
Component-Based Development of CFD 
Software FUN3D

Xinyu Zhang 
Analytical Mechanics Associates, Inc

Hampton, VA 23666
William T. Jones, Stephen L. Wood, and Michael A. Park

NASA Langley Research Center
Hampton, VA 23681, USA

AIAA SciTech 2022 1Component-Based Development of CFD Software FUN3D

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.



Summary
• FUN3D is taking the component-based development approach to 

meet the challenge of the increasing software complexity.
• This approach improves code reusability and supports fast 

development.
• In this paper, the workflow and CI is presented. The integration of the 

components is mainly automated.
• Currently, the FUN3D component still serves as the driver in the 

system. It is being refactored and componentized. 
• This is an on-going work, and the approach will be continuously 

improved. 

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 2



Introduction
• FUN3D

• Is a suite of Computational Fluid Dynamics simulation and design tools
• Has undergone continuous development at the NASA Langley Research Center since 

1980s 
• Has supported many leading edge research projects

• New requirements
• The complexity of the code has increased significantly
• The interaction of simulations from different disciplines is needed
• Numerous solvers, mesh partitioners, and communication schemes are desired

• Foundation of this approach
• Study of software design principles

O’Connell, M. D., et al., “Application of the Dependency Inversion Principle to Multidisciplinary 
Software Development,” AIAA Paper 2018-3856, 2018.

• Study of software interface design
Jones, W. T., Wood, S. L., Jacobson, K. E., and Anderson, W. K., “Interoperable Application 

Programming Interfaces for Computer Aided Engineering Applications,” AIAA Paper 2021-1364, 
2021.

• Transition to component-based development

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 3



Component-Based Development
• Approach

• Building systems with reusable software units -- components
• Main objectives: increase productivity, save costs, and improve quality

• Component
A component is a unit of composition with contractually specified interfaces and explicit 
context dependencies only. A software component can be deployed independently and 
is subject to composition by third parties.
Szyperski, C., Gruntz, D., and Murer., S, Component Software: Beyond Object-Oriented Programming, edited by C. 
Szyperski, Component Software Series, Addison-Wesley, 2002

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 4



Version Control
• Git is used for version control.

• Each component or system is a Git repository.

• Components are assembled into a system through submodules.
• Submodule points to a specific SHA (commit identifier).
• SHAs are advanced once the tests have passed.
• Only SHAs from a protected branch (usually the main branch) are allowed to be merged.

• FUN3D component Git branches

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 5



Continuous Integration
• Continuous integration with Gitlab-CI
• FUN3D component CI use cases

• Submit a merge request and run the set of merge request tests
• Submit a merge request, run the set of merge request tests and some additional 

tests, or the full test suite
• Run tests on a feature branch without opening a merge request

• Automated integration use cases
• A component’s main branch update triggers the downstream system update
• A component triggers the tests in the downstream system, but does not update the 

system
• The system updates its components

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 6



Continuous Integration
• Manual integration is needed for coupled component updates.
• Most merges are through the automated process.

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 7

FUN3D INTG Merge Commits.



Component and Integration Testing
• Each component takes the responsibility of testing its own 

functionalities.
• Unit, regression, performance, and acceptance tests are carried out at the 

component level and run intensively.
• Integration tests are carried out at the system level and run less frequently.

• Some components are difficult to test without other components.
• Use the deployed binaries from other components.
• Create a system with limited components or with alternative components.

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 8



Practices and Lessons Learned
• It is important to have well-defined interfaces. The update of 

interfaces adheres to the open-closed principle (open to extension but 
closed to modification).
• Automate as many procedures as possible.
• Lessons have been learned in maintaining the tests.
• Disadvantages of the approach
• Takes extra efforts to keep track of contents related to the components, such 

as test cases, paperwork.
• Developers need time to get familiar with the new approach.
• When extending the interfaces, an agreement needs to be made among 

developers.

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 9



Acknowledgments
• The authors would like to thank the FUN3D development team for 

the support. 
• This work is carried out at NASA Langley Research Center 

Computational AeroSciences Branch. Xinyu Zhang is supported by 
NASA LaRC TEAMS3 contract.

AIAA SciTech 2022 Component-Based Development of CFD Software FUN3D 10


