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We develop an iterative automated method to predict transition locations in boundary-
layer flows by using the FUN3D solver to perform flow simulations and the LASTRAC code
for linear stability computations. The coupling of FUN3D and LASTRAC allows for a ro-
bust physics-based approach to model boundary-layer transition by analyzing the growth of
different instability waves and then using that information to iteratively update the resulting
transition location. There is no user involvement during the iterative computations. We ap-
ply this automated method to subsonic flow over a flat plate with a sharp leading edge. The
final solution has regions of laminar and turbulent flow with a transition onset location that
agrees with experiments and stability-based correlations. This iterative automated method is
also applied to an NLF(1)-0416 airfoil for conditions with and without a separation bubble.
Along with predicting transition locations, we compare the streamwise distributions of surface-
pressure and skin-friction coefficients to a transport-equation-based model. Finally, we show
preliminary results of a 6:1 prolate spheroid at angles of attack equal to ten and fifteen degrees,
where mixed-mode transition occurs due to Tollmien-Schlichting and crossflow instabilities.

Nomenclature

# = logarithmic amplification ratio
2 = chord length (m)
! = streamwise length of the prolate spheroid (m)
" = Mach number
? = pressure (Pa)
Re∞ = freestream unit Reynolds number (1/m)
Re2 = Reynolds number based on the chord length
Re! = Reynolds number based on the spheroid length
Pr = Prandtl number
) = temperature (K)
(D, E, F) = velocity components (m/s)
(G, H, I) = Cartesian coordinates (m)
V = spanwise wavenumber (1/m)
d = density (kg/m3)
l = angular frequency (rad/s)
� 5 = skin friction
�? = coefficient of pressure
�� = drag coefficient

∗Aerospace Technologist, nathaniel.j.hildebrand@nasa.gov, Computational AeroSciences Branch, AIAA Member
†Aerospace Technologist, chau-lyan.chang@nasa.gov, Computational AeroSciences Branch, AIAA Associate Fellow
‡Aerospace Technologist, meelan.m.choudhari@nasa.gov, Computational AeroSciences Branch, AIAA Fellow
§Aerospace Technologist, fei.li@nasa.gov, Computational AeroSciences Branch
¶Aerospace Technologist, eric.j.nielsen@nasa.gov, Computational AeroSciences Branch, AIAA Associate Fellow
‖Sr. Research Engineer, balaji.s.venkatachari@nasa.gov, Computational AeroSciences Branch, NASA LaRC, AIAA Senior Member

∗∗Research Engineer, pedro.paredes@nasa.gov, Computational AeroSciences Branch, NASA LaRC, AIAA Senior Member

1



�! = lift coefficient
)D = turbulent intensity
 = kinetic-energy norm
U = angle of attack (◦)
q = azimuthal angle (◦)

I. Introduction
The ability to accurately model transition to turbulence in boundary-layer flows is an important area of computational

fluid dynamics (CFD) research that needs more attention in the future according to the NASA CFD Vision 2030 Study
[1]. A few of the common approaches to study boundary-layer transition are direct numerical simulations (DNS),
Reynolds-averaged Navier-Stokes (RANS) transition models, and wall-resolved large-eddy simulations (WRLES). The
use of DNS or WRLES to study transition requires significant computational resources, especially if extended to high
Reynolds numbers where the required grid resolution is extremely fine. Also, these simulations must have accurate
initial and boundary conditions that come from either wind-tunnel measurements or flight tests. RANS models are
much less computationally expensive than DNS and WRLES, but can be inaccurate for several reasons including their
inability to capture the process of laminar-turbulent boundary-layer transition, which involves complicated physics
including the receptivity, linear amplification, and the nonlinear interactions and breakdown of instability waves.

Semiempirical correlation-based methods that rely on linear stability theory (LST) are often used to predict transition
locations in various flow configurations. The 4# method developed by Smith and Gamberoni [2] along with van Ingen
[3] is commonly used and most cited in the literature. Transition occurs in the 4# method once the amplification factor
reaches a critical value of #tr. Here, the value of #tr is determined by correlations with experiments. A well-known
problem with the 4# method is that receptivity and nonlinear breakdown cannot be modeled accurately with just a single
value of #tr. Hence, variable #-factor methods have been proposed by Mack [4], and more recently by Crouch and Ng
[5]. The parabolized stability equations (PSE) can also be used to predict transition to turbulence. These equations are
less restrictive than linear stability theory because they do not require a parallel flow assumption [6]. LST and PSE can
account for the amplification of Tollmien-Schlichting (TS) waves, stationary or traveling crossflow (CF) vortices, and
other types of instability mechanisms.

There has been a lot of past work on coupling simulation tools with various stability methods [7–12]. These
codes have been successful by taking advantage of RANS-based turbulence models, but they often do not resolve the
boundary-layer profiles well in the laminar regions. It can also be difficult to couple unstructured CFD results with
other numerical methods. The automated iterative approach in this paper uses a combination of basic states computed
with FUN3D, an unstructured finite-volume RANS solver [13], and local stability analysis performed with LASTRAC,
a state-of-the-art LST and PSE solver [14], to model boundary-layer transition. Note the basic states computed with
FUN3D can have laminar, transitional, and fully-turbulent sections. The unstructured FUN3D data are given to
LASTRAC via boundary-layer profiles, a surface grid, and inviscid streamlines. We determine the location of transition
to turbulence in the FUN3D basic states with the LASTRAC stability calculations that involve computing #-factor
envelopes across a broad range of frequencies and wavelengths with PSE. We enforce the new transition locations in
the next FUN3D basic state that is followed once again by stability analysis, resulting in an iterative procedure. Our
iterative approach is robust because we are taking into account the growth of different instability waves. It also does not
take long to converge the transition location (both in terms of computational time and the number of iterations). We
apply our iterative approach to a two-dimensional flat plate with a sharp leading edge and the NLF(1)-0416 airfoil with
and without a separation bubble. Also, we present a preliminary analysis for the 3D 6:1 prolate spheroid at two different
angles of attack, where CF effects become important (along with TS waves).

This conference paper is structured in the following manner. Section II explains the numerical methodology of our
iterative approach, including the basic-state computations and the linear stability analysis. The flow configuration and
results of the flat plate are presented in Section III, whereas the flow configuration and results of the NLF(1)-0416
airfoil are presented in Section IV. Preliminary results for the 6:1 prolate spheroid that includes CF instabilities are
shown in Section V. We conclude this conference paper in Section VI.

II. Numerical Methodology
We use simulation tools and stability analysis with FUN3D [13] and LASTRAC [14], respectively, to model

transition to turbulence in various flow configurations. This approach is more computationally expensive than using a

2



RANS-based transition model (e.g., Langtry-Menter four-equation shear-stress transport model [15]), but provides a
complementary alternative and, for simple to moderately complex geometries, it may be more accurate by virtue of
incorporating more of the physics associated with instability modes. It is also less computationally expensive than DNS
and WRLES. We describe the components of the automated iterative method in the following subsections.

A. FUN3D Basic States
To compute the basic states, we utilize the suite of codes known as FUN3D, which is a node-centered unstructured-

grid upwind-biased RANS solver [13]. This suite of codes has the ability to compute a laminar, transitional, or
fully-turbulent basic state. In FUN3D, the inviscid terms are computed with a flux-difference-splitting scheme, and the
viscous terms are evaluated with a finite-volume formulation. Pseudotime integration is performed with an implicit
second-order Euler scheme. For the turbulent portions of the flow field, we use the Spalart-Allmaras (SA) one-equation
model [16]. FUN3D allows a user to specify the exact location of transition along a boundary. The laminar region
has the turbulent production terms switched off. For an example of how this works, see Lee-Rausch et al. [17] who
studied transonic cruise of a DLR-F6. We run the FUN3D simulations until the residual has dropped to around machine
zero. An example of this residual drop is depicted in Figure 1, which corresponds to a transitional flat-plate simulation
with *∞ = 34 m/s and Re∞ = 2.26 × 106 m−1. The location of transition onset for the flat-plate case in Figure 1 is
Gtr = 1.168 m. Figure 1 shows the residual drops approximately eleven orders of magnitude for both the density and
streamwise velocity. Similar residual plots are obtained for the other flat-plate and airfoil simulations, but are not shown
for brevity. The most recent version of the FUN3D manual [18] has detailed information about the different boundary
conditions, numerical methods, and residual calculations used in this conference paper.

Fig. 1 Density, streamwise-velocity, and energy residuals versus the iteration number from a transitional
flat-plate simulation at[∞ = 34 m/s, Re∞ = 2.26 × 106 m−1, and xtr = 1.168 m with FUN3D.

B. LASTRAC Stability Calculations
We compute the linear disturbance amplification using PSE about the FUN3D basic states with LASTRAC [19].

The linear perturbations (assumed to be harmonic in both time and the spanwise direction) are defined as follows

q̃(G, H, I, C) = q̆(G, H) exp [i (VI − lC)] + c.c., (1)

where c.c. denotes the complex conjugate. Here, l is the angular frequency, and V is the spanwise wavenumber. Also,
q̃(G, H, I, C) = ( d̃, D̃, Ẽ, F̃, )̃)T and q̆(G, H) = ( d̆, D̆, Ĕ, F̆, )̆)T. Pressure, density, and temperature are denoted by ?, d, and
) , respectively. The variables (G, H, I) denote the Cartesian coordinates. We denote (D, E, F) as the velocity components
in the streamwise, wall-normal, and spanwise directions, respectively. PSE is used in our iterative approach because it
accounts for streamwise variation of the boundary-layer thickness and shape of the disturbance field. Note that PSE
numerically solves an approximate form of the Navier-Stokes equations for a slow-varying shape function and a complex
streamwise wavenumber U(G) using the following relation

3



q̆(G, H) = q̂(G, H) exp
[
i
∫ G

G0

U(G ′) dG ′
]
, (2)

where the amplitude functions q̂(G, H) vary slowly in the streamwise direction. We employ the boundary conditions
D̃ = Ẽ = F̃ = )̃ = 0 at the wall and D̃ = F̃ = )̃ = d̃ = 0 in the freestream for PSE.

According to linear stability theory, transition onset occurs at the streamwise location where the #-factor of any
fixed-frequency or fixed-wavelength disturbance first reaches a critical value of #tr. The #-factor is defined as

# (G) = 1
2

ln
[
 (G)
 (Glb)

]
, (3)

where Glb denotes the lower-branch location where the disturbance at any given frequency and wavelength combination
first becomes unstable and the kinetic-energy norm  is defined as

 (G) =
∫
H

(D̆, Ĕ, F̆)Hdiag[ d̄(G, H), d̄(G, H), d̄(G, H)] (D̆, Ĕ, F̆)dH. (4)

The superscript H denotes the Hermitian operator. We compute an envelope by finding the maximum #-factor at
each streamwise station. Hence, the transition location is where #tr intersects with the #-factor envelope. To find #tr
we compare to experimental measurements [20] or, if we know the turbulent intensity )D, we can use the equation
#tr = −8.43 − 2.4ln()D) from Mack [4]. We also use values of #tr from the AIAA Transition Modeling Workshop 1
(https://transitionmodeling.larc.nasa.gov/workshop_i/).

C. Iterative Approach
A schematic of the automated iterative method used in this study is depicted in Figure 2. This method starts with

computing an initial basic state with the FUN3D suite of codes. This could be a laminar basic state or a transitional
basic state. If the basic state is transitional, we enforce the location(s) of transition onset far downstream. The converged
FUN3D solution along with the computational grid is then converted via Python scripts to a solver-independent format
that is given to LASTRAC, which involves the extraction of boundary-layer profiles and generation of numerous
streamlines [21]. For more information about the solver-independent module, see the yellow box in Figure 2. Afterward,
we employ the LASTRAC stability code to find the new location(s) of transition onset.

Fig. 2 Schematic of our iterative automated method with the FUN3D and LASTRAC codes.

For simple two-dimensional flow configurations, we compute the #-factor envelope(s) using LST or PSE with
LASTRAC about the initial FUN3D basic state. We then find the streamwise location Gtr where # first reaches the
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value of #tr that is expected to correlate with the onset of transition in the flow configuration of interest. For more
complicated three-dimensional flow configurations, we use LASTRAC to perform instability calculations about the
initial FUN3D basic state and output the 2D or 3D #-factor distribution over the surface of interest. The predicted
location(s) of transition onset is (are) then enforced in the next FUN3D basic-state computation, where the laminar
region has the turbulent production terms switched off. Next, we compute the #-factor envelope/distribution about the
new FUN3D basic state. This procedure is repeated until the location(s) of transition onset is (are) converged. For the
current implementation in this paper, transition from laminar to turbulent flow happens abruptly, but in the future we
have to use a smooth intermittency function.

For TS wave computations along each streamline, the wave angle is assumed to be zero at all locations. In other
words, TS waves are assumed to follow the inviscid streamline for any given disturbance frequencies. PSE #-factor
integration is carried out for each frequency without any optimization. The resulting #-factor envelope formed by
various disturbance frequencies versus the arc length along each streamline is used to uniquely determine the # value at
each streamline point. For stationary crossflow disturbances, a nonorthogonal coordinate is used at each point along the
streamline, with the G-coordinate along the streamline direction and the spanwise (I−) direction chosen to be along
the azimuthal grid line direction. For axisymmetric bodies such as the 6:1 prolate spheroid, an integer azimuthal
wavenumber is imposed. Linear PSE computations are carried out for a range of integer wavenumbers to form an
envelope. The resulting stationary crossflow or TS waves #-factor distribution along each streamline is imposed on the
3D surface. Planar interpolation (based on minimal distance to a discrete streamline point) of #-factors over the entire
surface is used to determine the 3D surface transition location based on a predetermined transition #-factor criterion
(e.g., dual #TS-#CF criterion [29, 30]).

III. Flat Plate
We consider subsonic flow over a two-dimensional flat plate with a sharp leading edge. The flat plate starts at

G = 0 m and extends to G = 2 m. We select the flow parameters to match those of the Wang and Gaster [20] experiment.
The freestream density, velocity, and temperature are d∞ = 1.206 kg/m3,*∞ = 34 m/s, and )∞ = 292.7 K, respectively.
We assume a perfect gas so ? = d') , where ' = 287.15 J/K/kg is the specific gas constant for air. Here, W = 1.4
is the constant ratio of specific heats. The Prandtl number is set to a constant value of Pr = 0.72. To compute the
dynamic viscosity `, we use Sutherland’s law with the Sutherland reference temperature )( = 110.4 K. Figure 3 shows
the laminar flat-plate basic state at the selected flow parameters. The left edge of the computation domain at G = −0.15
m is a subsonic inflow, and the right edge is a back-pressure outflow. Furthermore, the flat plate has adiabatic and
no-slip boundary conditions, and the small portion before the flat plate is set to a wall-normal-symmetry boundary
condition. We employ a freestream boundary condition at the top edge of the domain. A grid with 4000 points in the
streamwise direction and 400 points in the wall-normal direction is used to resolve subsonic flow over a flat plate. The
wall-normal direction extends to H = 0.11 m. We place the first grid point above the flat plate at a distance that satisfies
H+ <= 0.1 regardless of the boundary-layer state, and the wall-normal grid spacing increases gradually from there to the
freestream. We also use grid stretching in the streamwise direction to resolve the start of the flat plate at G = 0 m. We
compared skin-friction and pressure-coefficient distributions with resolutions of 500 × 50, 1000 × 100, 2000 × 200, and
4000 × 400 to confirm the results are grid converged (not shown).

Fig. 3 Laminar flow over a flat plate computed with FUN3D at[∞ = 34 m/s and Re∞ = 2.26 × 106 m−1.

After solving for the initial laminar FUN3D basic state, we calculate the #-factor envelope with LASTRAC and find
the corresponding location of transition onset. The left plot in Figure 4 shows the #-factor envelope computed with PSE
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about the basic state in Figure 3. Notice the maximum #-factor is approximately equal to 11 at G = 2 m. This envelope
has good agreement with the #-factor envelope corresponding to a flat-plate case at the same flow conditions in Figure
4 from Hildebrand et al. [22]. We know from our earlier study [22] that #tr = 7.6 in order to obtain a transition location
that matches experiments by Wang and Gaster [20]. Using this value of #tr = 7.6, the initial FUN3D solution yields
a location of transition onset at Gtr = 1.133 m. Accordingly, we enforce transition onset at Gtr = 1.133 m in the next
FUN3D simulation. We compute the #-factor envelope about the new transitional FUN3D basic state using PSE with
LASTRAC. From this new #-factor envelope, we get a transition location of Gtr = 1.165 m, which is enforced in the next
FUN3D simulation. This process is repeated two more times yielding a final transition location of Gtr = 1.168 m. The
right plot in Figure 4 displays four #-factor envelopes, each one computed about a different transitional FUN3D basic
state. We can see the #-factor envelopes in Figure 4 eventually converge along with Gtr. Table 1 shows how the location
of transition onset, the lift coefficient, and the drag coefficient all converge with iteration number for this flat-plate case.
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Fig. 4 T-factor envelopes computed with LASTRAC about several FUN3D basic states of flow over a flat plate
at [∞ = 34 m/s and Re∞ = 2.26 × 106 m−1. The red dashed lines in the left plot indicate Ttr = 7.6 and the
corresponding transition location of xtr = 1.133 m for the laminar basic state. In the right plot, iteration one
is the blue solid line, iteration two is the red dashed-dotted line, iteration three is the green dotted line, and the
final iteration is the magenta dashed line.

Table 1 Convergence of the streamwise location of transition onset, the lift coefficient, and the drag coefficient
with the iteration number for the flat-plate case using our automated iterative method in Figure 2.

Iteration # Gtr (m) �! ��

0 N/A −1.185 × 10−3 1.250 × 10−4

1 1.133 −2.608 × 10−3 3.636 × 10−4

2 1.165 −2.526 × 10−3 3.549 × 10−4

3 1.168 −2.515 × 10−3 3.538 × 10−4

4 1.168 −2.515 × 10−3 3.538 × 10−4

Figure 5 depicts the final transitional FUN3D basic state resulting from the automated iterative method. The
boundary layer transitions at GCA = 1.168 m in Figure 5. Note the intermediate transitional FUN3D basic states look
identical to Figure 5, except the location of transition onset is slightly different. To better observe the location of
transition onset and how it evolves with the iteration number, we plot the skin-friction distributions from laminar,
transitional, and fully-turbulent basic states computed with FUN3D in Figure 6. The fully-turbulent case is run with the
SA model [16]. For the first transitional basic state, notice how the skin friction starts at the laminar value and then
increases rapidly to a turbulent value at Gtr = 1.133 m. There is a small overshoot in the skin friction at the location of
transition onset for the transitional basic states. We see in Figure 6 that after the third iteration of the procedure outlined
in Figure 2, the location of transition onset is converged. A close-up view of the skin-friction plots near G = 1.168 m in
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Figure 6 shows the minor differences between the second, third, and fourth iteration. These results for subsonic flow
over a two-dimensional flat plate demonstrate the effectiveness of an iterative automated method.

Fig. 5 Transitional flow over a flat plate computed with FUN3D at [∞ = 34 m/s and Re∞ = 2.26 × 106 m−1.
The location of transition onset is xtr = 1.168 m.
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Fig. 6 Skin-friction distributions from laminar, transitional, and fully-turbulent basic states of flow over a flat
plate computed with FUN3D at [∞ = 34 m/s and Re∞ = 2.26 × 106 m−1. Here, the green solid line represents
iteration one, the magenta dashed-dotted line corresponds to iteration two, the orange dotted line corresponds
to iteration three, and the cyan dashed line represents the final iteration.

IV. NLF(1)-0416 Airfoil
Early work on transition to turbulence over subsonic airfoils has been done by Drela and Giles [23], along with

Stock and Haase [24]. To help verify the automated iterative method in Figure 2, we consider subsonic flow over an
NLF(1)-0416 airfoil. Two different cases are chosen for this geometry with a chord length of 1 m. The higher Reynolds
number case (Re2 = 9 × 106) with U = 0◦ has no separation bubble, while the other case with Re2 = 4 × 106 and U = 5◦
has a separation bubble on the lower surface. We can verify our results with previous work, such as Zafar et al. [25] that
predicted transition over an NLF(1)-0416 airfoil using machine learning, and with RANS-based transition models.

A. No Separation Bubble
For the case with no separation bubble, the freestream density, velocity, and temperature are d∞ = 4.78 kg/m3,

*∞ = 34.7 m/s, and )∞ = 300 K, respectively. The freestream velocity is very similar to the flat-plate case and yields a
freestream Mach number of "∞ = 0.1. We consider an angle of attack equal to zero degrees. The left, right, top, and
bottom edges of the computational domain are set to freestream boundary conditions. We employ adiabatic and no-slip
boundary conditions at the airfoil surface. Figure 7 displays the streamwise-velocity contours for an initial transitional
basic state at the selected flow parameters from FUN3D, which differs from the initial laminar FUN3D solution we used
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for the 2D flat plate. The basic state in Figure 7 is computed with the SA turbulence model, where laminar regions have
the turbulent production terms switched off. For the initial transitional basic state, we specified the location of transition
onset at Gtr = 0.42 for both the upper and lower surfaces of the NLF(1)-0416 airfoil. We show the pressure-coefficient
and skin-friction distributions along the airfoil surfaces in Figure 8. From the skin-friction distribution, we can see
transition occurs at Gtr = 0.42 for both the upper and lower surfaces of the airfoil.

Fig. 7 Streamwise-velocity contours for the initial transitional FUN3D basic state of a NLF(1)-0416 airfoil at
" = 0◦,[∞ = 34.7 m/s, and Rec = 9 × 106.

We employ an ultrafine C-grid from the AIAA Transition Modeling Workshop 1 to compute the NLF(1)-0416
basic state displayed in Figure 7 and the other FUN3D airfoil simulations. A total of 2113 and 289 grid points are
used in the streamwise and wall-normal directions, respectively. The structured C-grids are converted into unstructured
format while running with the FUN3D suite of codes, but that does not change the resolution or cell geometry. We
compared the skin-friction and pressure-coefficient distributions on five coarser grids with the finest resolution grid
showing no change from the second finest (not shown for brevity). The streamwise-velocity contours in Figure 7 look
very smooth, and there is a well-defined stagnation point at the leading edge of the NLF(1)-0416 airfoil. Also, the
streamwise distribution of pressure coefficient and the skin friction in Figure 8 look well resolved by the computational
grid. The boundary layer is fully attached in this case, so the instabilities are purely of TS type.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

(a) Pressure coefficient on the airfoil surface.
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(b) Skin friction on the airfoil surface.

Fig. 8 Distribution of the (a) pressure coefficient and (b) skin friction on the upper and lower surfaces of
the NLF(1)-0416 airfoil at " = 0◦, [∞ = 34.7 m/s, and Rec = 9 × 106 with specified transition locations of
xtr,u = 0.4c and xtr,l = 0.4c.

After computing the initial FUN3D basic state for the NLF(1)-0416 airfoil, we calculate the #-factor envelopes with
LASTRAC by using PSE and find the locations of transition onset for the upper and lower surfaces. Figure 9 displays
the #-factor envelopes for the upper and lower airfoil surfaces from the basic state in Figure 7. The largest #-factor
value is approximately 19.5 for the upper surface and 12 for the lower surface. Furthermore, the #-factor envelope for
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the upper airfoil surface in Figure 9 looks similar to the #-factor envelopes in Figure 3(b) from Zafar et al. [25]. We
obtain #tr = 7.2 by substituting )D = 0.15% into the equation #tr = −8.43 − 2.4ln()D) from Mack [4]. Also, the value
#tr = 7.2 is given by the AIAA Transition Modeling Workshop 1. This results in a transition location of Gtr = 0.32562
for the upper surface and Gtr = 0.31722 for the lower surface of the NLF(1)-0416 airfoil. These values can now be
enforced in the new FUN3D transitional basic state.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

20

Fig. 9 T-factor envelope computed with LASTRAC about a transitional FUN3D basic state of flow over a
NLF(1)-0416 airfoil at " = 0◦,[∞ = 34.7 m/s, and Rec = 9 × 106.

We compute the #-factor envelopes for the NLF(1)-0416 airfoil surfaces by using PSE with LASTRAC about
the new FUN3D basic state that has specified transition locations of Gtr,u = 0.32562 and Gtr,l = 0.31722. Figure 10
displays these #-factor envelopes with blue solid lines. From these envelopes, we calculate the new transition locations
of Gtr,u = 0.31712 and Gtr,l = 0.31592 by finding out where #tr = 7.2 intersects the #-factor curves. Afterward, we
compute the next FUN3D transitional basic state with Gtr,u = 0.31712 and Gtr,l = 0.31592. The envelopes associated
with this NLF(1)-0416 basic state are depicted in Figure 10 by red solid lines. This process is repeated three more times
yielding final transition locations of Gtr,u = 0.30892 and Gtr,l = 0.31572 for the NLF(1)-0416 airfoil. All of the #-factor
envelopes that correspond to different iteration numbers are shown in Figure 10. We can see the #-factor envelopes
in Figure 10 eventually converge along with Gtr for the NLF(1)-0416 airfoil in a similar manner as the flat-plate case.
Figure 11 displays the pressure-coefficient and skin-friction distributions on the upper and lower surfaces of the airfoil
for many different FUN3D basic states. Notice both of these distributions converge with iteration number as well. Also,
the flow transitions further upstream on the upper surface of the airfoil at Gtr,u = 0.30892 than on the bottom surface at
Gtr,l = 0.31572, which is expected because of the adverse pressure gradient on the upper surface.
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Fig. 10 T-factor envelopes computed with LASTRAC about several transitional FUN3D basic states of flow
over a NLF(1)-0416 airfoil at " = 0◦, [∞ = 34.7 m/s, and Rec = 9 × 106. The left plot is for the upper surface,
and the right plot is for the lower surface.
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(a) Pressure coefficient on the airfoil surface.
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(b) Skin friction on the airfoil surface.

Fig. 11 Distributions of the (a) pressure and (b) skin-friction coefficients on the NLF(1)-0416 airfoil at " = 0◦,
[∞ = 34.7 m/s, and Rec = 9 × 106. Here, iteration one is the blue line, iteration two is the red line, iteration
three is the green line, iteration four is the magenta line, and the final iteration is the black line.

B. Separation Bubble on Lower Surface
For the case with a small separation bubble, the freestream density, velocity, and temperature are d∞ = 2.124 kg/m3,

*∞ = 34.7 m/s, and )∞ = 300 K, respectively. We consider an angle of attack equal to five degrees. This case is
significant because a typical LASTRAC workflow based on a single iteration of a FUN3D basic state and then stability
analysis would not be enough to capture the strong influence of the separation bubble on transition. Note there is an
interaction that occurs between the separation-reattachment characteristics and the location of transition onset. The
boundary conditions are the exact same as the previous airfoil case with no separation bubble. Also, the computational
grids are the exact same as the previous airfoil case. Figure 12 shows the #-factor envelopes computed about different
FUN3D transitional basic states of an NLF(1)-0416 airfoil with Re2 = 4 × 106. We set #tr = 7.2 just as we did for
the previous airfoil case. The locations of transition onset converge to Gtr,u = 0.20462 and Gtr,l = 0.65212 after four
iterations. Figure 12 shows the iterative convergence of the #-factor envelopes. Hence, our iterative automated method
still converges well even with the interaction that occurs between the separation-reattachment characteristics of the
separation bubble and the location of transition to turbulence. For the lower airfoil surface, the location of transition
also does not shift in one direction as it converges.
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Fig. 12 T-factor envelopes computed with LASTRAC about several transitional FUN3D basic states of flow
over a NLF(1)-0416 airfoil at [∞ = 34.7 m/s, " = 5◦, and Rec = 4 × 106. The left plot is for the upper surface,
and the right plot is for the lower surface. Also, the black dashed line represents Ttr = 7.2.

Figure 13 depicts the iterative convergence of both the pressure-coefficient and skin-friction distributions for the
NLF(1)-0416 airfoil with an angle of attack equal to five degrees and Re2 = 4 × 106. There is a sizable shift between
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the initial state and the first iteration, but after that both quantities converge quickly. The skin-friction distribution
corresponding to iteration four shows the flow transitioning at Gtr,u = 0.20462 and Gtr,l = 0.65212 with a separation
bubble on the lower airfoil surface. Transition at Gtr,u = 0.20462 and Gtr,l = 0.65212 is accompanied by a substantial
rise in the skin friction. This rise is greater on the upper airfoil surface. Figure 14 compares the pressure-coefficient
and skin-friction distributions for this case between the SST2003-LM2009 transition method [15] and the automated
iterative method with the FUN3D and LASTRAC codes. Here, the SST2003-LM2009 transition method [15] is run with
the FUN3D suite of codes. There is good agreement between the automated iterative method and the SST2003-LM2009
method in Figure 14. For both of these methods, the separation bubble on the lower surface of the airfoil is approximately
the same size and occurs at roughly the same location. Results from this case with a separation bubble and the previous
case without a separation bubble for subsonic flow over an NLF(1)-0416 airfoil demonstrate the accuracy and robustness
of the iterative approach that is described in Figure 2. We are still in the process of examining how the initial transition
location impacts the convergence process for the NLF(1)-0416 airfoil.
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(a) Pressure coefficient on the airfoil surface.
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(b) Skin friction on the airfoil surface.

Fig. 13 Distributions of the (a) pressure and (b) skin-friction coefficients on theNLF(1)-0416 airfoil at[∞ = 34.7
m/s, " = 5◦, and Rec = 4 × 106. Here, the initial state is the blue line, iteration one is the red line, iteration two
is the green line, iteration three is the magenta line, and the final iteration is the black line.
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(a) Pressure coefficient on the airfoil surface.
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(b) Skin friction on the airfoil surface.

Fig. 14 Comparisons of the (a) pressure and (b) skin-friction coefficients on theNLF(1)-0416 airfoil at[∞ = 34.7
m/s, " = 5◦, and Rec = 4×106 between the SST2003-LM2009 method [15] and the automated iterative method.

V. 6:1 Prolate Spheroid
We consider low-speed flow over a 6:1 prolate spheroid that can transition via TS waves and/or CF instability to

extend and evaluate the automated iterative transition prediction method. Results in this section are preliminary and will
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focus on CF effects. This particular flow configuration is a part of both the AIAA Transition Modeling Workshop and the
AVT-313 Incompressible Flow Transition Comparison Workshop (http://web.tecnico.ulisboa.pt/ist12278/
Workshop_AVT_313_2D_cases/Workshop_AVT_313_2D_cases.htm). Past work on the prolate spheroid includes
experimental work by Kreplin et al. [26] and computational work by Krimmelbein et al. [27]. Spall and Malik [28] also
examined the stability of three-dimensional boundary layers over a 6:1 prolate spheroid. The freestream Mach number,
temperature, and Reynolds number based on the spheroid length are 0.13, 300 K, and 6.5 × 106, respectively. We
consider angles of attack equal to 10 and 15 degrees. We set the left, right, top, and bottom edges of the computational
domain to freestream boundary conditions. Adiabatic and no-slip boundary conditions are enforced on the entire surface
of the 6:1 prolate spheroid.

Figure 15 shows the skin-friction contours for the initial FUN3D basic state of a 6:1 prolate spheroid with Gtr/! = 0.6.
We use a multiblock structured grid that is nonsingular and has three blocks. Two of the blocks are located near the
stagnation points, and each one has a resolution of 65 × 65 × 257 grid points. The middle block has a resolution
of 321 × 193 × 257 grid points. We convert this multiblock structured grid to unstructured format with 17,825,792
hexahedrals so that we can run it with the FUN3D suite of codes. Results are compared to lower resolution grids with
7,520,256 and 2,228,224 hexahedrals with small changes in the skin-friction contours and transition locations (not
shown). Figure 16 depicts the inviscid streamlines generated by 65 vertex seeds in our solver-independent module [21]
on the spheroid. For the convenience of analyzing and presenting the results, we place the streamline seeds regularly
along the azimuth at G/! = 0.5. However, we could have also used a random array of seed locations generated in an
automated manner by the solver-independent module [21]. The same 65 streamlines are used for every angle of attack
to compute the #-factor distribution with LASTRAC. We compared the LASTRAC stability results with 65 and 150
streamlines (not shown), which indicated that 65 regularly-spaced streamlines is sufficient to resolve the transition front
at every angle of attack that is considered in this paper.

Fig. 15 Skin-friction contours for the initial transitional FUN3D basic state of a 6:1 prolate spheroid with
ReR = 6.5 × 106. The onset of transition is set to xtr/R = 0.6.

Fig. 16 Streamlines generated by 65 vertex seeds used for PSE with LASTRAC.

After computing the FUN3D basic state and generating 65 inviscid streamlines, the transition analysis module used
the LST and PSE functionality within LASTRAC to calculate the surface #-factor distributions from stationary CF
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instability. Figure 17 displays the #-factor contours that correspond to stationary CF instability for the 6:1 prolate
spheroid at U = 10◦ from LST and PSE. Notice the solutions from LST and PSE indicate transition occurs due to
stationary CF instability over a majority of the spheroid surface. LST results in a solution where transition happens
slightly more upstream than in the PSE solution. Figure 17 has fairly similar #-factor contours to the ones in Figure 8 of
Chang [21]. We are still in the process of utilizing the dual #TS − #CF criterion [29–31] to determine where transition
occurs. Once this process is finished, we plan to enforce the computed transition front on the spheroid surface and
repeat the procedure in Figure 2 until convergence.

(a) CF T-factor contours from LST.

(b) CF T-factor contours from PSE.

Fig. 17 T-factor contours based on stationary CF instability from (a) LST and (b) PSE for a 6:1 prolate
spheroid with " = 10◦ and ReR = 6.5 × 106 from LASTRAC.

For an angle of attack equal to fifteen degrees, we compute a similar FUN3D transitional basic state as in Figure
15 with a location of transition onset set to Gtr/! = 0.8. We employ the same grid and 65 streamlines as the previous
cases. Figure 18 displays the #-factor contours that correspond to CF instability for the 6:1 prolate spheroid at U = 15◦.
We see in Figure 18 that stationary CF instability appears to be significant over a large region of the spheroid body at
this angle of attack. Based on CF #-factors alone, transition occurs slightly more upstream on the spheroid surface
for this angle of attack compared to the previous case with U = 10◦. We plan to compare our spheroid results to past
experimental [26] and computational [27] work once we fine tune the process of calculating the 3D transition front.

VI. Conclusion
Transition models that rely on RANS-based transport equations can be easily integrated into existing CFD codes.

However, a weaker link to the underlying transition physics limits the accuracy of these models to the range of empirical
correlations used during the model development. Transition prediction based on linear stability theory has the advantage
of a stronger coupling with physics, however, the stability computations are difficult to automate and/or to integrate into
large-scale CFD computations. They also require higher boundary-layer resolution and significant user expertise. To
help address the need for a fully-integrated transition prediction method within routine CFD computations, we have
presented an iterative approach that combines linear stability analysis with an unstructured CFD code that requires
minimal user input. This approach couples the FUN3D unstructured flow solver with the LASTRAC stability code in
order to simulate various transitional flow configurations. FUN3D is widely used for aerospace applications, but is
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known for having a rather limited transition modeling capability based on the Langtry-Menter RANS model, which
has been shown to fail by multiple contributors of the AIAA and AVT-313 and transition workshops for the prolate
spheroid. Also, the coupling with LASTRAC allows transition #-factors based on the more prevalent quasiparallel
stability analysis or the higher-fidelity PSE analysis that incorporates the effects of surface curvature and a nonparallel
mean flow. A lot of work remains to be done in order to provide a comprehensive validation of this automated iterative
capability, but the current paper is a good foundation for these extensions.

Fig. 18 T-factor contours based on stationary CF instability for a 6:1 prolate spheroid with " = 15◦ and
ReR = 6.5 × 106 from LASTRAC.

First, we considered low-speed flow over a 2D flat plate. The basic states were computed with FUN3D and had
laminar, transitional, and fully-turbulent regions. We enforced the location of transition onset from the LASTRAC
stability calculations (i.e., where #CA intersects the #-factor envelope) in the FUN3D basic states. The resulting
transitional FUN3D basic state for the flat plate agreed with our previous computations based on PSE/HLNSE [22] and
the experiments performed by Wang and Gaster [20]. The automated iterative method reached iterative convergence in
four iterations for a flat-plate case. We also considered flow over an NLF(1)-0416 airfoil at two different Reynolds
numbers and angles of attack. The case with a smaller Reynolds number and larger angle of attack produced a small
separation bubble on the lower airfoil surface. We saw the #-factor envelopes from the LASTRAC stability calculations
were similar to the ones computed in Zafar et al. [25] at the same flow conditions. Also, the case with a smaller
Reynolds number and larger angle of attack resulted in good agreement with the SST2003-LM2009 transition method
[15]. Each of the NLF(1)-0416 cases reached convergence after five iterations. Lastly, we presented preliminary results
for the 6:1 prolate spheroid, where low-speed flow can transition via TS waves and/or CF instability (focused on CF
effects). We plan to compute the 3D transition front with the dual #TS − #CF criterion and compare to experimental
[26] and computational [27] work in the future. A similar analysis is being carried out with the structured OVERFLOW
code to better demonstrate the solver-independent functioning of the iterative transition analysis. These results will be
included in a forthcoming conference paper.
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