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Summary
• FUN3D is taking the component-based development approach to 

meet the challenge of the increasing software complexity.
• This approach improves code reusability and supports fast 

development.
• In this paper, the workflow and CI is presented. The integration of the 

components is mainly automated.
• Currently, the FUN3D component still serves as the driver in the 

system. It is being refactored and componentized. 
• This is an on-going work, and the approach will be continuously 

improved. 
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Introduction
• FUN3D

• Is a suite of Computational Fluid Dynamics simulation and design tools
• Has undergone continuous development at the NASA Langley Research Center since 

1980s 
• Has supported many leading edge research projects

• New requirements
• The complexity of the code has increased significantly
• The interaction of simulations from different disciplines is needed
• Numerous solvers, mesh partitioners, and communication schemes are desired

• Foundation of this approach
• Study of software design principles

O’Connell, M. D., et al., “Application of the Dependency Inversion Principle to Multidisciplinary 
Software Development,” AIAA Paper 2018-3856, 2018.

• Study of software interface design
Jones, W. T., Wood, S. L., Jacobson, K. E., and Anderson, W. K., “Interoperable Application 

Programming Interfaces for Computer Aided Engineering Applications,” AIAA Paper 2021-1364, 
2021.

• Transition to component-based development
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Component-Based Development
• Approach

• Building systems with reusable software units -- components
• Main objectives: increase productivity, save costs, and improve quality

• Component
A component is a unit of composition with contractually specified interfaces and explicit 
context dependencies only. A software component can be deployed independently and 
is subject to composition by third parties.
Szyperski, C., Gruntz, D., and Murer., S, Component Software: Beyond Object-Oriented Programming, edited by C. 
Szyperski, Component Software Series, Addison-Wesley, 2002
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Version Control
• Git is used for version control.

• Each component or system is a Git repository.

• Components are assembled into a system through submodules.
• Submodule points to a specific SHA (commit identifier).
• SHAs are advanced once the tests have passed.
• Only SHAs from a protected branch (usually the main branch) are allowed to be merged.

• FUN3D component Git branches
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Continuous Integration
• Continuous integration with Gitlab-CI
• FUN3D component CI use cases

• Submit a merge request and run the set of merge request tests
• Submit a merge request, run the set of merge request tests and some additional 

tests, or the full test suite
• Run tests on a feature branch without opening a merge request

• Automated integration use cases
• A component’s main branch update triggers the downstream system update
• A component triggers the tests in the downstream system, but does not update the 

system
• The system updates its components
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Continuous Integration
• Manual integration is needed for coupled component updates.
• Most merges are through the automated process.
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Component and Integration Testing
• Each component takes the responsibility of testing its own 

functionalities.
• Unit, regression, performance, and acceptance tests are carried out at the 

component level and run intensively.
• Integration tests are carried out at the system level and run less frequently.

• Some components are difficult to test without other components.
• Use the deployed binaries from other components.
• Create a system with limited components or with alternative components.
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Practices and Lessons Learned
• It is important to have well-defined interfaces. The update of 

interfaces adheres to the open-closed principle (open to extension but 
closed to modification).
• Automate as many procedures as possible.
• Lessons have been learned in maintaining the tests.
• Disadvantages of the approach
• Takes extra efforts to keep track of contents related to the components, such 

as test cases, paperwork.
• Developers need time to get familiar with the new approach.
• When extending the interfaces, an agreement needs to be made among 

developers.
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