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Wall-modeled large-eddy simulation (WMLES) capability has recently been implemented

into FUN3D, an unstructured, node-centered, finite-volume solver developed at the NASA

Langley Research Center. In this paper, WMLES is assessed for two configurations that are

representative of high-lift applications. The first configuration is a nominal two-dimensional

multielement airfoil that has been extensively studied in the literature. WMLES solutions are

computed for four angles of attack and compared with previously reported solutions. Good

agreement of integrated forces, surface pressures, and boundary-layer velocity profiles is shown

with available experimental data especially at lower angles of attack. WMLES solutions are

also computed for the NASA High-Lift Common Research Model over a large range of angles of

attack. Forces, pitching moments, and pressure distributions are favorably compared with the

experimental data up to the maximum lift, including the angle of attack where the maximum lift

is obtained experimentally. Eddy visualization techniques of q-criterion and density-gradient

magnitude illustrate the resolved content.

I. Introduction

The development of improved computational capabilities for analyzing high-lift configurations is critical for
commercial aircraft design, system development, and product certification [1, 2]. Over the last several decades, much of
the research has been focused on developing analysis tools based on the Reynolds-averaged Navier-Stokes (RANS)
models. While substantial progress has been made, as documented in Ref. [3], the ability to reliably predict aerodynamic
forces and other flowfield characteristics near the maximum-lift condition is still an elusive goal.

To rectify the current situation, high-fidelity approaches that fundamentally resolve turbulent eddies are now being
developed and applied for high-lift simulations. These approaches solve the unsteady three-dimensional Navier-Stokes
equations that describe conservation laws for mass, momentum, and energy. The highest-fidelity approach solves the
Navier-Stokes equations directly, relying on high-density grids to resolve all of the relevant physics. This method, termed
direct numerical simulation (DNS), is extremely costly because turbulent flows are characterized by a vast disparity
of length and time scales, ranging from the smallest Kolmogorov scales to the largest scales, which are determined
by global phenomena and the configuration geometry [4, 5]. In fact, the numerical analysis of DNS has shown that
the number of grid points increases as Re9/4 and the number of time steps increases as Re1/2 [5, 6]. As such, the
required computer resources have traditionally restricted DNS to simple geometries, such as a channel or a flat plate,
and moderately low Reynolds numbers.

Because of the prohibitive computational requirements for DNS, the current best practices in high-resolution
simulations are to solve the Navier-Stokes equations for larger flow features and model smaller-scale flow structures.
This approach, referred to as large-eddy simulation (LES), solves only for large-scale features that can be represented on
a given grid and filters out small-scale e�ects. The latter are subsequently modeled using a subgrid-scale (SGS) model.
References [6–9] describe several SGS models and their applications for incompressible and compressible flows. While
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the LES approach is computationally more expensive than RANS, it provides significant improvements in solution
accuracy. The LES methodology has been applied to a wide range of problems, but LES for wall-bounded flows at high
Reynolds numbers are still prohibitively expensive due to the extremely high resolution required near the wall.

One approach, known as wall-modeled large-eddy simulation (WMLES), circumvents the high mesh-resolution
requirements near the wall by modeling the inner boundary layer while accurately resolving the outer regions of the
boundary layer. References [10–13] reviewed approaches that are commonly used to reduce the LES computation
requirements for wall-bounded flows. There are two approaches that are predominantly used in WMLES simulations.
One popular cost-reduction approach is a hybrid RANS/LES method. In this approach, the inner boundary layer is
solved using a RANS turbulence model and LES is applied in the rest of the domain [11, 12]. The second method,
known as a wall-stress modeling approach, uses underlying RANS assumptions to extract the wall shear stress, and
applies it as a boundary condition for LES that is conducted down to the wall [14–18]. This shear-stress modeling
approach is used in the present work.

For high-lift applications, the WMLES approach is increasingly being adopted in the research community for
simulating nominally two-dimensional multielement airfoils [19–21] and fully three-dimensional aircraft configura-
tions [21–24]. To enhance the capabilities for computing high-lift configurations, and to provide a platform for further
research, a WMLES capability has recently been implemented in FUN3D, an unstructured, node-centered, finite-volume
solver developed at the NASA Langley Research Center. The present study evaluates the initial implementation of the
WMLES capability for high-lift configurations. Specifically, nominally two-dimensional simulations are conducted
for the McDonnell Douglas 30P30N airfoil. The solutions are validated using the experimental data obtained during
a cooperative campaign that involved Douglas Aircraft Company and the NASA Langley Research Center [25, 26].
Another set of simulations is performed on the NASA High-Lift Common Research Model (CRM-HL) [27]. Forces,
moments, and pressure distributions are evaluated for a large range of angles of attack, including the angle of attack
corresponding to the maximum-lift condition.

The rest of the material in the paper is presented in the following order. Section II describes the governing equations.
Section III outlines the discretization scheme and iterative solvers available in FUN3D for WMLES computations.
Numerical results for flows over the McDonnell Douglas 30P30N multielement airfoil and the NASA CRM-HL
configuration are presented and discussed in Section IV, where comparisons of the WMLES solutions are made with
available experimental data. Finally, Section V o�ers conclusions and directions of future work.

II. Governing Equations

The governing equations are the compressible, spatially-filtered Navier-Stokes equations, which can be expressed in
the following conservative form:
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where ⌦ is a bounded domain. The vector of conservative flow variables, Q, and the inviscid and viscous Cartesian flux
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Here, ⇢ , p, and E denote the fluid density, pressure, and specific total energy per unit mass, respectively, and u = (u, v,w)
represents components of the Cartesian velocity vector. The pressure p is determined by the equation of state for an
ideal gas,

p = (� � 1)
✓
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2
⇢(u2 + v2 + w2)

◆
, (4)

where � is the ratio of specific heats, � = 1.4 for air. Note that all the flow quantities here represent filtered (or resolved)
variables. The ⌧ subscripts represent the components of the total (viscous and turbulent) stress tensor, which for a
Newtonian fluid are defined as,
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Here, �i j is the Kronecker delta operator and subscripts i, j, k refer to the Cartesian coordinates x = (x, y, z). The
notations  and T denote the total thermal conductivity and temperature, respectively, and satisfy the following relation:
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In Eqs. (5) and (6), µ refers to the dynamic viscosity, which is obtained via Sutherland’s law[28], and µT denotes the
modeled SGS viscosity; Pr and PrT are the meanflow Prandtl number and the turbulent Prandtl number that are set
to be 0.72 and 0.9, respectively. In the present work, µT is obtained using the model presented in Ref. [29], which is
summarized below:

µT = ⇢C

s
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↵i j↵i j
, (7)
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↵i j =
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, (8)
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2
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B� = �11�22 � �2
12 + �11�33 � �2

13 + �22�33 � �2
23. (10)

The modeling constant, C, used in the present study is the one suggested in Ref. [29], which is related to the Smagorinsky
constant as follows, C ⇡ 2.5C2

s and Cs = 0.17. The local filter width, �m (m = 1,2, and 3), is currently set to be the
cube root of the cell volume, considering the use of nearly isotropic grids. Future research on adjusting this parameter
to account for grid anisotropy can be performed. It is also noted that turning o� the SGS model described above reduces
the model to an implicit LES model, which uses the nonlinear truncation error of the discretization scheme for the
Navier-Stokes equations to provide SGS closure [9]. However, the use of explicit versus implicit LES in conjunction
with the wall-stress model is out of the scope of the current presentation.
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III. Solution Algorithm

FUN3D [30, 31] solves the governing equations discretized on unstructured, mixed-element grids. The grids may
contain tetrahedra, pyramids, prisms, and hexahedra. Median-dual control volumes are constructed around grid points.
Inviscid fluxes are computed at edge medians by using an approximate Riemann solver. In the current study, Roe’s
flux-di�erence splitting [32] is used. For second-order accuracy, density, pressure, and velocity at edge medians
are reconstructed by an unstructured monotonic upstream scheme for conservation laws (UMUSCL) [33, 34]. For
mixed-element grids, the UMUSCL parameter is initiated as u = 0.5 and subsequently increases to u = 0.9 in later
stages of the solution process to reduce dissipation; u = 0.5 is maintained on solid surfaces. Note that as the u
parameter approaches unity, the scheme tends toward central di�erencing. For discretization of the viscous fluxes,
the Green-Gauss theorem is used to compute cell-based gradients. In the case of tetrahedral grids, this approach is
equivalent to a Galerkin-type approximation. For nontetrahedral grids, cell-based Green-Gauss gradients are combined
with edge-based gradients to improve stability of viscous operators and prevent odd-even decoupling. Specifically, an
edge-normal augmentation scheme [35] is used. The viscous fluxes are second-order accurate on general mixed-element
grids [36, 37] including transition regions with di�erent element types.

The boundary conditions used in the present study include a farfield Riemann solver, symmetry plane, and viscous-
wall boundary conditions. At the farfield, the boundary conditions are weakly enforced by constructing an exterior state
based on the freestream conditions to close the boundary fluxes. The symmetry boundary conditions strongly enforce
zero normal velocity at the boundary grid points, while the tangential momentum, mass, and energy conservation at
the symmetry plane are enforced weakly through the conservation equations. The WMLES implementation largely
follows the methodology described in Ref. [14]. At each time step, flowfield variables are extracted at predetermined
exchange locations, which are the first points o� the wall in the present work. The extracted solutions serve as input to a
simple equilibrium wall model [38], which is used to determine the local shear stress at each grid point on the solid-wall
surface. Once the shear stress is determined, it is used to compute boundary-face fluxes required for evaluating the
residuals at the boundary grid points.

An implementation of wall functions for RANS simulations has been previously reported in Ref. [39]. The
implementation in the current work is similar with some modifications. The nonlinear equation [38] that is solved to
compute shear stress is fully linearized in the current implementation. The geometry-related terms near boundaries are
modified to improve accuracy, as described in Ref. [40].

The solution at each time step is obtained using a second-order accurate implicit time-stepping scheme [41]. At
each time step, the discrete nonlinear system of equations can be expressed as:

R(Q) = 0, (11)

where Q denotes the flow solution and R denotes the nonlinear unsteady residual. This nonlinear system of equations at
each time step is solved by an approximate Newton-type method with a pseudotime term expressed as:

"
V
�⌧

I +
g@R
@Q

#
�Q = �R(Qn), (12)

Q
n+1 = Q

n + ! �Q. (13)

Here, V is a dual-cell volume; �⌧ is the local pseudotime step governed by the Courant-Fredrichs-Lewy (CFL) number;
I is the identity matrix; the superscript n is the nonlinear iteration index, and ! is an under-relaxation parameter. Note
that because R(Q) represents the unsteady residual, the physical time derivative is included in Eq. (11), although it is
not explicitly shown. The approximate linearization, [f@R/@Q] in Eq. (12), also includes the contributions from the time
derivatives.

Two nonlinear solution methods are available in FUN3D: a simple defect-correction solver and a strong nonlinear
iteration solver. The defect-correction method solves the linear system shown in Eq. (12) with point-implicit Gauss-Seidel
(GS) iterations together with linear CFL ramping. The strong nonlinear solver, referred to as a hierarchical adaptive
nonlinear iteration method (HANIM), uses additional hierarchies including a matrix-free Newton-Krylov scheme for the
linear system and an adaptive CFL strategy to improve robustness and e�ciency. More details of the solution methods
can be found in Ref. [42]. Specification of solver parameters is given in Section IV for each test case.
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IV. Numerical Results

In this section, WMLES solutions are assessed for flows over high-lift configurations, including the McDonnell
Douglas 30P30N multielement airfoil and the NASA CRM-HL aircraft model. A large range of angles of attack are
considered in each test example to evaluate the model capability for maximum-lift (CL,max) predictions. Simulation
results are systematically compared to experimental data.

A. McDonnell Douglas 30P30N Multielement Airfoil

WMLES for flow past the McDonnell Douglas 30P30N multielement airfoil [26] are presented at several flow
conditions specified at the AIAA 4th High Lift Prediction Workshop webpage [43]. This same configuration, and many
of the same flow conditions, have previously been used for assessing RANS and LES models for computing high-lift
flows [19–21, 44]. In this work, the following flow conditions are used. The freestream Mach number is 0.2 and the
Reynolds number, based on the chord of the airfoil in the undeflected position, is 9 million. The angles of attack are
↵ = 8.10�,16.21�,21.34� and 23.28�.

The configuration is a nominally two-dimensional airfoil extruded in the spanwise direction. The spanwise extent of
the computational domain is 0.04c, where c is the chord length of the airfoil in the undeflected position. This extent is
small and may hinder the resolution of some three-dimensional e�ects between the side-wall planes. Simulations have
been performed on two grids: a coarse grid with approximately 2.9 million points and a fine grid with approximately 10
million points. These grids are unstructured on the plane of the airfoil, although they are mostly composed of hexahedra.
The coarse grid has 2.74 million hexahedra and 110 thousand prisms, and the fine grid has 9.68 million hexahedra and
308 thousand prisms.

The computational domain extends to 100c within the plane of the airfoil where farfield boundary conditions
are imposed. Periodic boundary conditions are applied on the side planes. For the fine grid, there are 44 parallel
computational planes uniformly spaced in the spanwise direction. The spacing between the planes is approximately
0.0009c. The airfoil surface mesh is clustered near the leading and trailing edges. The streamwise surface spacing
is approximately 0.0009c, except in the immediate vicinity of the leading and trailing edges of the airfoil, where this
spacing is finer by a factor of 5. The minimum of the wall-normal spacing is 0.00033c (targeting a nominal �y+w ⇡ 100
based on a flat-plate approximation at the freestream condition and the reference length c) with a growth rate of 1.05 for
25 grid layers. Because the boundary-layer thickness at x/c = 0.85 is approximately 0.015c for ↵ = 8.10�, the fine grid
contains roughly 16 points within the boundary layer at this location. Compared to the fine grid, the coarse grid has
a similar wall-normal spacing but is coarser by a factor of 2 in each direction within the airfoil plane. The spacing
between planes is two times coarser for the coarser grid.

Several views of the fine grid are shown in Fig. 1. Closeup views are shown between the slat and the leading edge of
the main element and between the flap and the trailing edge of the main element in Figs. 1(b) and 1(c), respectively.
Views of the surface mesh and periodic side-wall mesh are shown in Fig.2. Figure 2(a) shows the surface mesh of the
slat. Figure 2(b) shows the mesh at the trailing edge of the main element and the leading edge of the flap. The ratio of
streamwise to spanwise spacing of the surface elements is close to unity over the majority of the surface.

On the fine mesh, the simulations are conducted with a time step so that 1,111 time steps represent a single convective
time unit (CTU). Here, CTU is defined as the time unit for flow passing through the main characteristic length based on
the freestream velocity, i.e., CTU = c/U1. The coarse-grid simulations use a twice larger time step. About 140 CTUs
are performed with a dozen times larger time step than the nominal one to eliminate transients. Simulations are then
conducted over 50 CTUs with the nominal time step until the forces stabilized, after which statistics were taken for
additional 30 CTUs. The standard second-order backward di�erence formula (BDF2) is employed in these simulations.
The defect-correction solver is used with 5 subiterations and 20 linear GS sweeps per subiteration. The residuals are
reduced by at least a factor of 8 at each time step. The solution reconstruction is switched to first order when a Ducros
sensor [45] identifies shocks in the flow. The simulations are conducted without an explicit subgrid-scale model, which
e�ectively reduces to implicit LES.

Figure 3 depicts the variation of lift with angle of attack on the coarse and fine grids and compares it with
experimental data by Klausmeyer and Lin [44]. At ↵ = 8.10�, the coarse-grid solution significantly overpredicts lift
compared to the experimental data, whereas lift computed on the fine grid is within 1% of the experimental value.
Similarly, at ↵ = 16.21�, lift is captured well by the fine grid while lift on the coarse grid is overpredicted. At the higher
angles of attack, namely ↵ = 21.34� and ↵ = 23.28�, the solutions obtained on both grids underpredict the experimental
lift value by 3–4%, although both solutions appear to qualitatively capture the stall. However, Ref. [46] reports that,
above ↵ = 16�, noticeable spanwise pressure variations are observed on the flap in the experiment, which indicates
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(a) Global view
x/c

y/
c

(b) Closeup view of slat trailing-edge region
x/c

y/
c

(c) Closeup view of flap leading-edge region
x/c

y/
c

Fig. 1 Views of the fine grid used for the 30P30N simulations.

three-dimensional e�ects that are not modeled in the present simulations. Similar comments regarding the experimental
data can be found in Ref. [26], which includes experimental spanwise pressure distributions along the trailing edges of
the elements, and Ref. [47], which shows experimentally obtained pressure distributions at several spanwise stations at
↵ = 16.20�, ↵ = 21.31�, and ↵ = 22.25�.

Figure 4 compares the time-averaged pressure coe�cients computed on the fine grid with the experimental data
for the four angles of attack considered in this study. At ↵ = 8.10�, the WMLES computation slightly overpredicts
the pressure at the suction side of the slat. The agreement is good over the main element and flap. At ↵ = 16.21�,
the agreement is good over all the sections of the airfoil. For the two higher angles of attack, mild underprediction is
observed over the main element and flap, probably caused by three-dimensional e�ects; agreement is slightly better for
↵ = 21.34� than for ↵ = 23.28�.

Instantaneous velocity magnitude contours computed on the fine grid are shown in Fig. 5 for the four angles of attack
on the fine mesh. Unsteadiness of the wake emanating from the slat is captured in the simulations. As the angle of attack
is increased, the low-momentum fluid above the flap becomes more pronounced. It appears that the flow between the
main element wake and flap shear layer becomes increasingly unsteady as stall is approached at ↵ = 21.34 and 23.28�.

Figures 6 and 7 compare time-averaged profiles of velocity magnitude computed on the fine grid with the experiment.
The comparisons are reported for four stations and ↵ = 8.10� and ↵ = 16.21�. The notation dn in the plots denotes the
wall distance. The x/c = 0.45 station is located approximately midchord on the main element. The positions of the
other stations can be determined by cross referencing the profile locations shown in Fig. 8. Note that in this figure,
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(a) Surface mesh near slat and main element (b) Surface mesh near main element and flap

Fig. 2 Surface mesh for the 30P30N airfoil.
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Fig. 3 Variation of lift with angle of attack for the 30P30N airfoil.

the station locations (x/c = 0.85, x/c = 0.8982, x/c = 0.9750, x/c = 1.0321, x/c = 1.0752, and x/c = 1.1125) are
ordered from upstream to downstream; the indicated coordinates are relative to the airfoil in the undeflected position.
Fair overall agreement is observed between the WMLES computations and experiment. Some of the discrepancy
may be caused by laminar-turbulent transition present in the experiment, which is not accounted for in the WMLES
simulations. Also, the thin boundary layer closer to the leading edge of the main element appears to be insu�ciently
resolved. At ↵ = 16.21�, the slat wake is more prominent in the experimental data than in the computations, particularly
at the further downstream stations. Note that the circles shown in Fig. 8 indicate the approximate location of the center
of the slat wake, as extracted from the experimental data at ↵ = 16.21�. As seen in Fig. 8, the mesh lacks su�cient
resolution away from the immediate vicinity of the wall. The slat wake is not accurately resolved in the computations
and is therefore more di�used compared to the experiment. An adaptive mesh refinement technique is of great interest
to provide necessary grid resolution.
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Fig. 4 Pressure distribution for 30P30N configuration on fine grid: M1 = 0.3, Re = 9.0 ⇥ 106
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Fig. 5 Instantaneous velocity magnitude contours for the 30P30N simulations on fine grid.
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Fig. 8 Approximate slat-wake location for 30P30N airfoil at ↵ = 16.21�.
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B. NASA High-Lift Common Research Model

In this section, WMLES are presented for flows over the NASA CRM-HL model at a range of angles of attack, with
the flaps in a landing configuration. The NASA CRM-HL configuration is a 10%-scale, semispan model that was tested
in the QinetiQ 5-meter pressurized low-speed wind tunnel [27]. The experimental data are used for evaluating CFD
simulations as part of the 4th AIAA CFD High Lift Prediction Workshop [43].

1. Configuration and Flow Conditions

The NASA CRM-HL geometry incorporates many salient features of a realistic flight configuration, including a
fuselage, a flow-through nacelle, nacelle pylon, nacelle chine, leading-edge slats, slat brackets, a main wing, trailing-edge
flaps, and flap fairings. Experimental data have been obtained for three combinations of inboard/outboard trailing-edge
flap deflections (37�/34�, 40�/37�, and 43�/40�), all with 30� deflection of a partial-span leading-edge slat. Landing gear
and horizontal or vertical tails are not included in the current configuration. Experimental data for lift, drag, pitching
moment about the spanwise axis, surface pressures, and oil-flow visualizations were obtained at di�erent angles of
attack, including ↵ = 2.78�, 7.05�, 11.29�, 17.05�, 19.57�, 20.55�, and 21.47� (wall corrected).

In this work, free-air simulations are conducted for the nominal trailing-edge flap deflections of 40�/37�. The flow
conditions for this configuration are a freestream Mach number of 0.2, a Reynolds number of 5.49 million based on the
mean aerodynamic chord (MAC) of 275.8" and a reference temperature of 521 �R. This case corresponds to Case 2a of
the workshop. More details about the geometry, test parameters, and related references are available from the workshop
website [43]. Figure 9 displays the locations of spanwise slices (A–H) where experimental data are available for CFD
validation; slices highlighted in red (i.e., A, D, E, and G) are stations used in this paper.

Fig. 9 Slice locations for NASA CRM-HL experimental data.

2. Grids

Two unstructured grids, referred to as Mesh A and Mesh B, are used to assess the WMLES performed for the full
angle-of-attack range. These grids also serve as a control group in a preliminary grid-sensitivity study in which a third
grid, referred to as Mesh C, is generated; Mesh C is similar in size to Mesh B, but has a larger normal spacing at the
wall. As discussed later in Section IV.B.3, the increased wall-normal spacing for Mesh C is likely to place the first point
o� the wall outside the log-law region of the boundary layer. Since the first points o� the wall are used in the present
work as the exchange locations, questions are raised about the adequacy of the simple wall model [38] that is valid only
from the wall to the outer edge of the log-law region. Consequently, simulations on Mesh C are limited to a subset of
the cases to examine the wall-spacing e�ects on the simulations.

For all of the computational grids, the symmetry plane is located at y = 0. The outer boundary is located about 100
MAC lengths away. Mesh A and Mesh B contain approximately 418 million and 156 million grid points, respectively.
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Although generated independently, both grids have a nominal wall-normal spacing of 0.13", corresponding to a nominal
�y+w ⇡ 100 based on a flat-plate approximation at freestream conditions and the MAC reference length. Along the
surfaces of the slat, main wing, and flap, the grid points away from the leading and trailing edges are uniformly
distributed. In the vicinity of the leading and trailing edges, clustering is used to improve accuracy in regions with large
solution gradients. Mesh C is isotropic with 0.5" spacing in all directions and does not have clustering at the leading
and trailing edges. The surface normal spacing corresponds to �y+w ⇡ 385. More details about the grid metrics are
provided in Table 1.

Figure 10 displays slices of Mesh A and Mesh B at Station D that are representative of slices at the other stations.
These figures provide views of the overall grid topologies, as well as point distributions near the surfaces of the
main-wing cove and flap. Mesh A is constructed using a layered approach, where the elements in each layer are roughly
twice larger than the elements in the neighboring layer closer to the surface. In the regions between the layers, tetrahedral
and pyramidal elements are used to blend the layers. Mesh B uses mostly prisms for the boundary-layer cells and mostly
tetrahedra away from the surface. Mesh A achieves somewhat higher density than Mesh B above the main element and
flap. It is expected that the higher density above the main element and flap should provide somewhat better resolution of
the slat and main-element wakes.

A view of the entire surface mesh is not informative because the density of grid points is so high that no useful
information can be visualized. Representative closeup views of the surface mesh in the vicinity of the fuselage are
shown in Fig. 11. Figure 11(a) shows a closeup view of the surface of Mesh A, in the vicinity of the fuselage as indicated
in Fig. 11(c). Figure 11(b) is the view of Mesh B in the same region. Both grids have fine surface resolution. The ratio
of streamwise to spanwise spacing on the surface elements of Mesh A is approximately two. This ratio for Mesh B is
nominally unity away from the leading and trailing edges. Near the leading and trailing edges, however, Mesh B has
somewhat higher density and this ratio remains approximately unity despite clustering.

3. Simulation Results

Five angles of attack, namely ↵ = 7.05�, 17.05�, 19.57�, 20.55�, and 21.47�, are considered for WMLES using both
Mesh A and Mesh B. The WMLES computations for ↵ = 11.29� case are conducted on Mesh A to provide additional
assessments.

The initial time step is chosen so that 1,000 time steps represent a single CTU and the first 8–10 CTUs are used to
eliminate initial transients. Afterward, the time step is reduced to achieve 2,000 time steps per CTU to improve the
temporal accuracy. The UMUSCL parameter for inviscid fluxes is initially set to u = 0.5, and increased to u = 0.9
after 4-5 CTUs to reduce the spatial dissipation. Time-averaged quantities such as density, velocity components, and
pressure are collected over 5–15 CTUs after the transients in the forces and moments have been reduced.

The implicit system of equations is solved using HANIM, described in Ref. [42]. In HANIM, the CFL number,
which controls the pseudotime stepping, is adapted based on the performance of various HANIM modules. In the present
simulations, the operational range of CFL number is between 1.0 and 1,000 at each time step with 6–8 subiterations,
resulting in 4–5 orders of magnitude in residual reduction.

Table 1 NASA CRM-HL Mesh Statistics.

Ordering Mesh A Mesh B Mesh C
Nodes 418,774,938 156,117,308 142,708,069
Tetrahedrons 396,153,823 245,076,460 193,686,407
Pyramids 97,054,752 14,799,748 60,003,831
Prisms 1,787,526 215,323,499 1,099,421
Hexahedrons 317,281,293 0 87,029,789
Surface points 7,418,554 5,011,436 6,992,786
Surface triangles 176,232 9,746,096 0
Surface quadralaterals 7,892,108 168,929 7,076,671
Nominal �y+w 100 100 385
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(a) Mesh A: wing-section view (b) Mesh B: wing-section view

(c) Mesh A: flap view (d) Mesh B: flap view

Fig. 10 NASA CRM-HL mesh slices at Station D.

Time histories of the integrated lift, drag, and pitching-moment coe�cients computed on Mesh A are shown in
Fig. 12 as a function of CTU for the ↵ = 7.05�, 19.57�, and 21.47�. Although not shown, other angle-of-attack cases
exhibit similar convergence behavior. For higher angles of attack, WMLES require more flow-through passes to reach
statistically stationary states, especially to attain the pitching-moment convergence. A longer integration time is needed
at higher pitch angles because of increased complexity of high-lift flows that exhibit flow separation and interactions of
turbulent boundary layers with wakes. All WMLES computations in this work have been performed with su�ciently
long integration time to attain reasonably converged solutions, although longer time averaging may be required to fully
smooth out oscillations present in the pressure distributions (discussed later in this section).

Figure 13 compares integrated forces and moments computed by free-air WMLES on Mesh A and Mesh B with
the wall-corrected experimental measurements. Computed lift coe�cients are shown in Fig. 13(a) versus the angle of
attack. For the ↵ = 7.05� case, the lift coe�cients predicted on Mesh A and Mesh B show good agreement with each
other and the experimental data. At ↵ = 11.29�, where the lift curve is approximately linear, WMLES computations on
Mesh A continue to exhibit good agreement with the experiment; WMLES on Mesh B have not been performed at this
angle of attack. The lift coe�cient computed on Mesh A at ↵ = 17.05� is slightly below that of the experimental data,
whereas the lift coe�cient computed on Mesh B is slightly above the experiment. Both the computed lift coe�cients
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(a) Mesh A (b) Mesh B (c) Location on surface for closeup view

Fig. 11 NASA CRM-HL surface mesh near fuselage.

continue to match the experimental data well, showing approximately 2–3% deviation from the measurement. At
↵ = 19.57� corresponding to the experimental CL,max , WMLES computations on Mesh A accurately predict the critical
angle of attack for CL,max , and the di�erence in the lift coe�cient is within 1%. The Mesh-B WMLES computations
slightly underpredict the maximum lift, but the overall trend is consistent with the Mesh-A WMLES solutions and the
experiment. For the post-stall cases, the WMLES lift predictions obtained on Mesh A are consistently closer to the
experimental data than the predictions obtained on Mesh B.

Figure 13(b) shows the computed drag polars versus the lift coe�cient and the corresponding experimental data.
WMLES results on Mesh A and Mesh B closely follow the experimental drag-polar curve for lower angles of attack. At
higher angles of attack, including ↵ = 17.05� and ↵ = 19.57�, the WMLES computations on Mesh A continue to show
good agreement with the experiment. In the post-stall regime, the lift-to-drag ratio obtained from both Mesh A and
Mesh B is underpredicted. At ↵ = 20.55�, the drag discrepancy between WMLES and the experiment is approximately
1.8% for Mesh A and 1.3% for Mesh B. At ↵ = 21.47�, the drag deviation remains on the same level, about 1.4% and
1.5% for Mesh A and Mesh B, respectively.

Figure 13(c) shows the pitching-moment coe�cients versus angle of attack. At all angles of attack except ↵ = 21.47�,
the WMLES computations on Mesh A show good agreement with the experimental data. The maximum di�erence
corresponding to ↵ = 7.05� is about 4.6% and the minimum di�erence corresponding to ↵ = 19.57� is within 1%.
However, the magnitude of the pitching moment at the highest angle of attack, ↵ = 21.47�, is substantially underpredicted
(i.e., pitching moment is not negative enough) on Mesh A as compared to the experimental data that indicates a strong
nose-down pitching moment. The WMLES computations on Mesh B capture well the pitching-moment trend at all
angles of attack, although at ↵ = 19.57� and ↵ = 20.55�, the nose-down moment is slightly underpredicted compared to
the experiment. An interesting observation is that the WMLES solution computed on Mesh B at ↵ = 21.47� appears
to indicate a stronger nose-down pitching moment than the WMLES solution computed on Mesh A. On Mesh B, the
pitching moment at ↵ = 21.47� is, in fact, slightly more negative than the moment at ↵ = 20.55�, which correctly reflects
the increased nose-down tendency. Investigations are currently underway to understand if the di�erences observed at
the highest angle of attack are caused by the grid resolution or cell topology. Uncertainties in the experimental data may
also contribute to the discrepancies.

In Figs. 14–16, computed pressure distributions are compared with experimental data at three angles of attack. As
mentioned previously, experimental data are available along each of the spanwise locations depicted in Fig. 9, although
results are only shown for the stations indicated by the red lines to conserve space. Figure 14 shows pressure distributions
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(a) Lift (b) Drag

(c) Pitching moment

Fig. 12 Force and moment histories for NASA CRM-HL computations.

computed on Mesh A and Mesh B for ↵ = 7.05�. At all spanwise stations, the computed pressure distributions are in
good agreement with each other and the experimental data. Pressure distributions exhibit small oscillations on the slat
at all spanwise stations, and on the flap at stations A, B, and C. Querying the skin friction indicates that these locations
correspond to the flow transition from a smooth state to an oscillatory one. Longer time averaging is required to reliably
assess the source of these oscillations.

Figures 15 and 16 show pressure distributions at ↵ = 19.57� and ↵ = 21.47�, respectively. At the most inboard
spanwise location (Station A) at ↵ = 19.57�, the pressure distributions on the flap computed on Mesh B achieve better
agreement with the experiment than the pressure distributions computed on Mesh A. At all other spanwise stations, the
pressure distributions computed on Mesh A and Mesh B are almost identical. The reasons for the di�erences at Station
A are currently not known and more analysis is required. For this purpose, examining experimental data on the fuselage
itself may be useful. Note that in Fig. 15, the pressure distributions computed on Mesh A show oscillations on the slat at
the most inboard spanwise location, but the oscillations gradually lessen outboard. In contrast, the pressure distributions
computed on Mesh B exhibit small oscillations at all the spanwise locations. Longer time-averaging may reduce, or
even eliminate these oscillations as instantaneous pressure distributions (not shown) are extremely oscillatory in these
regions.

At ↵ = 21.47� shown in Fig. 16, noticeable di�erences between the computed pressure distributions and the
experiment are observed on the slat at Station A. At Station A, the computed pressure distributions are also slightly
di�erent on the flap. On the slat, the pressure distributions computed on Mesh B have slightly less lift than the pressure
distributions computed on Mesh A; on the flap, the pressure distributions computed on Mesh B have slightly more lift
than the pressure distributions computed on Mesh A. Considering the slat and the flap together, these di�erences in lift
indicate that Mesh B should have a greater "nose-down" pitching moment, which is reflected in Fig. 13.

A third grid, Mesh C, has been generated to include a similar number of grid points as Mesh B, but with a larger
normal spacing at the wall and uniform point distributions in the leading- and trailing-edge regions. While not a
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Fig. 13 Forces and moments for NASA CRM-HL.

rigorous comparison, this increase in wall-normal spacing has been imposed to examine whether a larger value of �y+w
results in substantial changes in the flowfield. Because Mesh A contains the largest number of grid points among all the
grids considered, pressure distributions computed on Mesh A are used as references. As representative comparisons,
Figs. 17 and 18 show surface pressures computed on Mesh A and Mesh C for two angles of attack, namely ↵ = 7.05�
and ↵ = 19.57�, respectively, at Stations E and G. The pressure distributions indicate that larger value of �y+w leads to
accuracy degradation. As shown in the Figs. 17 and 18, the pressure on the suction side is underpredicted at both
stations for both angles of attack and for all wing components (slat, main wing, and flap). The underprediction becomes
more severe from inboard to outboard. For reference, the pressure distributions computed on Mesh B (Figs. 14 and 15)
show much better agreement with the experimental data. These observations emphasize the importance of proper �y+w
(as well as grid clustering) in wall shear-stress modeling and highlight the e�ects on solution accuracy.

Instantaneous isosurfaces of Q-criterion computed on Mesh A are shown in Fig. 19 for the critical angle of attack of
↵ = 19.57�, near the maximum lift. Here, WMLES computations capture fine turbulent structures and propagate them
downstream close to the wing/fuselage surface. Complicated vortical structures are observed near the the wing-root
juncture region, the inboard slat, and the nacelle chine and nacelle/pylon. These geometrical features shed vortices and
turbulent eddies that propagate to the wing inboard and fuselage areas. The vortices generated from the slat brackets
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seem to be mild in strength as compared to other vortical systems.
To further visualize the basic structures of the flowfield, Figs. 20–22 show instantaneous contours of density-gradient

magnitude computed on Mesh A for three angles of attack, namely ↵ = 7.05�, ↵ = 19.57�, and ↵ = 21.47�, at four
stations, namely stations A, D, E, and G. At all the angles of attack, the slat wake is well captured and propagates
across the main wing where it interacts with the turbulent boundary layer. At inboard and midspan stations, small-scale
vortices are clearly observed. These vortices are generated from the trailing edge and the cove corner of the main wing,
and carried all the way to the suction side of the flap. Similarly, vortex-shedding structures at the trailing edge of the
flap in inboard and midspan stations can be clearly observed. Furthermore, for higher angles of attack, the interactions
between the detached shear layer and turbulent boundary layer are strengthened to a large extent; more small-scales and
turbulence features are captured in the boundary layer and wake areas.

Figure 23 depicts contours of the density-gradient magnitude computed on Mesh B at ↵ = 21.47�. Compared to the
contours computed on Mesh A for the same angle of attack (cf. Fig. 22), the flow over the main element appears to be
more separated, which may lead to lower lift values at the inboard sections.

Finally, contours of instantaneous skin-friction magnitude are shown in Fig. 24 for the ↵ = 21.47� case on Mesh A
and Mesh B. The WMLES computations on Mesh B appear to have slightly more inboard separation than the WMLES
on Mesh A, although neither have massive separation. The slightly more separated flow computed on Mesh B is
consistent with the stronger nose-down pitching moment shown in Fig. 13(c). Note that the outboard part of the wing
does not show significant separation, which is commonly observed in RANS solutions and referred to as "pizza-slice"
separation initiated by the slat bracket wakes.
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Fig. 14 NASA CRM-HL pressure distributions at four spanwise stations: ↵ = 7.05�.
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(d) Station G

Fig. 15 NASA CRM-HL pressure distributions at four spanwise stations: ↵ = 19.57�.
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Fig. 16 NASA CRM-HL pressure distributions at four spanwise stations: ↵ = 21.47�.

20



x

C
p

1380 1390 1400

-3

-2

-1

0

1

x

C
p

1400 1450 1500 1550 1600

-4

-3

-2

-1

0

1

Mesh A
Mesh C
Experiment

x

C
p

1580 1600 1620 1640

-4

-3

-2

-1

0

1

(a) Station E

x

C
p

1610 1620 1630

-3

-2

-1

0

1

x

C
p

1650 1700 1750 1800

-5

-4

-3

-2

-1

0

1

Mesh A
Mesh C
Experiment

(b) Station G

Fig. 17 NASA CRM-HL pressure distribution comparison between Mesh A and Mesh C: ↵ = 7.05�.
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Fig. 18 NASA CRM-HL pressure distribution comparison between Mesh A and Mesh C: ↵ = 19.57�.
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(a) Front view (b) Close-up back view

Fig. 19 Instantaneous isosurfaces of Q-criterion over the NASA CRM-HL, colored by Mach number: ↵ =
19.57�.

(a) Station A (b) Station D

(c) Station E (d) Station G

Fig. 20 Magnitude of density-gradient for NASA CRM-HL at four spanwise stations on Mesh A: ↵ = 7.05�.
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(a) Station A (b) Station D

(c) Station E (d) Station G

Fig. 21 Magnitude of density-gradient for NASA CRM-HL at four spanwise stations on Mesh A: ↵ = 19.57�.

(a) Station A (b) Station D

(c) Station E (d) Station G

Fig. 22 Magnitude of density-gradient for NASA CRM-HL at four spanwise stations on Mesh A: ↵ = 21.47�.
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(a) Station A (b) Station D

(c) Station E (d) Station G

Fig. 23 Magnitude of density-gradient for NASA CRM-HL at four spanwise stations on Mesh B: ↵ = 21.47�.

(a) Mesh A (b) Mesh B

Fig. 24 Instantaneous skin friction for NASA CRM-HL: ↵ = 21.47�.
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V. Conclusions

Wall-Modeled large-eddy simulation (WMLES) capability has been implemented in FUN3D, an unstructured-grid,
finite-volume solver developed at the NASA Langley Research Center. The WMLES methodology has been evaluated
for flows over a multielement 30P30N airfoil at various angles of attack. Good agreement has been established between
the WMLES data and the experimental data for integrated forces, surface pressures, and boundary-layer velocity
profiles. WMLES computations have also been performed for the NASA High-Lift Common Research Model. Free-air
simulations have been systematically carried out using two grid systems containing approximately 418 million and
156 million grid points and a wide range of angles of attack covering the linear region of the lift curve, the maximum
lift, and post-stall regimes. The integrated lift, drag, and pitching-moment quantities agree well with experimental
measurements, although the computed pitching moment at the post-stall angle of attack of ↵ = 21.47� does not show
enough nose-down moment to exhibit a “pitch-break” phenomenon observed in the experiment. Distributions of surface
pressure are compared with available experimental data, and good agreement is attained, including the critical angle of
attack where maximum lift is observed experimentally.

Planned future work includes further investigations of post-stall flow conditions using enhanced mesh resolution to
analyze the flow in the vicinity of the wing-root juncture. Future development e�orts will include several approaches to
improve solver performance as well as the application of mesh adaptation techniques for WMLES.
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