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Higher dimensional flamelet manifolds are essential in capturing the coupled effects of pressure
gradients and unsteady chemical kinetics observed in supersonic combustion applications. Previous
studies have validated the feasibility of using deep neural networks as an alternative to computation-
ally intensive multidimensional flamelet table storage and lookup. This approach has demonstrated
a significant reduction in memory footprint and enabled the use of larger dimensional tabulated
manifolds for supersonic combustion in canonical problems. In this study, the Unsteady Flamelet
Progress Variable (UFPV)-ANN model implemented in the VULCAN-CFD code is validated by the
Burrows-Kurkov supersonic mixing/combustion configuration. The well characterized experimen-
tal problem consists of hydrogen injection into a supersonic vitiated crossflow that results in a lifted
flame structure. The initial model consists of a 4-dimensional table where the independent variables
Z̃, C̃, X̃st, P̃ are tabulated using an unsteady flamelet code with boundary conditions corresponding
to the vitiated air conditions. The results show the development of a lifted flame structure and over-
all acceptable agreement with finite-rate chemistry (FRC) simulation and the experimental data.
Moreover, direct mapping between the independent variables and the flamelet table is replaced by
a deep neural network for significant memory reduction. The results indicate that the UFPV-ANN
approach can retrieve the same solution as the memory intensive lookup table approach.

I. Nomenclature

χst = Stoichiometric scalar dissipation rate
Z = Mixture fraction
Z”2 = Mixture fraction variance
C = Progress variable
Y = Species mass fraction
T = Temperature
P = Pressure
ρ = Density
Cp = Specific heat at constant pressure
Sc = Schmidt number
Pr = Prandtl number
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II. Introduction

THe scramjet is a promising air-breathing propulsion technology that offers potential to enable efficient, reusable,
and safe high-speed flights. CFD has the potential to be a powerful tool for the designing and optimization

of these engines, but computational modeling brings some challenges. Physical flow processes in a scramjet com-
bustor are highly nonlinear and coupled with shock/rarefaction waves, turbulent mixing, boundary layer interactions
and chemical kinetics. Moreover, highly compressible effects in the flow field need to be captured by numerical
algorithms with minimal dissipation in order to be capable of representing the shock-turbulence and combustion inter-
actions. Turbulence closure models should therefore be capable of representing the key features of turbulent mixing-
chemistry interactions at all unresolved scales. Furthermore, detailed chemical kinetics are required to capture the
main combustion processes. As a result, the development of turbulence models capable of capturing all the important
turbulent-combustion interactions at different flow conditions in a scramjet combustor remains as an incomplete task,
which commands both the fundamental interests and practical relevance.

A number of modeling approaches1 like FRC, PaSR, LEM, TPDF have been developed over the years. Briefly,
FRC, also known as a no-model approach, neglects turbulent-chemistry interaction (TCI). The PaSR model is based
on the assumption of adiabatic microstructures where all the chemical reactions occur only in these localized regions.
PaSR is based on algebric relations including model constants which may need to be tuned at different combustion
regimes. TPDF and LEM methods overcome this issue and are agnostic of the combustion regime. However, both
TPDF and LEM are computationally intensive. In the flamelet approach, chemistry is parameterized as a function of
a few tracking parameters and stored in tabulated look-up tables, which allows use of detailed and complex chem-
ical mechanisms. During the CFD simulations, thermochemical quantities are interpolated from the look-up tables.
However, the low-dimensionality of the flamelet model may under certain flow conditions lead to poor accuracy. This
becomes more pronounced in supersonic combustion where higher dimensional flamelet manifolds are required to
accurately predict fundamental physics.2 For example, pressure should be added as an additional variable within the
flamelet tables to adequately predict the effect of compression/expansion waves.2,3 However, an increase in the di-
mension of the flamelet table in a classical way requires high dimensional interpolation of parameterized variables
within the flamelet tables and causes immense memory allocation. It should be noted that computational requirements
increase nonlinearly as the dimensionality of the table increases. In summary, adding dimensions to the flamelet model
increases the memory footprint and retrieval costs, which in turn makes the flamelet models less competitive with the
detailed kinetics they are trying to efficiently replace.

Previous studies have demonstrated the implementation of the UFPV-ANN approach for a canonical problem in
the VULCAN CFD code.4 In this study, we extend the testing and validation towards more realistic cases, i.e., the
Burrows-Kurkov5,6 supersonic combustor. The flamelet tables are generated using an in-house flamelet code.7 The
current implementation can efficiently accommodate up to 5D tables along with a linear multi-dimensional lookup
scheme. This work focuses on predictions of a deep neural network based framework that can replace multidimen-
sional tables for reacting flow calculations.

The paper is organized as follows. Section III describes the original Burrows and Kurkov experimental config-
uration, and provides details of the computational setup. Section IV provides the model formulations for the UFPV
approach and the basic details of the UFPV-ANN framework. In the results section, the accuracy of the UFPV and
UFPV-ANN models is examined with respect to both experimental data and FRC simulation. The results section
concludes with a subsection discussing some challenges faced in this study regarding the solution of non-normalized
versus normalized transport equation for the progress variable.

III. Problem Definition and Computational Setup

A. Burrows and Kurkov Experimental Configuration

The Burrows-Kurkov5,6 supersonic mixing/combustion configuration has been widely utilized in the literature for
the validation of the combustion models in the context of RANS and LES studies.8–10 It provides comprehensive
experimental data for stagnation temperature, pitot and wall pressures, species mole fractions, and on-set ignition
location measurements, for both inert gas mixing (where nitrogen is replaced with oxygen in the air stream) and
vitiated-air mixing/reacting gas flow conditions at different locations of the combustor. A schematic of the original
Burrows and Kurkov experimental configuration is shown in Fig. 1. In this configuration, hydrogen from a slot is
injected into the test section at Ma 1.0 and 314 K conditions. The vitiated air at Mach 2.5 and 1250K enters the test
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section where it mixes with the hydrogen and combustion occurs downstream. In the case of inert gas mixing, the
static temperature is about 1150K.

Figure 1. Schematic of the Burrows and Kurkov supersonic combustor (taken from Ref.5)

B. Computational Setup Details

The computational platform utilizes a compressible multi-block flow solver called VULCAN-CFD. The VULCAN-
CFD code is a finite volume solver that provides a comprehensive set of numerical tools that enable the modeling of
reacting flows from subsonic to hypersonic speeds. The solver is fully parallelized using MPI. It can accommodate
structured as well as unstructured grids with RANS, LES or hybrid RANS-LES formulations.

The individual species viscosities and thermal conductivities are computed from the polynomial curve fits of
McBride.11 The computed coefficients are then combined to obtain mixture-averaged values with the use of empirical
relations. The moleculer diffusion coefficient is assumed constant for all the species and obtained by specifying a
Schmidt number of 0.5. The turbulent simulations are performed in the context of RANS, which uses Menter’s k − ω
turbulence model12 with a turbulent Schmidt number of 0.5, which is widely used for a broad range of flows and
appears to be a reasonable closure model, especially in the attached boundary layer regions.

The computational setup consists of a 2D spatial domain and a view of the computational grid used in the CFD
simulations is shown in Fig. 2. In addition to the original Burrows-Kurkov experimental test configuration given
in,5 a converging-diverging nozzle was designed to replicate the Mach 2.5 coreflow to better approximate the facility
boundary layer development. A finer mesh near the wall region is used to capture the gradients for proper prediction
of the boundary layer development given the use of wall functions in this effort. This provides an average y+ of 7 for
the wall adjacent cells. No-slip, isothermal compressible wall condition at a constant temperature of 350K is specified
at the walls. Supersonic outflow boundary condition with 1st order extrapolation of all the variables is applied at the
cell center of the ghost cells. The nominal test section inflow conditions considered in the CFD simulations are given
in table 1.

Figure 2. Computational domain and view of computational grid used in the CFD simulations

In the current simulation procedure, we use a multiregion simulation strategy in which the nozzle and test-section
are solved separately using an elliptic solver. Time integration is performed by an explicit two-stage Runge-Kutta
scheme and the time-step is determined from a CFL condition (CFL<1) for numerical stability. At each computational
cell, the local time-step ∆t is determined based on the CFL number. As a result, the time-step ∆t in the combustor
section spatially varies between 10−12 − 10−6 secs.
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Table 1. Burrows-Kurkov reference inflow conditions
U [m/s] T [K] P [Pa] YH2O YO2

YN2 YH2

Pure mixing case:
Inert gas 1695 1082 94,595 0.2162 0.0509 0.7324 0.0005
Hydrogen 1304 258 110,000 0.0 0.0 0.0 1.0
Combustion case:
Vitiated air 1775.2 1233 97,081 0.256 0.258 0.486 0.0
Hydrogen 1295 257 108,257 0.0 0.0 0.0 1.0

IV. Model Formulations

A. Unsteady Flamelet-Progress Variable (UFPV) Approach

This section briefly describes the transport equations, which are used to construct the flamelet table for use with
VULCAN-CFD. We use the compressible UFPV approach13 in a RANS formulation. The flamelet equations are
obtained by applying a Crocco-type transformation to the species and energy transport equations to recast them from
spatial coordinates into a 1D mixture fraction space.14 The equations in unsteady form are shown below:

ρ
∂Yi

∂t
= ρ

χ

2

∂2Yi

∂Z2
+ ω̇i (1)

ρ
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− ρ
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In the flamelet approach, the CFD solver solves for the mixture fraction transport equation which is then used to
look-up the local thermochemical state encoded in the flamelet table using the equations shown above. In addition
to the mixture fraction, the flamelet table is parameterized by different stoichiometric scalar dissipation rates through
a χst dimension and can also include unsteadiness via the progress variable, C. The flamelet table can be further
extended to account for the TCI effects by convolution of the solutions with a presumed PDF, for example. In the
UFPV formulation implemented in VULCAN-CFD, the table is parameterized using 5 independent variables Y =
f(P,C, χst, Z

′′2, Z).
In the current work, the flamelet equations were solved using an in-house code7 using an analytical Jacobian and

a sparse solver. The resulting flamelet table stores the species mass fractions and progress variable source terms for a
range of the independent variables. The flamelet table used in the UFPV simulations in this study has 5x16x151x2x101
points, and Z, C and χst are non-uniformly distributed. In addition to the existing continuity, momentum and total
energy equations, transport equations for Favre averaged mixture fraction, ρ̄Z̃, mixture fraction variance, ρ̄Z̃ ′′2 and
progress variable, ρ̄C̃ were implemented into VULCAN-CFD solver. The source term for the progress variable equa-
tion is retrieved from the flamelet table.
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∂(ρ̄ũiC̃)

∂xi
=

∂

∂xi

[(
µ

Sc
+

µt

Sct

)
∂C̃

∂xi

]
+ ω̇c (5)

The mean scalar dissipation rate, χ̃, appears in the last term of Eq. (4) and is modeled as χ̃ = Cxε̃/k̃Z̃ ′′2 with
Cx = 2.0. In this study, the progress variable is defined as the mass fraction of H2O, YC = YH2O. Then the
normalized progress variable, C, is calculated by

C =
YC − YC,min(Z, χst, P )

YC,max
(Z, χst, P )− YC,min

(Z, χst, P )
(6)
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More details on the normalization procedure of the progress variable as well as differences between normalized
and non-normalized solution of the transport equation for the progress variable will be presented in the results section.

In addition to the above transport equations, a framework to access up to a 5D flamelet table through a linear,
multidimensional interpolation approach was implemented into VULCAN-CFD. At each time-step, the species mass
fractions and progress variable source term are retrieved from the table. The temperature is then calculated from the
transported total energy and the mass fractions retrieved from the table.

B. UFPV-ANN approach

In order to overcome the issues of high memory footprint and retrieval costs associated with large flamelet tables,
researchers have developed novel strategies using artificial neural networks (ANNs).4,15 ANNs are inspired by bio-
logical neural networks, which consist of an interconnected network of artificial neurons relating one or more outputs
to a set of inputs. A schematic of a multi-layer neural network is shown in Fig. 3, and it consists of three parts: (i)
input layer where the list of input variables, five in this case, are accommodated; (ii) hidden layers that use trans-
fer functions to weight and propagate the input variables to the output layer; (iii) output layer that contains all the
trained vector data, in this case species mass fractions and progress variable reaction term. The ANN training process
is generally started by a random initialization of weights and biases. As the training process advances, weights and
biases are adjusted to optimize the ANN predictions to reduce the error. Gradient-based and second-order methods
are the two commonly used error minimization algorithms. Similar to,15 we use a second-order Levenberg–Marquardt
(LM) algorithm.

Figure 3. Schematic of deep neural network for 5D UFPV-ANN approach

In this study, a 7-step/7-species hydrogen-air chemical mechanism is used to build a 5D table for the combustion
case. Next, the generated flamelet table is used to train ANNs using MATLAB - Deep Learning Toolbox. The
independent variables are fed as inputs to the network and the species mass fractions are the outputs. All the species
mass fractions in the table are first normalized between -1 and 1 and then used for training. The progress variable
source terms are relatively more difficult to train. This is due to the fact that these values can change over many
orders of magnitude in the reaction process. A small error in the network can still result in a large magnitude error
during the inference stage. To partially address this issue, the progress variable source terms are first converted to
a logarithmic scale before normalization and training. However, the accuracy of the UFPV-ANN simulations can
still deteriorate, and the simulations can exhibit inaccurate results. To overcome this issue, the source terms can be
retrieved from the flamelet table by interpolation, while the species mass fractions are obtained through the UFPV-
ANN framework. Based on sensitivity studies in the previous work, 4 hidden layers with 9 neurons were used for this
study. Eighty percent of the dataset is used for training and the rest is used for validation. The approach has also been
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extensively validated in a previous study for subsonic applications.15 A separate inference module was developed and
implemented into the VULCAN-CFD code. This module can be used to read and retrieve data from ANNs using a
tanh activation function, thereby replacing the memory intensive process of storing and probing large tables. This
module is extendable to any type of flamelet model.

V. Results

In this section, we present computational results of inert-gas mixing and vitiated-air mixing/combustion cases with
UFPV and UFPV-ANN approaches. Accuracy is examined based on the Burrows-Kurkov experimental data and the
FRC simulation.

A. Inert-gas mixing

The Burrows-Kurkov experiments provide measurements for the stagnation temperature and pitot pressure at the
combustor entrance (x = 0.0) and exit (x = 35.59 cm) locations respectively for the inert-mixing. These profiles
along with the computational results are shown in Fig. 4. In both profiles, all computational results coincide with
each other and show a good agreement with the experimental measurements. The thermal boundary layer analysis in
these simulations indicated that the current nozzle design yields an inflow at the combustor entrance location near the
lower wall, where the boundary layer is slightly thicker than the one indicated in the experiment (∼ 1 cm). Moreover,
there is some evidence of imperfect mixing in the vitiator that was not modeled in these simulations (as evidenced
by the kink in the total temperature profile near y = 4 cm at the combustor entrance). This can explain the minor
differences observed in the simulations. Comparison of mole fraction profiles for hydrogen, nitrogen and water at the
combustor exit is given in Fig. 5, which indicates very good agreement with the experiments. This result shows the
current turbulent closure model and turbulent Schmidt (= 0.5) and Prandtl number (= 0.9) values are able to capture
the turbulent diffusion process quite well.

Figure 4. Stagnation temperature and pitot pressure profiles for inert-gas mixing: combustor entrance (left),
combustor exit (right)

B. Vitiated air mixing/combustion

The UFPV model is tested here with four independent variables where Ỹi = Ỹi(Z̃, C̃, X̃st,P̃ ). We omitted TCI to
reduce the complexity of the problem for the presented results in this study, hence the variable Z̃ ′′2 is tabulated with
two points only (as a legacy of the flamelet solver) but set to 0.0 before the interpolations. This is in accord with the
FRC simulations which omits the TCI as well.

The temperature and OH mass fraction contour plots at the test section are shown in Fig. 6 for FRC and UFPV
calculations. Both results predict a lifted flame in the downstream region, however, flame stabilization location differs
significantly. While the flame is stabilized at 18 cm for the FRC, this location is about 4 cm for the UFPV. Ignition
on-set location and the flame front position can be clearly indicated with the OH mass fraction contours for the
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simulations. In the literature, a wide range of flame lift-off heights (5-30 cm) were reported depending on the used
combustion model, chemical mechanism, grid spacing, etc. The flame lift-off height for the FRC result is consistent
with most of the studies, and within the range of 11-27 cm, which was reported in the Burrows-Kurkov experiments.
To understand the difference in the flame lift-off height prediction obtained from the UFPV simulation, we repeated
the UFPV simulation with X̃st fixed at its lowest value (X̃st=1.0). Figure 7 indicates that this UFPV simulation
yields a comparable flame lift-off height to the FRC and the experiment. In this exercise, the maximum temperature
(∼ 2700K) is higher, however, this is consistent with the equilibrium temperature obtained from the unsteady flamelet
solutions when X̃st = 1.0. One possible explanation for this is that the scalar dissipation rate acts like an increased
diffusion coefficient, thereby enhancing the diffusive transport in the mixture fraction space. However, this should be
investigated in more detail, thereby we leave it for a future study.

Figure 5. Mole fraction profiles at the combustor exit for inert-gas mixing

Figure 6. Contours of the temperature and ỸOH obtained using FRC (left) and UFPV (right).
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Figure 7. Contours of the temperature and ỸOH obtained using UFPV at X̃st = 1.0.

A quantitative analysis at the combustor entrance (injector step) and exit is presented in Fig. 8, where the UFPV
results are compared with the FRC simulation and the experimental predictions in terms of stagnation temperature.
Similar to Fig. 4, the results are in a very good agreement with the experimental data at the combustor entrance for
vitiated-air mixing. This result could be improved by iterating on the facility nozzle design (true nozzle geometry was
not known) that was added to allow for boundary layer development upstream of the combustor. Good agreement in
terms of peak stagnation temperature is also observed at the combustor exit. Differences between FRC and UFPV can
be seen in the predictions of reactive shear layer width. The FRC result shows a slightly wider width than the solution
obtained from the UFPV. The location of the peak is shifted towards the lower wall of the combustor for the UFPV.

Figure 8. Stagnation temperature profiles at the step (left) and combustor exit (right) locations for the vitiated-
air mixing and combustion cases, respectively.

Figure 9 presents pitot pressure profiles at the combustor inlet and exit. Similar good agreement at the entrance
section is observed between the computations and the experimental data. In contrast to the stagnation temperature dif-
ferences observed in the UFPV predictions, Fig. 9 indicates that UFPV yields better pitot pressure profile predictions.
A shock wave forms from the flame stabilization location, and the reflection of the shock wave can be seen in Fig. 6.

Mole fraction profiles for H2, O2, H2O and N2 at the combustor exit are presented in Fig. 10. Two sets of mole
fraction measurements given in5 are included in the plots. In general, the FRC yields a better prediction than the
UFPV for all mole fraction profiles. Evidence of shear layer shift in the UFPV predictions can be also seen in these
plots. However, the peak value of the H2O mole fraction obtained using UFPV is in a good agreement with the FRC.

Overall, the UFPV results are in an acceptable agreement with the FRC simulation and the experimental data.
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Figure 9. Pitot pressure profiles at the step and combustor exit locations for the vitiated-air mixing (black) and
combustion cases (blue).

Figure 10. Mole fraction profiles at the combustor exit.

C. UFPV-ANN results

Figure 11 shows the regression plots for the mass fractions of H2, H2O, OH and N2. The y-axes correspond to ANN
predictions while x-axes represent target values for the ANN. One would expect excellent training once the correlation
coefficients R → 1 such that all the scatter data lays on the blue diagonal line. Mass fractions of the species show
accurate and acceptable training results since R values are close 1.
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Figure 11. Regression plots comparing ANN predictions to target values for different independent variables.

The accuracy of the UFPV-ANN simulation is assessed by comparing the UFPV-ANN predictions with the base
UFPV approach presented in the previous section. Snaphots of the temperature and OH mass fractions are shown in
Fig. 12 for the UFPV-ANN. These results are in very good agreement with the result of UFPV shown in Fig. 6 with
regard to flame stabilization, lift-off length, orientation, and flame front locations. The temperature zone of the shock
wave emerging from the flame ignition point is slightly lower for the UFPV-ANN. Figure 13 confirms a very good
agreement between UFPV and UFPV-ANN in terms of the stagnation temperature, pitot pressure and mole fraction
profiles at the combustor exit. The peak in temperature is slightly over predicted by ANN by approximately 50K, but
all of the other profiles are well captured in the ANN simulation.

As a result, the qualitative and quantitative results showed that the data-driven ANN training procedure and the
UFPV-ANN framework is able to reproduce results of the base UFPV. The size of the 5-dimensional flamelet table
was 396 MB whereas the size of the weights for the UFPV-ANN approach was 128 KB. The ANN approach can
significantly reduce the memory footprint of the flamelet models, and at the same time retrieve the same solution as that
of the multi-dimensional manifold. It should be noted that the source term in this study was retrieved via interpolation
from the table. In terms of speed, the current UFPV-ANN framework runs about two times slower than UFPV. The
current ANN training method utilizes a single-target ANN (ST-ANN) approach, in which each target variable is trained
separately. As stated in Ref.,15 this approach is expensive in terms of training time and computational run-time.
An alternative approach, called grouped target ANN (GMT-ANN), proposed in Ref.15 can accommodate the trade-
offs between computational cost and accuracy. Briefly, the GMT-ANN aims to group similar species based on their
correlation coefficients, and each group, rather than individual specie, is trained. It was shown that the GMT-ANN
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approach presents reasonable simulation times and prediction accuracy for large chemical mechanisms (>20 species).
We aim to examine this technique in a future study for supersonic flames so that UFPV-ANN not only provides memory
optimization but also computational savings while maintaining prediction accuracy.

Figure 12. Contours of the temperature and ỸOH obtained using UFPV-ANN.

Figure 13. Pitot pressure and stagnation temperature (left), and mole fraction profiles (right) for UFPV versus
UFPV-ANN comparison.

D. Comment on the progress variable normalization

The UFPV results presented in this study were obtained using a normalized progress variable approach. In this
approach, the initial progress variable YC , which is a function of mixture fraction, is normalized as defined in Eq.
6, such that table values are bounded between 0 and 1 in both mixture fraction and progress variable space. After
ensuring functional independency between Z and C in a regularization step, a remapping (interpolation) procedure is
applied to obtain the species mass fractions and the source term on the newly defined normalized progress variable
space. As a result, the final flamelet table contains the normalized progress variable and source term. In the CFD
domain, the transport equation for the normalized progress variable, and the other required transport equations, are
solved and species mass fractions and the source term of the progress variable are retrieved from the table. However,
one can easily argue that if YC,min(Z, χst, P ) and YC,max(Z, χst, P ) vary spatially due to dependency on the mixture
fraction, scalar dissipation rate, and pressure, then the transport equation for C can not be obtained by simply taking the
transport equation for YC and dividing it by the normalization factor and then pulling this term inside the derivatives.
In doing so, additional terms in Eq. (5) will appear, which are ignored in the current approach.

To overcome this problem, an alternative approach was investigated. In this approach, YC,min
(Z, χst, P ) and

YC,max(Z, χst, P ) are tabulated in the flamelet table along with the normalized progress variable, and the non-
normalized progress variable transport equation was solved in the CFD domain. The transported progress variable
was then normalized before the table look-up for retrieving the species mass fractions and the source term. This re-
sulted in a significantly lower peak static temperature (∼ 400K) at the combustor exit as shown in Fig. 14. It should be
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noted that identical results between the normalized and non-normalized approaches are observed when the exercises
above are repeated in a 0-D constant volume homogeneous reactor configuration. The main difference between the
Burrows-Kurkov and the homogeneous reactor cases is that the mixture fraction remains constant during the entire
calculation for the homogeneous reactor cases, therefore the progress variable normalization factor is a constant which
can be moved outside the derivatives of the progress variable transport equation.

The benefit of normalization is memory storage. While the non-normalized progress variable provides the more
consistent definition, it is inefficient to store in a square table with regularly space grid points. The result is a sig-
nificantly lower table resolution away from the stoichiometric point, especially at extremely rich and lean conditions.
Normalizing the table provides even spacing between each point and equivalent resolution across the table. Further
investigations to understand the differences in the solutions depending on whether a normalized or non-normalized
progress variable is solved for in the CFD domain are in progress.

Figure 14. Comparison of two UFPV solutions at the combustor exit obtained using normalized and non-
normalized progress variable transport equation.

Conclusions

An unsteady tabulated flamelet modeling framework has been implemented in the VULCAN-CFD code with the
Burrows-Kurkov supersonic test configuration used for validation of this modeling approach. The current frame-
work can accommodate up to 5D flamelet tables using interpolation as well as a deep ANN based framework in the
VULCAN-CFD code. A 4D UFPV table was used to model the lifted hydrogen flame for this configuration. The
presented results show overall good quantitative agreement with the FRC simulation and the experimental results.
The UFPV-ANN model predictions are also compared against the base UFPV results, and excellent agreement be-
tween the two approaches is obtained. Different results in the UPFV approach based on solving either normalized or
non-normalized progress variable transport equation was observed and requires further investigation.
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