



Safe and Precise Landing – Integrated Capabilities Evolution



STMD Game Changing Development Program

### Precision Landing Performance of a Human-Scale Lunar Lander Using a Generalized Simulation Framework

AIAA SciTech Forum, January 2022

Rafael Lugo, Alicia Cianciolo, Soumyo Dutta, Anthony Williams, Justin Green NASA Langley Research Center

> **Po-Ting Chen** Jet Propulsion Laboratory, California Institute of Technology

> > Sarah D'Souza NASA Ames Research Center

Alejandro Pensado Analytical Mechanics Associates





- Safe & precise crewed landing landings at the Moon and Mars with require evaluation of, and advances in, GN&C technologies
- Safe and Precise Landing Integrated Capabilities Evolution (SPLICE) project assess these technologies and their performance effects
  - Focus on deorbit/entry, descent, and landing (DDL/EDL)
  - 6DOF integrated performance simulations
  - Modeling of GN&C systems with varying levels of quality and fidelity
- POST2-based SPLICE simulation framework updated with navigation sensors running in-the-loop



# Vehicle & Concept of Operations

- Artemis government reference two-element Lunar lander
  - Ascent element & descent element
  - ~48 t prior to DOI
  - 3x 8000 lbf throttleable main engines with TVC
- Simulation begins ~15 min prior to DOI
  - Handoff from 3-rev loiter orbit provided by 3DOF end-to-end simulation (NRHO to touchdown)



|                       | Loiter      | Deorbit    | C    | oast                               | Powered Descent | Vertical<br>Descent |  |  |
|-----------------------|-------------|------------|------|------------------------------------|-----------------|---------------------|--|--|
| Propulsion            |             | RCS        |      | Main Engines & RCS                 |                 |                     |  |  |
| Guidance              |             | Open-Lo    | ор   | Apollo PDG                         | Vertical        |                     |  |  |
| Steering Law          |             | Attitude H | lold | Polynomial<br>Acceleration Profile | Vertical        |                     |  |  |
| Roll Control          | RCS         |            |      |                                    |                 |                     |  |  |
| Pitch/Yaw Control     |             | RCS        |      |                                    | TVC             |                     |  |  |
| Roll Control Law      | Phase-Plane |            |      |                                    |                 |                     |  |  |
| Pitch/Yaw Control Law |             | Phase-Pla  | ane  | PID + Allocator                    |                 |                     |  |  |







### • Inertial Measurement Unit (IMU)

- Generalized strapdown model
- Scale factors, biases, internal misalignments, random walk/drift
- Star Tracker
  - Low-fidelity model (corrupted truth values)
- Terrain-Relative Navigation (TRN) Camera
  - Medium-fidelity model
  - Feature matching algorithm with state estimation
- Navigational Doppler LIDAR (NDL)
  - Tri-beam system (beams intersect terrain DEM)
  - Error model accounts for modulation period and bandwidth, beam wavelength, frequency, and pointing knowledge



## **Navigation Key Assumptions**



| Loit    | ter   | Deorbit | Coast        | Braking Phase |     |  | Approach<br>Phase | Vertical<br>Descent |
|---------|-------|---------|--------------|---------------|-----|--|-------------------|---------------------|
|         |       |         |              | ١N            | 1U  |  |                   |                     |
| Star Tr | acker |         | Star Tracker |               |     |  |                   |                     |
|         | DSN   |         |              |               |     |  |                   |                     |
|         |       |         |              |               | TRN |  |                   |                     |
|         |       |         |              |               |     |  | NDL               |                     |

- All sensors are mounted perfectly to the rigid body with known alignments (i.e., no sensor-to-body frame misalignments)
- Filter process noise includes IMU-related noise only
- DSN update is treated as a filter re-initialization rather than a measurement
  - DSN state measurement and associated covariance replaces current filter state and covariance





- POST2-based simulation with generalized GN&C models
- Provides users with method of building detailed simulations with "off-the-shelf" models that can represent a variety of systems
- Fast simulation run time (~10 min for 8000-run Monte Carlo) enables quick turnaround of trade studies



PL&HA

## **Performance Metrics**

- Navigation error
  - Describes overall behavior of navigation system

### Landing precision

- Describes how well integrated vehicle lands near pre-designated target
- 100 m or better in a  $3\sigma$  sense is desired (99%-tile statistics also assessed)
- Assume that inertial location of landing site is known perfectly and that the same location is used for GN&C targeting

### • Success rate

- Describes percentage of 8,000 Monte Carlo samples that achieve a safe landing:
  - Horizontal velocity of less than or equal to 1.0 m/s
  - Vertical velocity of less than 3.0 m/s
  - Angle off vertical of less than 3°
  - Max angular rate about any axis of less than 0.5°/s
- Success rate of 99% or better is desired







## **Trade Studies**



- Each trade is an 8000-sample Monte Carlo
- Trades chosen to explore effects of DSN measurement quality
- NDL and TRN sensors have detailed error models
- Star tracker and DSN models are of "low fidelity"

|                    | Parameter                                                                           |                                                | Dispersion (Normal)                                                                                   |                                            |  |  |  |
|--------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Initial Conditions | <ul><li>Body rates</li><li>Attitude</li><li>State Covarian</li></ul>                | nce                                            | <ul> <li>0.3°/s 3σ</li> <li>3.0° 3σ</li> <li>0.03° 3σ for angles, 0.03 km 3σ for altitudes</li> </ul> |                                            |  |  |  |
| Propulsion         | <ul><li> Peak Thrust</li><li> Isp</li></ul>                                         |                                                | <ul> <li>Scale factor: 1% 3σ</li> <li>Scale factor: 1% 3σ</li> </ul>                                  |                                            |  |  |  |
| Mass               | <ul> <li>Total Mass</li> <li>Center of Grav</li> <li>Moments &amp; Plant</li> </ul> | vity<br>roducts of Inertia                     | <ul> <li>250 kg 3σ</li> <li>0.05 / 0.01 / 0.01 m 3σ</li> <li>1% kg-m<sup>2</sup> 3σ</li> </ul>        |                                            |  |  |  |
| IMU                | <ul> <li>Accel &amp; Gyro I<br/>Bias, Scale Fac</li> </ul>                          | Misalignment,<br>tor, Random Walk              | SPLICE High Quality                                                                                   |                                            |  |  |  |
| Star Tracker       | <ul><li>Misalignment</li><li>Boresight Nois</li></ul>                               | se                                             | <ul> <li>8 arcsec 3σ</li> <li>24 arcsec 3σ</li> </ul>                                                 |                                            |  |  |  |
| DSN                | <ul><li> Position Bias</li><li> Velocity Bias</li></ul>                             |                                                | <ul> <li>500 / 1000 / 200 m 3σ</li> <li>0.05 / 0.10 / 0.01 m/s 3σ</li> </ul>                          |                                            |  |  |  |
| NDL                | NDL Error Mo                                                                        | del                                            | See paper                                                                                             |                                            |  |  |  |
| Optical TRN        | TRN Error Mo                                                                        | del                                            | See paper                                                                                             |                                            |  |  |  |
|                    | SPLICE                                                                              | DSN 50%                                        | DSN 10%                                                                                               | DSN Pos 10%                                |  |  |  |
| DSN Quality        | High                                                                                | R & V bias<br>dispersions<br>reduced by<br>50% | R & V bias<br>dispersions<br>reduced by<br>90%                                                        | R bias<br>dispersions<br>reduced by<br>90% |  |  |  |
| Comment            | Baseline SPLICE specifications                                                      | Represents a<br>more accurate<br>state update  | Represents<br>near-perfect<br>state<br>knowledge                                                      | Sensitivity to<br>position vs.<br>velocity |  |  |  |







### DSN 10% trade

- Vehicle position in downrangecrossrange-altitude space relative to landing target
- TRN On (cyan) and NDL On (purple) events triggered by navigated altitude
  - TRN "cleans up" navigation errors
- Red dots correspond to five failed Monte Carlo samples in this trade
  - Combination of low altitude and either excessive or insufficient velocity that contribute to insufficient control authority







- G&C can accommodate
   1-2 km errors at PDI, but not 4+ km
- Landing precision is within requirement
- Success rate shows some trades do not ensure safe landing





|             | SPLICE | DSN 50% | DSN 10% | DSN Pos 10% |  |  |
|-------------|--------|---------|---------|-------------|--|--|
| lominal     | 16.66  | 18.46   | 13.13   | 12.67       |  |  |
| lean        | 17.32  | 16.8    | 16.93   | 16.85       |  |  |
| s-sigma     | 36.4   | 28.26   | 28.02   | 28.03       |  |  |
| 00 %-tile   | 1.66   | 1.84    | 2.09    | 1.88        |  |  |
| 9.00 %-tile | 45.84  | 42.13   | 41.42   | 41.61       |  |  |
| lax Value   | 539.19 | 72.25   | 86.61   | 57.24       |  |  |
| lin Value   | 0.23   | 0.22    | 0.11    | 0.17        |  |  |
| uccess      | 6412   | 7756    | 7997    | 7995        |  |  |
| ercent      | 80.2   | 97      | 100     | 99.9        |  |  |
|             |        |         |         |             |  |  |



## **Results: Navigation Error**



|                  | SPLICE     |              |              | DSN 50%    |              |              | DSN 10%    |              |              | DSN Pos 10% |              |              |
|------------------|------------|--------------|--------------|------------|--------------|--------------|------------|--------------|--------------|-------------|--------------|--------------|
|                  | Pos<br>(m) | Vel<br>(m/s) | Att<br>(deg) | Pos<br>(m) | Vel<br>(m/s) | Att<br>(deg) | Pos<br>(m) | Vel<br>(m/s) | Att<br>(deg) | Pos<br>(m)  | Vel<br>(m/s) | Att<br>(deg) |
| DOI              | 819        | 0.24         | 0.004        | 418        | 0.13         | 0.004        | 87         | 0.03         | 0.004        | 92          | 0.09         | 0.004        |
| PDI              | 4218       | 3.69         | 0.003        | 2623       | 2.23         | 0.003        | 657        | 0.58         | 0.003        | 1393        | 1.21         | 0.003        |
| TRN On           | 4638       | 4.10         | 0.006        | 2818       | 2.53         | 0.006        | 728        | 0.71         | 0.006        | 1584        | 1.42         | 0.006        |
| TRN Off          | 8          | 0.15         | 0.068        | 8          | 0.14         | 0.067        | 8          | 0.14         | 0.067        | 8           | 0.14         | 0.067        |
| Vertical Descent | 18         | 0.07         | 0.296        | 15         | 0.03         | 0.071        | 15         | 0.03         | 0.068        | 15          | 0.03         | 0.069        |
| Touchdown        | 20         | 0.20         | 0.295        | 15         | 0.16         | 0.065        | 15         | 0.15         | 0.064        | 15          | 0.15         | 0.064        |

- Effect of DSN update quality evident at DOI/TRN On
- Performance gains primarily in position accuracy
- TRN and NDL significantly reduce errors and keep them low
- Attitude errors are small (star tracker)





- Extensive updates to the POST2-based generalized SPLICE simulation framework
  - Various navigation sensor engineering models have been improved and added
  - Vehicles can be modeled with closed-loop G&C and navigation running in-the-loop
  - Enable rapid investigation of a variety of vehicles and missions in an integrated performance sense
- Overall navigation performance given design and analysis GR&As and a sufficiently accurate DSN measurements was satisfactory
  - Better position accuracy can provide significant improvements in success rate
  - Must consider multiple metrics simultaneously e.g., success rate and landing precision

#### • Future work

- Trade TRN sensor performance with DSN accuracy can high altitude TRN buy back performance?
- Refine sensor GR&As (include misalignments)
- Tune EKF to improve filter consistency





- Eric Queen (LaRC): RCS phase plane controller design
- Chris Karlgaard (AMA): supporting implementation and testing of MEKF in simulation framework
- Diego Pierrottet (LaRC): NDL sensor error model
- Scott Striepe (LaRC), David Woffinden (JSC), George Chen (JPL), Ron Sostaric (JSC), and the HLS GN&C Discipline Team for helpful insight and discussions regarding this work
- A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration