads, or moments that 
cause structural failure. These equations have been expressed in terms of load ratios, moment ratios, or 
stress ratios and produce a FS that is, in turn, used to calculate the MS. Reference 1 covered interaction 
equations that consisted of stress ratios that were either exclusively constant or exclusively varying 
quantities. Preloaded bolts with nonplastic bending are characterized by interaction equations that have an 
axial load ratio that is a combination of a constant term comprising the preload and thermal load at 
preload and a varying term comprising the tensile and bending loads. This work extends that of 
Reference 1 to cover the derivation of the factored interaction equations for preloaded bolts with 
nonplastic bending in two- or three-dimensional load-ratio space. 

The factored interaction equations, and thus the MS for preloaded bolts, may be obtained from two 
different perspectives. From the first perspective, the axial load ratio starts from 0 at the stress-free or 
load-free state of the bolt, denoted herein as the standard perspective. From the second perspective, the 
axial load ratio starts from 0 at the preload and thermal load condition, with the allowable axial load 
reduced accordingly; this is denoted herein as the alternate perspective. In both perspectives, all load 
ratios are 0 at the origin of load-ratio space. 

The factored interaction equations from the two perspectives are derived along with closed-form 
solutions for the tensile, shear, and bending loads as functions of the other concurrent loads that produce a 
MS of 0. A comparison of these load equations from the standard and alternate perspectives is presented. 

The symbols used within this report are listed in Appendix A.  
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Interaction Equations 
The mathematical developments in this work leading up to the factored interaction equations largely 

follow that of Reference 1. As will be shown herein, changes result in the factored interaction equations 
of Reference 1 due to the inclusion of preload and thermal load in the tensile load ratio.  

The interaction of one load ratio R with others at failure can be characterized using an interaction 
equation expressed as 

 
( ) ( ) ( ) 1      for  

ba c
i j kR R R i j k′ ′ ′Σ + Σ + Σ = ≠ ≠

 
(1) 

where the exponents a, b, and c are determined from experimental test results and/or theory. The load 
ratios iR′ , jR′ , and kR′  characterize the failure load state. The summations and corresponding indices 
permit the combination of load ratios as dictated by experiment or theory. 

Referring to Figure 1, the load state at point P has coordinates (ΣRi, ΣRj, and ΣRk), and it lies within 
the bounds of the failure (or interaction) surface (or equation), which indicates that the structure has 
reserve strength. The load state at point P′ has coordinates ( iR′Σ , jR′Σ , and kR′Σ ) and lies on the failure 

(or interaction) surface, indicating that the structure does not have reserve strength at point P′. 
 

 
Figure 1.—Generic failure surface (in three-dimensional load-ratio space), illustrating 

magnitude S1 of current load-ratio state P and magnitude S2 of load-ratio state at 
failure P′ for case where all load-ratio sums ΣR are proportional up to failure; here, n 
refers to a load introduction factor; φ, to a joint stiffness factor; Pt, to external, axial 
load; Pt-allow, to bolt tensile load allowable; P0, to preload; Pth, to thermal load; Rb, to 
bending load ratio; Rp, to combined preload and thermal load ratio. 
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Margin of Safety 
One of the most concise definitions of the MS is given in Reference 2 as “the ratio of excess strength 

to the required strength,” where, in terms of load, the excess strength is the difference between the 
allowable load and the required load. The required load is the product of the factor of safety  (factor of 
safety definition 2, see Ref. 1), any additional factors, and the calculated load. This is expressed 
mathematically as 

 
( ) ( )

( )
( )

( )( )( )
allowable load required load allowable load 1

required load additional factors calculated load
MS −

= = −


 (2) 

Referring to Figure 1, the allowable load ratio combination corresponds to point P′ on the failure 
surface or curve, and the required load ratio combination corresponds to point P. The preloaded bolt load 
trajectory starts at zero load and traverses the vertical axis to the point of combined preload and thermal 
load equilibrium, designated as load ratio Rp, prior to external loads being applied. As external loads are 
applied, the load ratio trajectory extends from Rp to a load-ratio combination of interest at point P. As the 
loads are further increased, the load-ratio trajectory extends to the allowable (failure) load ratio 
combination at point P′. It is assumed that the load ratios continue beyond point P up to point P′ with the 
same proportionality to each other as they had from Rp to point P. This assumption determines the point 
of intersection of the load-ratio trajectory with the failure envelope or curve. The allowable and required 
load ratios are load-trajectory dependent.  

Referring to Figure 1, the allowable load beyond preload is represented by the line segment pR P′


, 

and the required load ratio beyond preload is represented by the line segment pR P


. Equation (2), in terms 
of these line segments, becomes 

 p p

p

R P R P
MS

R P
′ −

=

 


 (3) 

Referring to Figure 2, it is not correct to assume the required and allowable bolt loads are associated with 
a load trajectory originating at the origin of the load-ratio space and extending through point P to point 
P′′, because this load-ratio trajectory does not appropriately incorporate the preload procedure. This 
erroneous load trajectory results in an erroneous proportionality between axial load ratio, herein denoted 
as kR∑ , and the shear load ratio, herein denoted as iR∑ . This in turn results in the erroneous allowable 

load ratio at point P′′. However, it is possible to define a MS in terms of the line segments 0P


 and 0P′


, 
as shown below in Equation (4) if the analyst is only interested in determining the load ratios at a MS = 0: 

 0 0
0

P PMS
P
′ −

=
 

  (4) 

As shown in Figure 2, as point P reaches point P′ along the true load trajectory segment, 0P


 becomes 
equivalent to segment 0P′



, the MS from Equation (4) equaling 0 concurrently with that of Equation (3). 
Aside from the point where MS = 0, the nonzero margins per Equations (3) and (4) are generally different; 
Equation (3) assumes load ratios remain proportional up to failure, whereas Equation (4) does not. 
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Figure 2.—Generic failure curve (in two-dimensional 

load-ratio space) illustrating several load paths. Point 
P designates load-ratio state of interest. Point P ′ 
designates load-ratio state at failure for case where 
all load-ratio sums ΣR maintain same proportionality 
that existed from point Rp (see Figure 1) to point P. 
Point P ″ is erroneous allowable load-ratio state. 

 
Referring to Figure 1, the following relationships may be observed: 

 1 1 1cos cosϕ α = Σ → = Σi iS R S C R  (5) 

 1 1 2cos sin j jS R S C Rϕ α = Σ → = Σ  
(6) 

 1 1 3sinp k p kR S R R S C R+ ϕ = Σ → + = Σ  (7) 

 2 2 1cos cos i iS R S C R′ ′ϕ α = Σ → = Σ  (8) 

 2 2 2cos sin j jS R S C R′ ′ϕ α = Σ → = Σ
 

(9) 

 2 2 3sinp k p kR S R R S C R′ ′+ ϕ = Σ → + = Σ  (10) 

where the trigonometric terms are constants for a given load state, and for conciseness these are denoted 
as C1, C2, and C3 as shown above. 

It should also be mentioned that the load ratios that are located within the bounds of the failure envelope 
or failure curve are those load ratios without the prime, and these may include factors of safety and other 
proprietary factors as products of the load-ratio numerator, although this is not explicitly shown herein.  

The load ratios with the prime are the load ratios at the point of failure. Because there is no 
uncertainty about the point of failure, there are no factors of safety or other proprietary factors 
incorporated into these load ratios. These load ratios are located on the failure surface or curve. 



NASA/TM-20210024657 5 

Utilizing the equations for the distance between two points in three-dimensional space, the ratio in 
Equation (3) becomes 

 
( ) ( ) ( )

( ) ( ) ( )

22 2

2 220 0
p p i i j j k k

p i j k p

R P R P R R R R R R
R P R R R R

′ ′ ′ ′− Σ − Σ + Σ −Σ + Σ −Σ
=

Σ − + Σ − + Σ −

 

  (11) 

Substituting Equations (5) to (10) into Equation (11) gives 

 
( ) ( ) [ ]

( ) ( ) ( )

22 2
2 1 1 1 2 2 1 2 2 3 1 3

22 2
1 1 1 2 1 3

p p p p

p p p

R P R P S C S C S C S C R S C R S C
R P S C S C R S C R

′ − − + − + + − −
=

+ + + −

 

  (12) 

Factoring out terms in Equation (12) yields 

 ( ) ( )
( )

2 2 2 2
2 1 1 2 3

2 2 2 2
1 1 2 3

p p

p

R P R P S S C C C
S C C CR P

′ − − + +
=

+ +

 

  (13) 

Rearranging Equation (13) simplifies to 

 
( ) ( )

( )
2 2 2

2 1 1 2 3 2 1
2 2 2

1 11 2 3

p p

p

R P R P S S C C C S S
S C C C SR P

′ − − + + −
= =

+ +

 

  (14) 

Substituting Equation (14) into Equation (3), the MS becomes 

 

2 1 2

1 1
1S S SMS

S S
−

= = −
 

(15) 

As can be seen from Equation (15), the MS is expressed in terms of the distances S1 and S2 as defined in 
Figure 1. 

Factor of Safety 
Reference 3 defines the factor of safety to be the calculated ratio of S2 to S1. The factor of safety in 

this regard will be denoted as FS (definition 1, see Ref. 1), thus differentiating it from the specified 
factors of safety definition 2, denoted generically in this work as . Therefore, 

 
2

1

SFS
S

=
 

(16) 

Substituting Equation (16) into Equation (15) gives the MS in terms of the factor of safety 
(definition 1): 

 1MS FS= −  (17) 
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The factor of safety FS must be determined in order to solve for the MS in Equation (17). A factored 
interaction equation (which will be described in the next section, “Factored Interaction Equations”) along 
with Equation (17) form a system of two equations in two unknowns, FS and MS. Once the factored 
interaction equation is solved for FS, it is substituted into Equation (17) to determine the MS. The FS as 
defined in Equation (16) could be determined graphically from the load-ratio space as shown in Figure 1, 
Figure 2, and Figure 3, but it is more convenient to determine the FS from factored interaction equations. 
The following sections derive the factored interaction equations, which consist of the factor of safety FS, 
and various load ratios. The FS can be determined using a root-finding algorithm, where the FS is the 
lowest positive root of the factored interaction equation.  
 

 
 

Figure 3.—Generic interaction curve (in three-dimensional load-ratio space) involving three 
load ratios ΣR, illustrating current load-ratio state P and load-ratio state at failure P ′, from the 
alternate perspective. 
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Factored Interaction Equations 
In the following mathematical development through Equation (24), the load ratios are assumed to be 

proportional to each other. This means that ϕ′ = ϕ and α′ = α in Figure 1. Multiplying both sides of 
Equation (16) by cos ϕ cos α and rearranging gives 

 ( ) 1 2cos cos cos cosFS S Sϕ α = ϕ α   (18) 

and upon substituting Equations (5) and (8) into Equation (18), 

 ( ) i iFS R R′Σ = Σ   (19) 

Multiplying both sides of Equation (16) by cos ϕ sin α and rearranging leads to 

 ( ) 1 2cos sin cos sinFS S Sϕ α = ϕ α   (20) 

and upon substituting Equations (6) and (9) into Equation (20), 

 ( ) j jFS R R′Σ = Σ   (21) 

Multiplying both sides of Equation (16) by sin ϕ and rearranging gives 

 ( ) 1 2sin sinFS S Sϕ = ϕ   (22) 

and upon substituting Equations (7) and (10) into Equation (22), 

 ( )( )k p k pFS R R R R′Σ − = Σ −   (23) 

Substituting Equations (19), (21), and (23) into Equation (1) generates Equation (24), which describes the 
relationships between load ratios in terms of the FS for the scenario that all load ratios beyond preload 
maintain proportionality prior to and at failure: 

 ( ) ( ) ( )( ) 1
cba

i j k p pFS R FS R FS R R R   Σ + Σ + Σ − + =        (24) 

Equation (24) explicitly accounts for the preload; is valid for all failure surfaces in three-dimensional 
load-ratio space, including exponents with noninteger values; and corresponds to the failure path from 
points P to P′ shown in Figure 1. This type of equation describing the relationships between the load 
ratios prior to, and at, failure in terms of the factor of safety FS was denoted as the “factored interaction 
equation” in Reference 1 and will be denoted as such herein. 

Standard Perspective 

As shown in Appendix A.8 of Reference 4, it is assumed the tensile load ratio Rt and the bending 
stress ratio Rb can be summed in both the linear elastic range and for the ultimate condition. Although it is 
not theoretically correct to do this for the ultimate condition, it is conservative.  
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Therefore, 

 
-

tb b
k t b

t allow t

P fR R R
P F

= + = +∑  (25) 

where Pt-allow is the tensile load allowable, fb is the stress due to bending, and Ft is the maximum allowable 
tensile stress in the bolt. Recall the equation of tensile load Ptb for a bolt with a preload Pp and applied 
external tensile load Pt, as shown in Equation (8) of Reference 4, with thermal load Pth added: 

 tb p th tP P P n P= + + φ  (26) 

where n is a load introduction factor, and φ is the stiffness factor. 
Upon substituting Equation (26) into Equation (25), 

 
- -

p th t b t b
k p

t allow t t allow t

P P n P f n P fRR P F P F
+ + φ φ

= + = + +∑  (27) 

where the load ratio for the combined preload and thermal load state is given as 

 
-

p th
p

t allow

P P
R

P
+

=  (28) 

When including various factors into the numerator of the load ratios, it is acknowledged that they do not 
usually apply to the preload term because the uncertainty in the preload has typically already been 
accounted for in the specified preload value. It is straightforward to include various factors in the load 
ratios as desired, and the equations presented herein may be modified accordingly. 

The shear load ratio Rs has been assigned to the “i” axis of the load-ratio space and is given as 

 
-

s
i s

s allow

PR R
P

= =∑  (29) 

where Ps and Ps-allow are the bolt shear load and allowable bolt shear load, respectively. 
Substituting Equations (27) to (29) into Equation (24) gives the final form of the factored interaction 

equation for tension, shear, and bending in the elastic range: 

 ( ) ( )
- - -

1
ca

p ths t b

s allow t allow t t allow

PP n P f PFS FS
P P F P

 +   φ
+ + + =   

    
 (30a) 

where the terms associated with the “j” axis in Equation (24) were omitted because there were no load 
ratios to be associated with it. 
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By multiplying the numerator and denominator of the bending stress ratio by the tensile stress area A, 
the bending stress ratio is converted into a bending load ratio: 

 ( ) ( )
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P AfFS FS
P P P

 +   φ +
+ + =   

    
 (30b) 

where -t allow tP AF= . In Equations (30a) and (30b) the bending stress ratios (implicitly in Eq. (30b)) may 
be converted to their equivalent bending moment ratios using the flexure formula. 

Alternate Perspective 

The factored interaction Equations (30a) and (30b) assumed the initial axial load or stress state to be 
the unstressed bolt. The alternate perspective assumes the axial load ratio starts from 0 at the preload and 
thermal load condition at the origin of the load-ratio space. That is, the preload and thermal load are 
subtracted from the axial load, offsetting the origin of the load-ratio space along the axial coordinate axis 
as shown in Figure 3, with a corresponding reduced allowable axial load as shown below in the 
denominator of Equation (37). In both perspectives all load ratios are 0 at the origin of load-ratio space. 

The axial stress in the bolt, assuming a linear elastic system, is the sum of the stresses due to preload 
fp, thermal load fth, tensile load above preload ft, and bending fb. Whereas the sum is theoretically correct 
in the linear elastic range, it is not theoretically correct for the ultimate condition; rather, it is conservative: 

 p th t bf f f fσ = + + +  (31) 

Assuming the bolt stress is at the maximum allowable tensile stress Ft, whether that be a yield or ultimate 
value as the case may be, Equation (31) becomes 

 ( )t p th t b p th allowF f f f f f f f′= + + + = + +  (32) 

where fallow is the allowable combined stress due to both the external tension load above preload and the 

bending ( )t bf f ′+ . Solving Equation (32) for the allowable stress, 

 t p th allowF f f f− − =  (33) 

Multiplying and dividing Equation (33) by the tensile stress area A, the allowable stress is obtained in 
terms of loads: 

 
( )t p th t allow p th

allow
A F f f P P P

f
A A

−− − − −
= =  (34) 

The axial stress in the bolt due to tensile load and bending moment may be obtained by dividing 
Equation (26) by the tensile stress area A and adding the bending stress: 

 p th t
b

P P n P
f

A
+ + ϕ

σ = +  (35) 
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Since in this alternate view only the loads above preload are of interest, Equation (35) becomes 

 t
b

n P f
A
ϕ

σ = +  (36) 

One can determine the axial load ratio, which is equivalent to the axial stress ratio, by dividing 
Equation (36) by Equation (34): 

 
( ) ( )- -

t b
z t b

allow t allow p th t allow p th

n P A fR R R
f P P P P P P
σ φ

= Σ = + = +
− − − −

 (37) 

Rb is called a bending load ratio as opposed to a bending moment ratio, because the numerator and 
denominator are loads and not moments. The numerator is the product of the bolt cross-sectional area and 
the bolt bending stress, giving units of load. Since the units are in load and since the stress comes from 
bending, the terminology “bending load” is used. 

In this alternate view, Equations (19), (21), and (23) can be substituted into Equation (1) with the 
subscript “k” changed to subscript “z” corresponding to the alternate view of the origin of the load-ratio 
space as shown in Figure 3, and with Rp set to 0 in Equation (23), resulting in the following factored 
interaction equation: 

 ( ) ( ) ( ) 1
ba c

i j zFS R FS R FS R    Σ + Σ + Σ =      (38) 

Substituting Equations (29) and (37) into Equation (38) yields the alternate form of the factored 
interaction equation: 

 ( ) ( )
- -

1
ca

s t b

s allow p tht allow

P n P AfFS FS
P P PP

    φ +
+ =     − −     

 (39) 

Equations (30a) and (30b) are the factored interaction equations for a preloaded bolt where the load 
ratios are defined with respect to the origin of the load-ratio space, which is at a point of zero load or 
stress in the bolt. Equation (39) is the factored interaction equation for a preloaded bolt where the load 
ratios are defined with respect to an origin of the load-ratio space corresponding to a point of combined 
preload and thermal load and where the allowable axial load has been reduced accordingly. The bending 
stress ratio may be converted to an equivalent bending moment ratio using the flexure formula, in this 
case with the allowable bending moment being based on fallow (Eq. (34)). 

One of these interaction equations (Eqs. (30a), (30b), or (39)) and the MS Equation (Eq. (17)) form a 
system of two equations in two unknowns; upon solving one of the factored interaction equations for the 
FS and substituting it into Equation (17), the MS is determined. A root-finding algorithm using a 
combination of Newton-Raphson and bisection (Ref. 5), has been used successfully at the NASA Glenn 
Research Center for solving for the FS from the factored interaction equations.  

The question naturally arises as to which factored interaction equation should be used to determine 
the FS and thus the MS. Usually, an analyst will want to use, or at least start out using, the factored 
interaction equation leading to the most conservative MS. This would correspond to the factored 
interaction equation producing the lowest FS. 
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The following section compares the factored interaction equations—Equations (30b) and (39), 
corresponding to the standard and alternate perspectives, respectively—to determine which factored 
interaction equation, and thus which perspective, leads to the most conservative MS. 

It should be mentioned that the factored interaction equations are equivalent for the case where the 
preload and thermal load are not active at bolt failure. This is the case where the joint separates before 
bolt failure. In this situation, the preload and thermal load terms are 0 in the interaction equations.  

Comparison of Standard and Alternate Forms of Interaction Equations 
Tension and Bending Without Shear 

It should be mentioned that the factor of safety, FS, based on either Equations (30a) and (30b) or 
Equation (39) for the case of tension and bending without shear, results in identical margins of safety, MS. 
To show the equivalence of the standard and alternate forms of the factored interaction equations for the 
case of tension and bending without shear, first consider the standard form, Equation (30b), without the 
shear load term: 

 ( )
- -

1
c

p tht b

t allow t allow

P Pn P AfFS
P P

 + φ +
+ =  

  
 (40) 

Solving for the factor of safety FS, 

 
( )- pt allow th

t b

PP P
FS

n P Af
− +

=
φ +

 (41) 

Next consider the alternate form of the factored interaction equation, for the case of tension and bending 
without shear: 

 ( )
-

1
c

t b

t allow p th

n P AfFS
P P P

  φ +
=   − −   

 (42) 

Solving for the factor of safety FS, 

 -t allow p th

t b

P P P
FS

n P Af
− −

=
φ +

 (43) 

As can be seen by comparing Equations (41) and (43), the FS is the same for either form of interaction 
equation for tension and bending without shear, and in either case, the MS is the same and is 

 -1 1t allow p th

t b

P P P
MS FS

n P Af
− −

= − = −
φ +

 (44) 

Now Equation (30b) is compared with Equation (39) for the case of interaction of tension, bending, 
and shear to see which factored interaction equation is more conservative; that is, which equation predicts 
a lower external tension failure load, shear failure load, and bending failure load as a function of the other   
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concurrent load ratios at the point of MS = 0. This exercise also has the benefit of providing closed-form 
solutions for the tensile, shear, and bending failure loads, which produces a MS of 0 as a function of the 
other concurrent load ratios.  

Tension, Bending, and Shear 

Appendix B presents the derivation of the tension failure load that produces a MS of 0 as a function of 
the concurrent shear and bending loads. Appendix C presents the derivation of the shear failure load that 
produces a MS of 0 as a function of the concurrent tension and bending loads, and Appendix D presents 
the derivation of the bending failure load that produces a MS of 0 as a function of the concurrent tension 
and shear loads. All of the failure load equation derivations are provided from the standard and alternate 
perspectives, and these are presented in Table I. Appendix B, Appendix C, and Appendix D also provide 
a comparison of the failure load equations resulting from the standard and alternate perspectives. The 
tension, shear, and bending loads resulting from these load equations correspond to the coordinates of S2 
on the failure envelope as shown in Figure 1 and Figure 3. These comparisons indicate that the failure 
envelope loads of tension, shear, and bending resulting from factored interaction Equations (30a) and 
(30b) are lower than those resulting from factored interaction Equation (39). This means that S2 and thus 
the FS (Eq. (16)) resulting from Equations (30a) and (30b) is less than that resulting from Equation (39). 
Therefore, the MS (Eq. (17)) as determined from the standard perspective, factored interaction 
Equations (30a) and (30b), is more conservative than the MS as predicted from the alternate perspective 
(i.e., factored interaction Equation (39)—when the preload and thermal load are active at bolt failure). 
This is the case when the bolt ruptures before the joint separates. 
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Conclusion 
The factored interaction equations for preloaded bolts have been derived from two 

perspectives: (1) the standard perspective, where the axial load ratio starts from 0 at the stress-
free or load-free state of the bolt, and (2) the alternate perspective, where the axial load ratio 
starts from 0 at the preload and thermal load condition and where the allowable axial load has 
been reduced accordingly. All of the load ratios from both perspectives are 0 at the origin of load-
ratio space. 

Based upon the factored interaction equations resulting from the standard and alternate 
perspectives, closed-form equations are derived for the tensile, shear, and nonplastic bending 
failure loads as functions of the other concurrent load ratios that produce margins of safety equal 
to 0. 

A comparison of these closed-form equations reveals that for cases where the preload and 
thermal load are active at bolt failure, the standard perspective (where the axial load ratio starts 
from 0 at the stress-free or load-free state of the bolt) is more conservative for bolt loading than 
the alternate perspective (where the axial load ratio starts from 0 at the preload and thermal load 
condition and where the allowable axial load has been reduced accordingly). Note that preload 
and thermal load are active at bolt failure when the joint does not separate before the bolt 
ruptures. 

Where the preload and thermal load are not active at bolt failure, the standard and alternate 
perspectives are equivalent. 
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Appendix A.—Nomenclature 
A tensile area of bolt 
a,b,c  exponents in interaction Equation (1) 
C1,2,3 constants in Equations (5) to (10) and (12) to (14), representing trigonometric functions for a 

given load state (cf. Figure 1) 

FS factor of safety, definition 1: a calculated ratio, typically of two quantities of the same 
character. Calculated ratio S2/S1.  

 factor of safety, definition 2: a specified multiplying factor applied to calculated loads for the 
purpose of creating a margin of safety 

Ft maximum allowable axial stress in the bolt, either a yield or ultimate value 
fallow allowable stress above the stress due to the combination of preload and thermal load 
fb bending stress 
fp stress due to preload 
ft stress due to tensile load above preload 
fth stress due to thermal load 
MS margin of safety. A measure of a structure’s predicted reserve strength in excess of the product 

of the load under consideration, the applicable factor of safety (definition 2 of factor of safety), 
and additional factors 

n load introduction factor 
P point in load-ratio space that is interior to the failure surface or failure curve 
Pp bolt preload 
Ps bolt shear load 
Ps-allow bolt shear load allowable, either a yield or ultimate condition 
Pt external tensile load applied to preloaded bolts 
Pt-allow bolt tensile load allowable, either a yield or ultimate condition; ( )-t allow tAP F=  
Ptb bolt tensile load 
Pth bolt thermal load 
P′ point in load-ratio space on the failure surface or failure curve 
P′′ point of erroneous allowable load ratio state on the failure surface or failure curve in load-ratio 

space 

tbP  sum of bolt tensile and bending loads (see Eq. (C.7)) 

R load ratio, ()(additional factors)(calculated load)/(allowable load) 
Rb bending load ratio (see Eq. (37))  
Rp combined preload and thermal load ratio 
Rs shear load ratio 
Rt tension load ratio 
S1 magnitude of load state corresponding to point P, interior to the failure surface in load-ratio 

space (see Figure 1 and Figure 3) 
S2 magnitude of load state corresponding to point P′ on the failure surface in load-ratio space 

(see Figure 1 and Figure 3) 
α angle defined in Figure 1 and Figure 3 
φ angle defined in Figure 1 and Figure 3  
φ joint stiffness factor defined as bolt stiffness divided by the sum of the bolt stiffness and the 

joint stiffness 
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σ axial stress 
( )alternate quantity associated with the alternate perspective (Eq. (39)) 
( )′ quantity on the failure surface or failure curve indicating structural failure, either a yield or 

ultimate condition 
( )i,j,k,z  indices representing different load types, load states, or failure modes and associated axes in 

load-ratio space 
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Appendix B.—Tension Failure Load as a Function of Shear Load and 
Bending Stress at Margin of Safety (MS) of 0 

This appendix derives the equation for the bolt tensile failure load, as a function of bolt shear and 
bending load ratios, corresponding to a MS of 0. This is done using the standard factored interaction 
Equation (30b) and the alternate factored interaction Equation (39). A comparison is made to determine 
which interaction equation—Equation (30b)1or (39)—is more conservative in determining the external 
tension load at MS = 0 for any combination of shear and bending load ratios. 

 ( ) ( )
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P AfFS FS
P P P

 +   φ +
+ + =   

    
 (30b) 

 ( ) ( )
- -

1
ca

s t b

s allow p tht allow

P n P AfFS FS
P P PP

    φ +
+ =     − −     

 (39) 

where 
A tensile area of bolt 
a, b, c exponents in interaction equations 
fb bending stress 
FS factor of safety, definition 1: a calculated ratio, typically of two quantities of the same 

character 
n load introduction factor 
Pt external tensile load applied to preloaded bolts 
Pp bolt preload 
Ps bolt shear load 
Ps-allow bolt shear load allowable 
Pt-allow bolt tensile load allowable 
Pth bolt thermal load 
φ joint stiffness factor defined as bolt stiffness divided by the sum of the bolt stiffness and 

the joint stiffness 
 

From Equation (30b), MS = 0 when FS = 1. Setting the FS = 1 in Equation (30b) results in 

 
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P Af
P P P

 +   φ +
+ + =    

    
 (B.1) 

  

 

1Equivalent to Equation (30a): ( ) ( )
- - -

1
ca

p ths t b

s allow t allow t t allow

PP n P f PFS FS
P P F P

 +   φ
+ + + =   

    
. 
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Rearranging, 

 
- - -

1
c a

p tht b s

t allow t allow s allow

P Pn P Af P
P P P

 +   φ +
+ = −    

    
 (B.2) 

Raising both sides of Equation (B.2) to the (1/c) power, 

 
1/

- - -
1

ca
b p tht s

t allow t allow s allow

Af P Pn P P
P P P

 + +  φ  + = −     
 (B.3) 

Rearranging further, 

 
1/

- - -
1

ca
b p tht s

t allow s allow t allow

Af P Pn P P
P P P

  + + φ  = − −    
 (B.4) 

Solving for the external axial force that produces an MS of 0, 

 
1/

-

-
1

ca
b p tht allow s

t
s allow

Af P PP PP
n P n

  + +  = − − φ φ   
 (B.5) 

From the alternate form of the factored interaction Equation (39), MS = 0 when FS = 1. Setting FS = 1 
in Equation (39), 

 
- -

1
ca

s t b

s allow t allow p th

P n P Af
P P P P

   φ +
+ =    − −   

 (B.6) 

Rearranging, 

 
- -

1
c a

t b s

t allow p th s allow

n P Af P
P P P P

   φ +
= −    − −   

 (B.7) 

Raising both sides of Equation (B.7) to the (1/c) power and rearranging again, 

 
1/

- - -
1

ca
t s b

t allow p th s allow t allow p th

n P P Af
P P P P P P P

  φ  = − − − − − −   
 (B.8) 
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Solving for the external force that produces a MS of 0, 

 ( )
1/

-

-
1

ca
t allow p th s b

t alternate
s allow

P P P P AfP
n P n

 − −   = − − φ φ   
 (B.9) 

where the subscript “alternate” designates that this external tension force is from the alternate form of the 
factored interaction equation. 

By subtracting Equation (B.9) from Equation (B.5), it can be determined which value of the external 
tensile load corresponding to MS = 0 is smaller and then which corresponding factored interaction 
Equation (30b)1 or (39) is more conservative in predicting the tensile load corresponding to MS = 0 for 
the case of combined tension, bending, and shear. 

Subtracting Equation (B.9) from Equation (B.5) and canceling some terms, 

 

( )
1/

-

-
1

ca
t allow s

t t alternate
s allow

P PP P
n P

   − = −  φ    

-

b p th

t allow

Af P P
n

P

 
+ + 

− 
φ 

 

−

1/

-
1

ca
p th s b

s allow

P P P Af
n P n

  − −    − −  φ φ     

 (B.10) 

Canceling more terms gives 

 

( ) b
t t alternate

Af
P P− = −

( ) 1/

-
1

p th

ca
p th s b

s allow

P P
n

P P P Af
n P n

 + +
 

φ  

 − +   − − − φ φ   

 
 
 
 
 

 (B.11) 

The final difference becomes 

 ( ) ( ) ( ) 1/

-
1

ca
p th p th s

t t alternate
s allow

P P P P PP P
n n P

 + +   − = − + −  φ φ    
 (B.12) 

  

 

1Equivalent to Equation (30a): ( ) ( )
- - -

1
ca

thps t b

s allow t allow t t allow

PP n P f PFS FS
P P F P

 +   φ
+ + + =   
     

. 
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Since 0p thP P+ > , for practical situations, and since ( )-0 1s s allowP P< ≤ , the right-hand side of 

Equation (B.12) is always negative, and as a result, the external load corresponding to the standard 
factored interaction equation is always less than the external load corresponding to the alternate form of 
the interaction equation at MS = 0, 

 ( )t talternateP P>  (B.13) 

Therefore, the standard factored interaction equations, Equations (30a) and (30b), are more conservative 
than the alternate factored interaction Equation (39), for determining the external tensile failure load that 
produces a MS of 0 for interaction of tension, shear, and bending. 
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Appendix C.—Shear Failure Load as a Function of Tension and 
Bending Load Ratios at Margin of Safety (MS) of 0 

This appendix derives the equation for the bolt shear failure load, as a function of bolt tension and 
bending load ratios, corresponding to a MS = 0. This is done using the standard factored interaction 
Equation (30b) and the alternate factored interaction Equation (39). A comparison is made to determine 
which interaction equation (Eq. (30b)1 or (39)) is more conservative in determining the external shear 
failure load at MS = 0 for any combination of tension and bending load ratios. 

 ( ) ( )
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P AfFS FS
P P P

 +   φ +
+ + =   

    
 (30b) 

 ( ) ( )
- -

1
ca

s t b

s allow p tht allow

P n P AfFS FS
P P PP

    φ +
+ =     − −     

 (39) 

where 
A tensile area of bolt 
a, b, c exponents in interaction equations 
FS factor of safety, definition 1: a calculated ratio, typically of two quantities of the same 

character 
fb bending stress 
n load introduction factor 
Pp bolt preload 
Ps bolt shear load 
Ps-allow bolt shear load allowable 
Pt external tensile load applied to preloaded bolts 
Pt-allow bolt failure load 
Pth bolt thermal load 
φ joint stiffness factor defined as bolt stiffness divided by the sum of the bolt stiffness and 

the joint stiffness 
 
From Equation (30b) the MS = 0 when the FS = 1. Setting the FS = 1 in Equation (30b), 

 
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P Af
P P P

 +   φ +
+ + =    

    
 (C.1) 

 
  

 

1Equivalent to Equation (30a): ( ) ( )
- - -

1
ca

thps t b

s allow t allow t t allow

PP n P f PFS FS
P P F P

 +   φ
+ + + =   
     

. 
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Rearranging, 

 
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P Af
P P P

 +   φ +
= − +    

    
 (C.2) 

Raising both sides of Equation (C.2) to the power (1/a) and solving for the shear load that corresponds to 
MS = 0, 

 

( )1/

-
-

1

ac
t b p th

s s allow
t allow

n P Af P P
P P

P
=

 φ + + +  −       

(C.3) 

From the alternate form of the factored interaction Equation (39) the MS = 0 when the FS = 1. Setting the 
FS = 1 in Equation (39), 

 
- -

1
ca

s t b

s allow t allow p th

P n P Af
P P P P

   φ +
+ =    − −   

 (C.4) 

Rearranging, 

 
- -

1
ca

s t b

s allow t allow p th

P n P Af
P P P P

   φ +
= −     − −   

 (C.5) 

Raising both sides of Equation (C.5) to the power (1/a) and solving for the shear load that corresponds to 
a MS = 0, 

 ( )
( )1/

-
-

1

ac
t b

s s allowalternate
t allow p th

n P AfP P
P P P

  φ + = −    − −  

 (C.6) 

where the subscript “alternate” designates that this shear load is from the alternate factored interaction 
equation. 

In order to simplify the comparison of the standard and alternate factored interaction equations, 
Equations (C.3) and (C.6), the equations are made more concise by defining the variable tbP  to be the 
sum of the bolt axial and bending loads as shown: 

 tb p th t bP P P n P Af= + + φ +  (C.7) 

Equation (C.7) is equivalent to multiplying Equation (35) by the tensile stress area A. 
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Substituting Equation (C.7) into Equation (C.3), 

 

( )1/

-
-

1

ac
tb

s s allow
t allow

PP P
P

   = −     



 (C.8) 

Substituting Equation (C.7) into Equation (C.6), 

 ( ) ( )
( )

( )1/

-
-

1

ac
tb p th

s s allowalternate
t allow p th

P P P
P P

P P P

  − +  = − 
− +    



 (C.9) 

Let us assume ( )s salternateP P> . For this to be true, the ratio on the right-hand side of Equation (C.8) 

must be larger than the ratio on the right-hand side of Equation (C.9):  

 
( )
( )- -

tb p thtb

t allow t allow p th

P P PP
P P P P

− +
>

− +





 (C.10) 

Equation (C.10) is multiplied through by the denominator of the expression on the right-hand side, 
followed by a multiplication by the denominator on the left-hand side: 

 ( ) ( )- -tb t allow p th t allow tb p thP P P P P P P P   − + > − +   
   (C.11) 

Canceling terms in Equation (C.11) gives 

 ( ) ( )-tb p th p tht allowP P P P PP− + > +−  (C.12) 

Upon reducing, 

 -tb t allowP P<  (C.13) 

Since -t allow tbP P>  , and these quantities cannot be equal because of the assumed interaction with shear,2 
the inequality in Equation (C.13) holds, and therefore the inequality from which it originated, 
  

 

2Rewriting Equations (30b) and (39) in terms of tbP  for FS = 1 we have 
- -

1
a c

s tb

s allow t allow

P P
P P

   
+ =   

   



 and 

--
1

ca
p thtbs

t allows allow p th

P PP P
P P PP

 − − 
+ =    − −   



. We see that -t allow tbP P>   to satisfy the interaction equations for nonzero 

shear load ratios. 
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Equation (C.10), is verified. Therefore, the quantity on the right-hand side of Equation (C.8) is less than 
the quantity on the right-hand side of Equation (C.9), resulting in 

 ( )s salternateP P>  (C.14) 

Therefore, the standard factored interaction Equations (30a) and (30b) are more conservative than the 
alternate factored interaction Equation (39) for determining the shear failure load that produces a MS = 0 
for the interaction of tension, shear, and bending. 
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Appendix D.—Bending Load as a Function of Tension and 
Shear Loads at Margin of Safety (MS) of 0 

This appendix derives the equation for the bolt bending failure load, as a function of bolt tension and 
shear load ratios, corresponding to a MS = 0. This is done using the standard factored interaction 
Equation (30b) and the alternate factored interaction Equation (39). A comparison is made to determine 
which interaction equation—Equation (30b)1 or (39)—is more conservative in determining the bending 
failure load at MS = 0 for any combination of tension and shear load ratios. 

( ) ( )
- - -

1
ca

p ths t b

s allow t allow t allow

P PP n P AfFS FS
P P P

 +   φ +
+ + =   

    
 (30b) 

( ) ( )
- -

1
ca

s t b

s allow t allow p th

P n P AfFS FS
P P P P

    φ +
+ =     − −     

 (39) 

where 
A tensile area of bolt 
a, b, c exponents in interaction equations 
FS factor of safety, definition 1: a calculated ratio, typically of two quantities of the same 

character 
fb bending stress 
n load introduction factor 
Pp bolt preload 
Ps bolt shear load 
Ps-allow bolt shear load allowable 
Pt external tensile load applied to preloaded bolts 
Pt-allow bolt failure load 
Pth bolt thermal load 
φ joint stiffness factor defined as bolt stiffness divided by the sum of the bolt stiffness and 

the joint stiffness 

From Equation (30b) the MS = 0 when the FS = 1. Setting the FS = 1 in Equation (30b), 

- - -
1

ca
p ths t b

s allow t allow t allow

P PP n P Af
P P P

 +   φ +
+ + =    

    
 (D.1) 

1Equivalent to Equation (30a): ( ) ( )
- - -

1
ca

thps t b

s allow t allow t t allow

PP n P f PFS FS
P P F P

 +   φ
+ + + =   
     

. 
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Rearranging, 

 
- - - -

1
c a

p tht b s

t allow t allow t allow s allow

P Pn P Af P
P P P P

 +   φ
+ + = −    

    
 (D.2) 

Raising both sides of Equation (D.2) to the power (1/c) and rearranging, 

 
( )1/

- - - -
1

ca
p thb s t

t allow s allow t allow t allow

P PAf P n P
P P P P

  +    φ = − − −        
 (D.3) 

Solving for the bending load that corresponds to a MS = 0, 

 
( )

( )
1/

-
-

1

ca
s

b t allow t p th
s allow

PAf P n P P P
P

   = − − φ − +    
 (D.4) 

From the alternate form of the factored interaction Equation (39), the MS = 0 when the FS = 1. Setting the 
FS = 1 in Equation (39), 

 
- -

1
ca

s t b

s allow t allow p th

P n P Af
P P P P

    φ +
+ =     − −     

 (D.5) 

Rearranging, 

 
- -

1
c a

t b s

t allow p th s allow

n P Af P
P P P P

    φ +
= −     − −     

 (D.6) 

Raising both sides of Equation (D.6) to the power (1/c) and rearranging again, 

 
( )1/

- - -
1

ca
b s t

t allow p th s allow t allow p th

Af P n P
P P P P P P P

   φ = − − − − − −   
 (D.7) 

Solving for the bending load required to create a MS of 0, 

 ( ) ( )
( )1/

-
-

1

ca
s

b t allow p th talternate
s allow

PAf P P P n P
P

   = − − − − φ    
 (D.8) 

where the subscript “alternate” designates that this is from the alternate factored interaction equation. 
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Subtracting Equation (D.8) from Equation (D.4) and canceling some terms, 

 

( )
( )1/

-
-

1

ca
s

b b t allowalternate
s allow

PAf Af P
P

   − = −     
tn P− φ ( )

-

p th

t allow

P P

P

− +

− ( )
( )1/

-
1

ca
s

p th t
s allow

PP P n P
P

   − − − − φ    

 
 
 
 
 

 (D.9) 

Rewriting, 

 ( ) ( ) ( )
( )1/

-
1

ca
s

b b p th p thalternate
s allow

PAf Af P P P P
P

   − = − + + + −     
 (D.10) 

Since interaction is assumed, the shear load ratio on the right-hand side of Equation (D.10) exists and 
therefore is also less than 1 and greater than 0, the quantity on the right-hand side in square brackets never 
exceeding 1. Therefore, the right-hand side of Equation (D.10) is less than 0 (i.e., is negative), which 
means that 

 ( )b balternateAf Af>  (D.11) 

and therefore the standard factored interaction Equations (30a) and (30b) are more conservative than the 
alternate factored interaction Equation (39) for determining the bending failure load that produces a MS of 
0 for interaction of tension, shear, and bending. 
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