
Development of a Trajectory-Centric CFD-RBD Framework for
Advanced Multidisciplinary/Multiphysics Simulation

Zachary J. Ernst∗, Madilyn K Drosendahl †, Bradford E. Robertson‡,
Dimitri N. Mavris§

Aerospace Systems Design Lab, Georgia Institute of Technology, Atlanta, GA 30332

The desire to model increasingly complex unsteady flow phenomena drives coupling of
physics-based disciplinary analysis tools, such as coupled aerodynamics-rigid body dynamics
simulations. This paper documents the creation of a framework linking the six-degree-of-
freedom trajectory propagator POST2 with NASA’s FUN3D computational fluid dynamics
flow solver. Cross-code verification between the framework and a CFD-centric 6DOF code
is performed using the Army-Navy Finner projectile experiencing unsteady accelerating flow.
Free-flight simulations of an entry vehicle ballistic range test are validated against physical and
computational experiments.

Nomenclature

0 speed of sound
��, �. , �# axial, side, and normal force coefficients
�!! , �" , �!# roll, pitch, and yaw moment coefficients
3 diameter
�̄ force vector
O inertia tensor
�xx, �yy, �zz roll, pitch, and yaw inertia components
! length in dimensional units
!grid reference length in grid units
"̄ moment vector
" Mach number
< mass
% static pressure
%C total pressure
PR jet total pressure ratio
& dynamic pressure
@̄ quaternion vector
X8 9 9 to 8 frame rotation matrix
Ā position vector
ΔĀ vehicle C.G. translation vector
ΔĀ6 grid translation vector
B freestream speed
) static temperature
)C total temperature
C time
ΔC trajectory propagator physical time step

ΔCfs flow solver physical time step
TR jet total temperature ratio
Ē velocity vector
-̄ vehicle state vector

W flight path angle
_, Φ longitude and geodetic latitude
q, \, k relative roll, pitch, and yaw Euler angle
qI , \I , kI inertial roll, pitch, and yaw Euler angle
Ψ azimuth angle
l̄ angular velocity vector
learth planetary rotation rate
l̄rel vertical-relative angular velocity vector

Subscripts:
� Body frame
cmd commanded
� Earth-centered rotating frame
� Body reference frame
� Inertial frame
$ Observer frame
% Intermediary frame
plenum at the nozzle plenum
ref reference parameter
+ Local vertical frame

∗Senior Graduate Researcher, ASDL, School of Aerospace Engineering, Georgia Tech, AIAA Student Member
†Graduate Researcher, ASDL, School of Aerospace Engineering, Georgia Tech, AIAA Student Member
‡Research Engineer II, ASDL, School of Aerospace Engineering, Georgia Tech, AIAA Member
§S.P. Langley Distinguished Regents Professor and Director of ASDL, Georgia Tech, AIAA Fellow

1

I. Introduction
Flight simulation is a critical design activity for aerospace vehicles, used for trajectory optimization [1], dispersion

analysis [2], guidance development [3], and many other tasks. A flight simulation models the relevant disciplines —
such as flight dynamics, aerodynamics, propulsion, atmospherics, controls, etc. — as they act on the vehicle over time.
The trajectory propagator acts as the focal point of the simulation: calling disciplinary models, integrating the equations
of motion, and updating the vehicle state. These models are traditionally provided as independent, self-contained
modules which are surrogates for one or more higher-fidelity models[4]. For example, the aerodynamics model may
provide the force and moment coefficients as a database populated from physical [5] or computational experiments [6].
These models achieve a low computational cost by a reduction in fidelity, necessary due to the large number of flight
simulations that must be performed. Each model may be constructed by different organizations or at different stages of
the design process [4].

While the accuracy of these simulations is sufficient for most cases, designers may require higher-fidelity simulation
during particularly complex regimes of flight such as separation events [7] or accelerating through the transonic
regime [8]. These models might also be limited in their capability to model coupling between disciplines, such as
fluid-structure interactions (FSI) [9] or aerodynamic/control interaction [10]. This has led to the goal of developing
advanced multidisciplinary/multiphysics simulation capabilities [11].

A coupled multiphysics model directly links disciplinary codes to the trajectory simulation, running at the exact
conditions requested by the trajectory code. In addition to capturing the aforementioned interactions, a coupled model
eliminates both the loss of fidelity due to the use of a surrogate model and the interpolation error inherent with databases.
It can also decrease a priori computing cost if configuration or geometry is updated, or if off-nominal (e.g., abort)
scenarios must be analyzed — scenarios which would otherwise require new or updated databases.

One of the most commonly used coupled models links the aerodynamics and flight dynamics for free-flight simulation.
Dynamic, time-accurate computational fluid dynamics (CFD) models are coupled with a rigid body dynamics (RBD)
simulation to move the vehicle in full six-degree-of-freedom (6DOF) motion. The continuous integration of the flow
field preserves flow history, which means that unsteady aerodynamic effects are modeled. CFD-RBD simulations are
used regularly in the field of subsonic and supersonic projectile design. Store separation relies heavily on CFD-RBD
simulation to determine whether a projectile or other object released by an aircraft might be at risk of recontact [12].
Meakin developed some of the earliest simulations for time-accurate Navier-Stokes coupled with 6DOF for modeling
store separation [13]. Coupled CFD-RBD simulations known as "virtual fly-out" have also been used to estimate
aerodynamic coefficients for projectiles [14–16]. Sahu has performed coupled CFD-RBD simulations for a variety of
finned projectiles [17], adding guidance and control system models for open-loop [18] and closed-loop [19] controller
simulation.

Murman et al. developed CFD-RBD simulations in the OVERFLOW solver for the simulation of atmospheric entry
vehicles [20]. Stern et al. developed "free-flight CFD" within the US3D flow solver to predict static and dynamic
coefficients for the Mars Science Laboratory (MSL) entry vehicle [21]. Stern et al. also used the CFD-RBD simulations
to predict surface pressure at specific points for comparison to flight instrumentation [22]. More recently, Brock et al.
used the same framework to recreate the ballistic range tests for the Supersonic Dynamics Flight Test (SDFT) with good
agreement to the experimental results [23].

These existing CFD-RBD models have generally been constructed as an expansion of the flow solver. The RBD
simulations are often limited in complexity to a particular 6DOF numerical integration scheme [20] or gravitational
model [24]. Constructing a trajectory propagator-centric multidisciplinary/multiphysics simulation would enable the
use of state-of-the-art flight simulation tools [25]. This approach makes it easier to link CFD-RBD models with other
disciplinary models that are already configured to work with a trajectory propagator. The simulations could also utilize
the analysis features of the propagator, such as trajectory optimization.

This paper details the development of a multiphysics simulation framework that couples Program to Optimize
Simulated Trajectories II (POST2), a state-of-the-art trajectory propagation code, with the FUN3D CFD flow solver. The
framework is designed to enable the simulation of multiple problems of interest in the supersonic and low hypersonic
regimes, with the most complex being an atmospheric entry vehicle with active reaction control system (RCS) jets.
Cross-code verification is performed against an existing CFD-RBD code built in FUN3D, through simulations of a
projectile in a ballistic drop, as a cross-check of the data transformation. Validation is performed against ballistic range
tests for an entry vehicle with nontrivial initial conditions.

2

II. CFD/RBD Model
The CFD-RBD model solves the fluid flow equations simultaneously with the flight dynamics equations of motion.

The equations of motion are integrated forward in time to calculate the vehicle state, and the external aerodynamic
forces and moments are calculated using CFD to solve the flow equations.

The vehicle is modeled as a rigid body under the effect of external forces and moments. These include the effect of
aerodynamics, gravitation, propulsion and control. The vehicle can move in six degrees of freedom (three in translation
and three in rotation) with respect to an inertial reference frame. The inertial frame � and body frame � are defined
as shown in Figure 1. The body frame is fixed to the vehicle with its origin at the center of mass, the G-axis pointing
towards the front of the vehicle, and the H- and I-axes forming a right-handed reference frame. The vehicle state -̄
consists of: Ā� , its position vector of the center of gravity in the inertial frame; Ē� and l̄�, its inertial linear and angular
velocity vectors, respectively, represented in the body frame; and qI , \I , and kI , the roll, pitch, and yaw Euler angles,
respectively. For simplicity, the equations below are presented for a vehicle with constant mass properties.

𝑥ூ
𝑦ூ

𝑧ூ

𝑦஻

𝑥஻

𝑧஻

𝜓௜

𝜃௜

𝜙௜
𝑟̅ூ

Fig. 1 Inertial and Body Reference Frames

The equations of motion govern changes to the vehicle state over time [26]:

¤̄E� =
1
<
(�̄� − ¤<Ē�) − l̄� × Ē� (1)

¤̄A� = X� � Ē� (2)
¤̄l� = O−1

� ("̄� − l̄� × (��l̄�) − ¤O�l̄�) (3)
¤q8
¤\8
¤k8

 =

1 sin qI tan \I cos qI tan \I
0 cos qI − sin qI
0 sin qI sec \I cos qI sec \I

 l̄� (4)

�̄� and "̄� are the external force and moment vectors, respectively. < is the vehicle mass, and O� is the inertia tensor. A
dot over the variable represents its derivative with respect to time. X� � is the rotation matrix defining the transformation
between the body and inertial frames:

X� � =


coskI cos \I coskI sin qI sin \I − cos qI sinkI sin qI sinkI + cos qI coskI sin \I
cos \I sinkI cos qI coskI + sin qI sinkI sin \I cos qI sinkI sin \I − coskI sin qI
− sin \I cos \I sin qI cos qI cos \I

 (5)

Together, these form a set of 12 ordinary differential equations. Numerical integration is used to solve the equations
of motion and propagate the vehicle state forward in time according to the initial value problem in Equation 6.

¤̄- = 5 (-̄, C), -̄ (C0) = -̄0 (6)

3

The Runge-Kutta 4th-order integration scheme is used to calculate the update to the vehicle state based on a series of
substeps [27]:

-̄ (C + ΔC) = -̄ (C) + ΔC
6
(:̄1 + 2:̄2 + 2:̄3 + :̄4) (7)

where ΔC is the physical time step used by the trajectory propagator, and :̄1 to :̄4 are the derivatives at each of the
substeps:

:̄1 = 5 (-̄, C)

:̄2 = 5 (-̄ + ΔC :̄1
2
, C + ΔC

2
)

:̄3 = 5 (-̄ + ΔC :̄2
2
, C + ΔC

2
)

:̄1 = 5 (-̄ + ΔC :̄3, C + ΔC)

(8)

The updated vehicle state is used to update the grid motion in the flow solver.
The fluid flow is governed by the Navier-Stokes equations, written using the arbitrary Lagrangian-Eulerian (ALE)

formulation in Equation 9 [28]:
m

mC

∫
V
q3V +

∮
mV
(L∗ − LV) · =̂3S = 0 (9)

where q represents the conserved variables andV is the control volume, bounded by control surface mV with local
control volume face velocity ,̄ . L∗ and LV are the convective and diffusive fluxes of q, respectively. The ALE
formulation allows for the prediction of unsteady aerodynamics as the vehicle moves in time. The flux through a moving
control volume must account for augmented or reduced flux through the control surface due to the local control surface
speed:

L∗ = L − q,̄) (10)

A CFD flow solver is used to solve these equations for the time-accurate flow in a volume around the vehicle. The
volume is spatially discretized into a grid, with the convective fluxes computed using a flux-splitting scheme [29]. The
solution is advanced in time using a dual time-stepping approach [30]. The outer time step ΔCfs represents a physical
discretization in time that is applied to the entire grid. This time step is equal to the time step used in the numerical
integration of the equations of motion.The inner time step is used to help solve the physical flow equations. This step is
varied spatially and is subject to relaxation to reduce the residuals of q. Once the solution is converged, the pressure and
shear forces acting on the surface of the vehicle are integrated into force and moment coefficients. These coefficients are
used to update the external forces and moments in the equations of motion.

This method of coupling can be characterized as a modified, staggered nonlinear block-Gauss-Seidel algorithm
[31]. The trajectory propagator steps forward with one iteration. Then, the flow solver executes some number of time
steps and subiterations until it is converged. The time step ΔC is small enough that the solution of the equations of flow
and motion are assumed to converge at each step. Consider representative values for ΔC and ΔCfs nondimensionalized
by B/!ref , the time taken by a fluid particle at the freestream velocity to travel over a reference length. Whereas the
nondimensional step used in CFD-RBD simulations may be on the order of 10−2 [23], the nondimensional step used in
trajectory simulations without CFD is usually on the order of 100 [32]. By running at the smaller time step required by
the CFD, a sufficient degree of convergence can be achieved.

In addition, the aerodynamic force and moment coefficients are held constant during integration across the time-
integration substeps. Using constant aerodynamic forces and moments allows the flow solver to keep a single flow field
in memory and preserve the monotonic nature of the solution. While using constant force and moment coefficients
reduces the order of accuracy of the integration scheme, the time step is orders of magnitude smaller than typical RBD
time steps, mitigating the error propagation [27]. This is a common approach for CFD-RBD simulation [20, 21, 24].

III. Framework Construction
The framework consists of the trajectory propagator, the CFD flow solver, and the interface which links the two

codes. Independent processes are used to run the flow solver and trajectory propagator.

4

A. Flow Solver
FUN3D is a production flow analysis and design tool developed at the NASA Langley Research Center [33]. From

its inception in the late 1980s, FUN3D has been developed into a suite of tools for flow analysis, mesh adaptation, and
design optimization [29, 34]. The flow solver is capable of solving the Reynolds-Averaged Navier-Stokes (RANS) or
Euler equations for steady-state or time-accurate flow. FUN3D uses a node-based finite-volume discretization capable
of solving unstructured or mixed-element meshes. It can model perfect gas or a generic gas with multiple chemical
species; in compressible or incompressible flows; at thermochemical equilibrium or non-equilibrium. FUN3D uses a
second-order-accurate spatial discretization, with options for first- to fourth-order temporal discretization (with temporal
error controllers). The software includes a variety of turbulence models, including modification of RANS for Detached
Eddy Simulation (DES), and flux splitting schemes.

FUN3D was selected as the flow solver based on its capability to model problems of interest in the hypersonic
and supersonic flight regime. FUN3D has a long history of usage in government and industry projects, including for
analysis of the Phoenix and MSL entry vehicles [10, 35]. FUN3D can model boundary conditions for internal flow and
propulsion simulation, including inlets and nozzles. Critically, FUN3D uses the ALE formulation of the governing
equations, allowing for freeform mesh movement and deformation [28]. Rigid mesh movement allows for free-form
translation and rotation of all points in the mesh in unison, whereas mesh deformation changes the relative position
and orientation between nodes. Rigid motion and deformation can be combined in the same simulation. FUN3D also
includes a Python-based application programming interface (API), which allows external control of the execution down
to the iteration level.

B. Trajectory Propagator
Although FUN3D can be compiled with a 6DOF RBD trajectory propagator [24], this RBD code has limited

capabilities in the selection of gravitational models, numerical integration schemes, or initial conditions. It also does
not allow for coupling with other disciplines. An alternative implementation uses an external process to perform the
RBD simulation and drive the motion in the CFD flow solver. This external motion driver allows the flow solver to be
linked with a state-of-the-art trajectory propagation software, with greatly expanded capability — it can be coupled with
other disciplines such as propulsion or guidance, navigation, and control (GN&C).

POST2 is a trajectory propagation and optimization program also developed at the Langley Research Center [36].
POST2 models the trajectory of one or more point masses in flight about a single attracting body, inside or outside
of an atmosphere. The propagator can solve problems either in 3DOF by integrating the translational equations of
motion or in 6DOF by integrating the rotational equations of motion as well. The planetary model is generalized,
with arbitrary rotational, gravitational (mass and oblateness), and atmospheric parameters. POST2 includes discrete
parameter targeting and optimization for customizable trajectory parameters.

POST2 is the state of the art in trajectory propagation software, used for trajectory analysis of orbital launch vehicles
[1], and Earth and Mars entry vehicles [2, 37, 38]. POST2 is designed with great flexibility in enabling custom code
modules. Simulations are run with POST2 acting as the integrator for disciplinary models, such as aerodynamics,
GN&C, and propulsion that are specifically built for the vehicle under study.

C. Communication
A flowchart of the framework is laid out in Figure 2, showing the communication between POST2 and FUN3D.

Network sockets are used to handle communication between the C-based POST2 and a Python3-based wrapper. This
wrapper performs data transformation and controls the execution of FUN3D through the API.

5

Fig. 2 POST2-FUN3D Framework Flowchart

A coordinator manages the initialization and termination of the independent POST2 and FUN3D processes. When
the aerodynamic coefficients are queried in POST2, a custom aerodynamic module is run that sends the current
vehicle state to the FUN3D wrapper. The state is transformed into the reference frames required for FUN3D input and
nondimensionalized. If the simulation includes active RCS, the control system state is similarly communicated to the
wrapper. If the flow solver is running at a smaller time step than the trajectory propagator, the wrapper interpolates
between the current and previous states. The control state is used to update the inlet boundary conditions, and the
vehicle state is used to update the grid motion. The flow solver is then executed for one or more time-accurate steps
(interpolating the states each time if necessary) until the physical time in POST2 and FUN3D match. The solution is
post-processed to calculate the force and moment coefficients, which are transformed back into the POST2 reference
frames and communicated to POST2.

D. Data Transformation
Data must be transformed between the POST2 and FUN3D reference frames, which are defined in Figures 3 and 4.

For most CFD-RBD models, the inertial frame � is assumed to be the local horizontal frame in a "Flat Earth" model
with a uniform gravitational field. However, for a spheroidal planetary model with nonzero rotation, � represents the
Earth-centered inertial (ECI) frame. The ECI frame is oriented with the G-axis pointing through the equator and 0°
longitude at the epoch, the H-axis pointing through the equator at a perpendicular direction, and the I-axis pointing North
through the planet’s axis of rotation. As the planet rotates with angular velocity l4 it carries with it the Earth-centered
rotating frame � , whose G- and H-axes remain pointing through 0° and 90° longitude, respectively.

The local vertical frame + has its origin on the planet’s surface directly below the vehicle. Its G- and H-axes lie in the
horizontal plane with the G-axis pointing North. The I-axis lies along the local vertical pointing inward towards the
planet (note that for an oblate spheroid this may not point directly at the planet’s center). The orientation of + with
respect to � is given in terms of the longitude _ and geodetic latitude Φ angles.

The Body Reference frame � is used to define the vehicle with respect to the outer mold line. The origin of �
is commonly placed at the nose of the vehicle, with the G-axis pointing aft, the H-axis pointing right, and the I-axis
pointing up (equivalent to a 180° rotation about the H-axis relative to the � frame).

6

𝑥ூ

𝑦ூ

𝑧ூ

𝑥ா 𝑦ா

𝑦௏

𝑥௏

𝑧௏
𝜔௘𝑡

𝑟̅ூ

𝜆
Φ

𝑧ா

(a) ECI, ECR, and Local Vertical Frames

𝑥஻

𝑧஻

𝑦஻ 𝑥ி

𝑧ி

𝑦ி

𝑟̅௖௚

𝐹

𝐵

(b) Body and Body Reference Frames

Fig. 3 POST2 and FUN3D Reference Frames

Translation and orientation are defined in FUN3D with respect to an observer frame $, which moves at a constant
velocity relative to the atmosphere. However, the orientation of the $ frame is arbitrary. It is therefore convenient
to define an intermediary frame % as shown in Figure 4. The origin of this frame is coincident with the initial local
vertical frame +0, with the G-axis pointing along the vehicle’s initial velocity vector E0,+0 and the H-axis along the local
horizontal. The orientation of % with respect to +0 is defined by the azimuth angle Ψ and flight path angle W. The
$ frame is defined as a 180° rotation about the H-axis from the % frame. Using the intermediary frame decouples
specification of freestream conditions in FUN3D from the initial orientation within POST2, making it possible to change
the azimuth and flight path of the vehicle without having to recreate the initial flow field.

𝛾
Ψ 𝑦௏బ

𝑥௏బ

𝑧௏బ

𝑦௉

𝑥௉

𝑧௉

𝑥ை

𝑦ை

𝑧ை

𝑣̅଴,௏బ

Δ𝑟̅ை 𝑟̅௖௚,ை

Fig. 4 Intermediate and Observer Frames

7

1. Angular Components
FUN3D requires the orientation of the vehicle to be input as a rotation matrix between the $ and � frames. This

rortation matrix from � to $ is calculated using Equation 11:

X$� = X$%X%�X�� , X$% = X�� =


−1 0 0
0 1 0
0 0 −1

 (11)

where X%� is the transformation between the Intermediary and Body frames. X%� is calculated using Equation 12:

X%� = X%+0 X+0�X�+ X+ � (12)

X%+0 is the rotation matrix between the intermediate and initial vertical frames:

X%+0 =


cosΨ cos W cos W sinΨ − sin W
− sinΨ cosΨ 0

cosΨ sin W sinΨ sin W cos W

 (13)

where W and Ψ are available from POST2. X+0� and X�+ are the 3-2 rotation matrices calculated using the initial and
current geodetic latitude and longitude, respectively.

X+0� =


− cos_0 sinΦ0 − sinΦ0 sin_0 cosΦ0

− sin_0 cos_0 0
− cosΦ0 cos_0 − cosΦ0 sin_0 − sinΦ0

 (14)

'+ � is the 3-2-1 rotation matrix calculated from the relative Euler angles q, \, and k, with the same form as Equation 5.
The Euler angles, latitude, and longitude are available directly within POST2.

The angular velocity in the � frame is calculated using Equation 15:

l̄rel,� = X�� (l̄� − [0 0 learth])) (15)

where l̄rel,� is the angular velocity of the vehicle relative to the + frame, available directly from POST2, and learth is
the magnitude of the planetary rotation rate. The rotation matrix X�� is:

X�� = X��X�+ X+ �X�� (16)

2. Linear Components
FUN3D requires a center of gravity position and a grid translation vector, both in the $ frame. POST2 provides the

position vector in the � frame. The position in the ECR frame, Ā� , is calculated using Equation 17:

Ā� = X�� Ā� (17)

where X�� is the transformation between the ECI and Earth-centered, Earth-fixed (ECEF) frames. This rotation matrix
is calculated as:

X�� =


coslearthC sinlearthC 0
− sinlearthC coslearthC 0

0 0 1

 (18)

where C is the time since epoch (recall that the ECEF and ECI frames are aligned at epoch in POST2). The displacement
is calculated relative to the initial position:

ΔĀ� = Ā� − Ā0,� (19)

Transforming the displacement into the observer frame must account for that frame’s velocity. The position in the +0
frame is calculated using Equation 20:

ΔĀ+0 = X+0�ΔĀ� − Ē0,+0 C (20)

8

where Ē0,+0 is calculated as:
Ē0,+0 = B0 [cos W cosΨ cos W sinΨ − sin W]) (21)

where B0 is the initial freestream speed. The position in the $ frame is calculated using Equation 22:

Ā$ = X$%X%+0ΔĀ+0 + Ā26,0,$ (22)

where Ā26,0,$ is the initial position of the center of gravity in the $ frame. The grid translation vector is calculated as:

Ā6,$ = ΔĀ$ − X$� Ā26,� (23)

where Ā26,� is the center of gravity in the body reference frame.
The velocity vector is calculated using Equation 24:

Ē$ = X$� (X�� Ē� − Ā� × [0 0 learth])), X$� = X$%X%�X�� (24)

The position and translation are non-dimensionalized by the ratio !grid/!ref where !grid and !ref are the reference
length of the vehicle in grid units and dimensional units, respectively. The velocity is non-dimensionalized by 1/0ref ,
where 0ref is the reference speed of sound in the freestream.

3. Jet Plenum Conditions
For each jet 8, POST2 sends the commanded total chamber pressure and temperature %8,C ,cmd and)8,C ,cmd. Research

into time-accurate simulation of a jet in supersonic crossflow has shown that the stability of the flow solver is sensitive
to large, instantaneous changes in plenum pressure [39]. Therefore, the plenum total pressure is ramped according to
Equation 25 to maintain flow solver stability [39]:

%8,C ,plenum =

{
min (%8,C ,prev + : ?+ΔCfs, %8,C ,cmd), %8,C ,cmd ≥ %8,C ,prev

max (%8,C ,prev − : ?−ΔCfs, %8,C ,cmd), %8,C ,cmd < %8,C ,prev
(25)

where : ?+ and : ?− are the coefficients for ramping up and down, respectively. This limits the pressure change to a
maximum or minimum from %8,C ,prev, the plenum pressure used in the previous step. The total temperature does not
use a ramping function, so)8,C ,plenum =)8,C ,cmd. The plenum boundary conditions are set using the total pressure and
temperature ratios with respect to the reference quantities:

PR8 = %8,C ,plenum/%8,ref (26)

TR8 =)8,C ,plenum/)8,ref (27)

Careful accounting of the propulsive effects must be made between the trajectory propagator and flow solver. The
pressure forces and momentum transfer across the plenum are calculated in the trajectory propagator, and the remaining
propulsive forces and interaction are captured through the flow solver.

4. Aerodynamic Coefficients
FUN3D provides the axial, side, and normal force coefficients ��, �. , and �# in the Body frame that POST2

expects, so no transformation is needed for the force coefficients. The moment coefficients are calculated in the Body
Reference frame, so these are transformed into the Body frame using Equation 28:

[�!! �" �!#])� = X�� [�!! �" �!#])� (28)

The coefficients must be corrected to the actual freestream conditions by multiplying by &/&ref where & is the current
dynamic pressure and &ref is the reference dynamic pressure used in FUN3D. FUN3D calculates the coefficients about
the center of gravity, so if this point is used as the aerodynamic reference point in POST2, no further transformation is
necessary.

9

5. State Interpolation for Larger POST2 Time Steps
On the computing clusters used to develop test this framework, a POST2 run takes about 0.01% of the time needed

for a FUN3D run. For this system, running both POST2 and FUN3D at the same time step is reasonable, as the time
taken for FUN3D to run is significantly larger than the time spent waiting on POST2 to conclude. As computational
power increases, the flow solver (the prarllelizable part of the model) takes relatively less time compared to the trajectory
propagator. To ameliorate this issue, the trajectory propagator can be run at a larger time step — an integer multiple of
ΔCfs — while still resolving the flight dynamics. This change can yield practical benefits for high-powered computing as
the net wait time for calculating the equations of motion and communicating the results are reduced. However, this
requires interpolation between the vehicle states -̄0 = -̄ (C) and -̄1 = -̄ (C + ΔC) at intervals of ΔCfs to provide grid
motion updates to the flow solver. In order to preserve flow stability, these interpolations must be �2 continuous; that is,
the linear and angular acceleration must be continuous across steps.

Because translations operate in Euclidian space, the interpolation of the linear state components can be applied on a
component-level basis. Within each interpolation step, the 8th component of the interpolated position Āint,$ is assumed
to have the form

Gint,8,$ = 28,0 + 28,1D + 28,2D2 + 28,3D3 (29)

where D = 0..1 and 20-23 are constants, found by solving the boundary problems:

Āint,$ (D = 0) = Ā0,$,
3Āint,$

3C
(D = 0) = Ē0,$, Āint,$ (D = 1) = Ā1,$,

3Āint,$

3C
(D = 1) = Ē1,$ (30)

The Euler angles do not operate in Euclidian space, so the rotation cannot be interpolated at the component level.
Therefore, the interpolated orientation will be found by operating with quaternions, since these will always produce an
orthonormal rotation. Quaternion interpolation is commonly performed in the field of computer graphics [40], and as
such, a variety of methods are available. A 3rd-order Bézier curve with Bernstein basis was selected for its ability to
match the angular velocities at the start and end of the interpolation without any a priori knowledge of the interstitial
state [41]. The curve takes the form

@̄(D) = @̄0

3∏
8=1

exp(l̃8 Ṽ8,3 (D)) (31)

where

Ṽ8,3 (D) =
3∑
9=8

(
3
8

)
(1 − D)3−8D8 , l̃8 = log(@̄−1

8−1@̄8) (32)

The values of the four control points @̄0 through @̄3 must be found. The endpoints are given by @̄0 = @̄0 and @̄3 = @̄1 , and
the midpoints are calculated by propagating the orientation forwards and backwards by a third of the POST2 time step:

@̄1 = @̄0 +
3@̄0

3C

ΔC

3
, @̄2 = @̄1 −

3@̄1

3C

ΔC

3
(33)

where
3@̄8

3C
= 0.5

[
0
l̄8

]
@̄8 (34)

is found using the angular velocity at the endpoints. Within the framework, the rotation matrices X$� and angular
velocities lA4;,� at the endpoints are converted to quaternion space, the interpolation is applied, and the results are
converted back.

IV. Cross-Code Verification
Verification of the framework was performed by comparing its performance to an existing CFD-RBD environment,

a 6DOF library that can be compiled with FUN3D [24, 33]. Cross-code verification against the 6DOF Library was
performed by running a simulation with the same vehicle, initial conditions, flow solver settings, and initial flow history.
The only differences were the trajectory propagator and the method of communication between the disciplinary codes.

The POST2 framework was set up in order to approximate the FUN3D 6DOF Library as closely as possible. The
6DOF Library uses a "flat Earth" model with a uniform gravitational field and inertial vertical frame. The flat Earth
model is approximated in POST2 by simulating the vehicle around a non-rotating planet with a radius of 109 m and

10

a gravitational constant chosen to keep the sea-level gravitational acceleration equal to the standard acceleration of
gravity. The 6DOF Library also calculates forces and moments using the flow solver reference quantities for density and
speed, which are constant during the simulation. Therefore, constant sea-level atmospheric conditions were enforced
within POST2. The 6DOF Library uses the same modification to the time integration scheme as the FUN3D-POST2
framework, so no modification was necessary in that regard.

The Army-Navy Finner (ANF) projectile was selected as the vehicle for the verification activity due to its common
usage for aerodynamic research in both physical [42, 43] and computational [44, 45] experiments. The dimensions of
the vehicle are shown in Figure 5, and the mass properties are listed in Table 1.

Fig. 5 Army-Navy finner projectile dimensions.

Table 1 ANF mass properties.

<, kg �xx, kg·m2 �yy and �zz, kg·m2

1.588 1.92526·10−4 9.87035·10−3

A. Grid Generation
Details of the grid generation are described in Reference [46], a summary of which is presented below. An

unstructured, mixed-element grid was constructed for the ANF in Pointwise®V18.0R2. The surface and volume were
generated for a quarter of the vehicle, then mirrored into a full volume to ensure symmetry.

(a) Full grid (b) Grid detail

Fig. 6 ANF computational grid

Validation of the drag coefficient was performed against a set of ballistic range tests conducted by Dupuis and
Hathaway [43, 47], as well as CFD experiments performed by Sahu and Heavey [44]. The comparison of axial results is
shown in Figure 7a, and results for the off-axis coefficients are shown in Figure 7b. The results for the axial coefficient
are a close match to both the physical and computational experiments, especially in the high supersonic regime. The roll

11

moment coefficient is resolved to less than 10−5, and all other components are resolved to less than 10−6. This precision
was judged to be sufficient for the use of this grid in 6DOF simulations.

0.5 1 1.5 2 2.5 3
Mach Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
oe

ffi
ci

en
t

range
CFD
FUN3D

(a) Axial force coefficient vs Mach, U = 0°.

0.5 1 1.5 2 2.5 3
Mach Number

10-10

10-9

10-8

10-7

10-6

10-5

C
oe

ffi
ci

en
t

C
Y

C
N

C
LL

C
M

C
LN

(b) Magnitude of off-axis residuals for U = 0°.

Fig. 7 ANF Grid Validation Results[46]

B. Startup Procedure
The trajectory propagator and flow solver must be initialized with the vehicle state at the beginning of the simulation.

While initializing the state variables for the rigid body via the input files is trivial, initializing the flow field is more
complex. Since the coupled simulation uses the aerodynamic force and moment coefficients to update the 6DOF
equations of motion, these coefficients must be converged at the start of the coupled simulation. Otherwise, numerical
instability could cause non-physical forces and moments to be applied to the vehicle, affecting the trajectory or causing
the simulation to fail.

In addition to meeting the threshold for convergence, the flow field must be accurate to the desired intial conditions.
However, while initializing the trajectory propagator with the vehicle and control system state is sufficient, this does not
ensure that the flow field matches. Initializing from a static CFD solution would result in a flow history that does not
capture the unsteady behavior that presumably leads to the desired initial conditions. For example, consider the flow
field around a vehicle at constant speed and slip angles, which would be different from one that was at a nonzero angluar
velocity or was accelerating.

Starting from the desired initial conditions, functions are created for each state component, either fitted from
experimental data or created from scratch to match the values and first derivatives of the initial conditions. These
functions are then propagated backwards in time for a sufficient number of steps to allow the time-accurate simulation to
converge. At the start of this time, a new set of conditions are used to run a static simulation. This flow field is used
to initialize a time-accurate run with forced motion, which results in the flow field that is consistent with the desired,
unsteady initial conditions. An example of these steps is shown for the Euler angles in Figure 8.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Time (ms)

-8

-4

0

4

8

A
ng

le
 (

de
g)

Static

Forced

Free-Flight

Fig. 8 Trajectory initialization example

12

V. Validation
Validation of the framework was performed by replicating a series of ballistic range tests for an entry vehicle scale

model. The Supersonic Inflatable Aerodynamic Decelerator (SIAD) is an inflatable torus designed to increase the drag
area of an entry vehicle [48]. Deployed and stowed configurations of the flight test vehicle are shown in Figure 9a. Scale
models of a SIAD-equipped vehicle were flown in ballistic range shots at the NASA Ames Hypervelocity Free-Flight
Aerodynamics Facility [49]. The model dimensions are shown in Figure 9b. The model would impact a sheet of
paper as it entered the measurement section of the range, inducing an oscillation in pitch and yaw. Reconstruction of
the trajectory demonstrated that some of the shots had significant nonzero initial roll rates [50]. The unsteady initial
conditions make these tests a suitable validation case for the framework.

(a) Full-scale vehicle [51]
(b) Ballistic range model dimensions (mm) [50]

Fig. 9 SIAD configuration

Table 2 SIAD mass properties [49]

Mass, g G26/3 �xx, g·cm2 �yy and �zz, g·cm2

45.93 0.161 3.67 2.11

A computational mesh for the SIAD model, shown in Figure 10, was created by Brock et al. to perform replications
of the ballistic range tests in US3D [23]. This grid was provided for use in the POST2-FUN3D framework validation.
The grid density was chosen to ensure a H+ of less than 1.0 at the vehicle surface and in the wake in order to properly
resolve the bluff body flow. The grid was created with quarter-symmetry, then mirrored about the G-H and G-I planes, for
a total size of around 22 million nodes.

(a) Quarter-symmetry (b) Grid detail

Fig. 10 SIAD computational grid[39]

13

VI. Results

A. Cross-Code Verification
The ANF projectile was simulated in a ballistic drop at Mach 2.0 at standard sea-level conditions, with zero initial

slip angles and angular rates. The flow solver used a k-omega turbulence model [52] with a low-diffusion flux-splitting
scheme. The boundary conditions consisted of a viscous, no-slip condition on the projectile surface and a Riemann
invariant farfield at the outside surfaces of the grid. Both simulations were performed on the Aerospace Systems Design
Laboratory computing cluster within the Partnership for an Advanced Computing Environment at the Georgia Institute
of Technology [53]. The simulations were run with ΔC = 4.4079× 10−4s for 200 steps, or about 44ms of simulation time.

A comparison of the framework (’POST’) and FUN3D 6DOF Library (’Library’) results for the ballistic drop are
shown below in Figure 11. The results shown in Figures 11a and 11b describe a ballistic trajectory with pitch oscillation,
which is the expected behavior. Figures 11c and 11d show that nonzero but small lateral motion develops due to
computational precision. The error in each of the displacement components, shown in Figure 11e, is small compared to
the overall motion of the vehicle, and each is of about the same order of mangitude. The orientation error plotted in
Figure 11f shows that the error in the roll angle is the largest, which is expected from the behavior identified during grid
validation.

Figure 12 plots the magnitude of the displacement and orientation errors by simulation step. Both simulations are
started from the same initial conditions, so the error is initially zero. After the first step, the error in all components is
on the order of 10−16. The displacement error magnitude rises more sharply than the orientation, reaching between 10−8

and 10−7 for the duration of the simulation. The orientation error magnitude increases more slowly but reaches between
10−7 and 10−4. Based on this rate of error growth over time, the cross-code verification was judged to be successful.

B. Validation
Three SIAD ballistic range shots were replicated, with initial conditions spanning Mach 2 to 4 and with a total angle

of attack amplitude of up to 18.4°. One of the replicated shots, Shot 2643, is presented below, and further detail can
be found in Reference [50]. The initial conditions for the recreation are listed in Table 3. Shot 2643 had the highest
calculated initial roll rate, at 1890°/s.

Table 3 SIAD ballistic range Shot 2643 recreation initial conditions

Pres., kPa Temp., K EG , m/s EH , m/s EI , m/s q, ° \, ° k, ° lG , °/s lH , °/s lI , °/s
19.87 294.2 1188.9 -0.75 -0.11 0 -1.64 0.74 -1890 6100 -1030

The flow solver modeled fully turbulent flow with a Spalart-Allmaras-based DES turbulence model [54]. The flux
limiter was a stencil-based van Albada flux scheme [55], and a dissipative low-diffusion flux splitting scheme was used.
The simulation used a ΔC and ΔCfs of 1.4955 × 10−5s and was executed for a duration of about 20ms.

The results of the ballistic range replication are shown below in Figure 13. The G-axis displacement was within
0.0656% of the experimental displacement at the end of the shot. The simulation captures the slight oscillatory
behavior of the lateral displacment components, with the H-axis displacement almost entirely within the experimental
measurement uncertainty and the I-axis displacement on the same order of magnitude.

The pitch and yaw behavior matches the experimental measurements, including the exchange in oscillation amplitude
as the roll angle changes. The simulated roll angle is plotted in Figure 13g against the calculated experimental
roll angle, since roll was not measured directly during the experiment (note that uncertainty propagation results in
uncertainty bounds that are sensitive to the total angle of attack). The roll angle error is plotted in Figure 13h against the
root-mean-square of the calculated uncertainty. Excluding the outliers, the simulation matched the calculated roll angle
to within 25°. The SIAD simulations for all three shots in the POST2-FUN3D framework yielded a similar accuracy to
the results of Brock et al.[23, 50].

14

0 10 20 30 40

Time (ms)

-0.08

-0.06

-0.04

-0.02

0

D
ec

re
m

en
t (

m
)

POST
Library

(a) G-axis decrement comparison

0 10 20 30 40

Time (ms)

-0.05

-0.04

-0.03

-0.02

-0.01

0

A
ng

le
 (

de
g)

POST pitch
Library pitch

(b) Pitch angle comparison

0 5 10 15 20 25 30 35 40

Time (ms)

0

2

4

6

8

10

D
is

pl
ac

em
en

t (
m

m
)

POST y
POST z
Library y
Library z

(c) Lateral displacement comparison

0 5 10 15 20 25 30 35 40

Time (ms)

-3

-2

-1

0

1

A
ng

le
 (

de
g

10
-4

)

POST roll
POST yaw
Library roll
Library yaw

(d) Roll, yaw angle comparison

0 10 20 30 40

Time (ms)

-0.3

-0.2

-0.1

0

0.1

0.2

E
rr

or
 (

m
)

x
y
z

(e) Displacement error

0 10 20 30 40

Time (ms)

-20

-15

-10

-5

0

5

E
rr

or
 (

de
g

10
-5

)

Roll
Pitch
Yaw

(f) Orientation error

Fig. 11 ANF cross-code verification results

0 5 10 15 20

Step

-16

-14

-12

-10

-8

-6

Lo
g

10
(E

rr
or

)

x
y
z

(a) Displacment

0 5 10 15 20

Step

-16

-14

-12

-10

-8

-6

-4

Lo
g

10
(E

rr
or

)

Roll
Pitch
Yaw

(b) Orientation

Fig. 12 ANF cross-code verification error growth

15

0 5 10 15 20

Time (ms)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
D

ec
re

m
en

t (
m

)
Exp. x
POST x

(a) G-axis decrement

0 5 10 15 20

Time (ms)

-5

0

5

10

15

20

D
is

pl
ac

em
en

t (
m

m
)

POST x
Exp. Uncertainty

(b) G-axis decrement error

0 5 10 15 20

Time (ms)

-15

-10

-5

0

5

10

15

D
is

pl
ac

em
en

t (
m

m
)

Exp. y
Exp. z

POST y
POST z

(c) Lateral displacement

0 5 10 15 20

Time (ms)

-2

0

2

4

6

D
is

pl
ac

em
en

t (
m

m
)

POST y
POST z
Exp. Uncertainty

(d) Lateral displacement error

0 5 10 15 20

Time (ms)

-10

-5

0

5

10

A
ng

le
 (

de
g)

Exp. Pitch
Exp. Yaw

POST Pitch
POST Yaw

(e) Pitch, yaw angle

0 5 10 15 20

Time (ms)

-1

-0.5

0

0.5

1

A
ng

le
 (

de
g)

POST Pitch
POST Yaw

Exp. Pitch Unc.
Exp. Yaw Unc.

(f) Pitch, yaw angle error

0 5 10 15 20

Time (ms)

-40

-30

-20

-10

0

10

A
ng

le
 (

de
g)

Calc. Exp. Roll
POST

(g) Roll angle

0 5 10 15 20

Time (ms)

-75

-50

-25

0

25

50

75

A
ng

le
 (

de
g)

POST
rms(Exp. Unc.)

(h) Roll angle error

Fig. 13 SIAD ballistic range test recreation[39]

16

VII. Conclusion
ThePOST2-FUN3D framework is aCFD-RBDmodel that provides expanded capability formultidisciplinary/multiphysics

simulation. By linking FUN3D to POST2, a state-of-the-art trajectory propagator, designers will be able to include
other disciplinary models that are constructed for POST2, including GN&C and propulsion.

The cross-code verification of the framework against the FUN3D 6DOF Library was successful, with the error in
the trajectory components matching to within the order of 10−4. Free-flight simulations in the framework have been
successfully validated against both experimental data and independent CFD-RBD simulations. Further research is
underway to incorporate open- and closed-loop control with RCS jets for an entry vehicle [39].

VIII. Acknowledgements
The authors wish to thank the NASA Engineering and Safety Center and the Comprehensive Digital Transformation

program for sponsoring this work. Additionally, we would like to thank Joseph M. Brock, Eric C. Stern, Michael C.
Wilder, Paul V. Tartabini, Anthony Williams, Robert T. Biedron, Kevin Jacobson, Li Wang, Dan Murri, and David
Schuster for their support of this work. This research was also supported in part through research cyberinfrastructure
resources and services provided by the Partnership for an Advanced Computing Environment at the Georgia Institute of
Technology, Atlanta, Georgia, USA.

References
[1] Lugo, R. A., Shidner, J. D., Powell, R. W., Marsh, S. M., Hoffman, J. A., Litton, D. K., and Schmitt, T. L., “Launch vehicle

ascent trajectory simulation using the Program to Optimize Simulated Trajectories II (POST2),” 2017.

[2] Dutta, S., and Way, D. W., “Comparison of the effects of velocity and range triggers on trajectory dispersions for the Mars 2020
mission,” AIAA Atmospheric Flight Mechanics Conference, 2017, p. 0245.

[3] Atkins, B. M., and Queen, E. M., “Internal moving mass actuator control for mars entry guidance,” Journal of Spacecraft and
Rockets, Vol. 52, No. 5, 2015, pp. 1294–1310.

[4] Striepe, S. A., Way, D., Dwyer, A., and Balaram, J., “Mars science laboratory simulations for entry, descent, and landing,”
Journal of Spacecraft and Rockets, Vol. 43, No. 2, 2006, pp. 311–323.

[5] Pinier, J. T., Bennett, D. W., Erickson, G. E., Favaregh, N. M., Houlden, H. P., Tomek, W. G., and Blevins, J. A., “Space Launch
System Ascent Static Aerodynamics Database Development,” 52nd Aerospace Sciences Meeting, 2014, p. 1254.

[6] Dyakonov, A., Schoenenberger, M., and Van Norman, J., “Hypersonic and supersonic static aerodynamics of Mars science
laboratory entry vehicle,” 43rd AIAA Thermophysics Conference, 2012, p. 2999.

[7] Hall, L. H., Eppard, W., Applebaum, M., and Purinton, D., “Modeling and Simulation Techniques for the NASA SLS
Service Module Panel Separation Event; From Loosely-Coupled Euler to Full-Coupled 6-DOF, Time-Accurate, Navier Stokes
Methodologies,” AIAA Scitech 2019 Forum, 2019, p. 1843.

[8] Murman, S. M., Diosady, L. T., and Blonigan, P. J., “Comparison of Transonic Buffet Simulations with Unsteady PSP
Measurements for a Hammerhead Payload Fairing,” 55th AIAA Aerospace Sciences Meeting, 2017, p. 1404.

[9] Brune, A. J., Hosder, S., and Edquist, K. T., “Uncertainty analysis of fluid-structure interaction of a deformable hypersonic
inflatable aerodynamic decelerator,” Journal of Spacecraft and Rockets, Vol. 53, No. 4, 2016, pp. 654–668.

[10] Dyakonov, A., Schoenenberger, M., Scallion, W., Van Norman, J., Novak, L., and Tang, C., “Aerodynamic interference due to
MSL reaction control system,” 41st AIAA Thermophysics conference, 2009, p. 3915.

[11] Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and Mavriplis, D., “CFD Vision 2030 Study: A
Path to Revolutionary Computational Aerosciences: NASA,” Tech. rep., CR-2014-218178Washington, DC: NASA, 2014.

[12] Cenko, A., “Store separation lessons learned during the last 30 years,” Tech. rep., NAVAL AIR SYSTEMS COMMAND
PATUXENT RIVER MD, 2010.

[13] Meakin, R., “Computations of the unsteady flow about a generic wing/pylon/finned-store configuration,” Astrodynamics
Conference, 1992, p. 4568.

[14] Kokes, J., Costello, M., and Sahu, J., “Generating an Aerodynamic Model for Projectile Flight Simulation Using Unsteady
Time Accurate Computational Fluid Dynamic Results,” Computational Ballistics III, Vol. 45, 2007, p. 11131.

17

[15] Costello, M., Gatto, S., and Sahu, J., “Using CFD/RBD Results to Generate Aerodynamic Models for Projectile Flight
Simulation,” AIAA Atmospheric Flight Mechanics Conference, 2007. Talks about complexity of initialization.

[16] Montalvo, C., and Costello, M., “Estimation of Projectile Aerodynamic Coefficients Using Coupled CFD/RBD Simulation
Results,” AIAA Atmospheric Flight Mechanics Conference, American Institute of Aeronautics and Astronautics, 2010.
doi:10.2514/6.2010-8249, continuation of costello2007projectile.

[17] Sahu, J., “Numerical Computations of Dynamic Derivatives of a Finned Projectile Using a Time-Accurate CFD Method,” AIAA
Atmospheric Flight Mechanics Conference and Exhibit, 2007, p. 6581.

[18] Sahu, J., and Fresconi, F., “Flight behaviors of a complex projectile using a coupled CFD-based simulation technique: open-loop
control,” 54th AIAA Aerospace Sciences Meeting, 2016, p. 2025.

[19] Sahu, J., and Fresconi, F., “Flight behaviors of a complex projectile using a coupled CFD-based simulation technique:
closed-loop control,” 34th AIAA Applied Aerodynamics Conference, 2016, p. 4332.

[20] Murman, S., Aftosmis, M., and Berger, M., “Simulations of 6-DOF motion with a Cartesian Method,” 41st Aerospace Sciences
Meeting and Exhibit, 2003, p. 1246.

[21] Stern, E., Gidzak, V., and Candler, G., “Estimation of Dynamic Stability Coefficients for Aerodynamic Decelerators
Using CFD,” 30th AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, 2012.
doi:10.2514/6.2012-3225.

[22] Stern, E., Schwing, A., Brock, J. M., and Schoenenberger, M., “Dynamic CFD Simulations of the MEADS II Ballistic Range
Test Model,” AIAA Atmospheric Flight Mechanics Conference, 2016, p. 3243.

[23] Brock, J. M., Stern, E. C., andWilder, M. C., “Computational Fluid Dynamics Simulations of Supersonic Inflatable Aerodynamic
Decelerator Ballistic Range Tests,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, 2019, pp. 526–535. doi:10.2514/1.a34208.

[24] Koomullil, R., and Prewitt, N., “A Library Based Approach for Rigid Body Dynamics Simulation,” 18th AIAA Computational
Fluid Dynamics Conference, 2007, p. 4476.

[25] Schuster, D. M., “CFD 2030 Grand Challenge: CFD-in-the-Loop Monte Carlo Flight Simulation for Space Vehicle Design,”
AIAA Scitech 2021 Forum, 2021, p. 0957.

[26] Etkin, B., Dynamics of Atmospheric Flight, Courier Corporation, 2012.

[27] Butcher, J. C., Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, 2016.

[28] Biedron, R., and Thomas, J., “Recent Enhancements to the FUN3D Flow Solver for Moving-Mesh Applications,” 47th AIAA
Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, p. 1360.

[29] Anderson, W. K., and Bonhaus, D. L., “An implicit upwind algorithm for computing turbulent flows on unstructured grids,”
Computers & Fluids, Vol. 23, No. 1, 1994, pp. 1–21.

[30] Biedron, R., Vatsa, V., and Atkins, H., “Simulation of Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving
and Stationary Grids,” 23rd AIAA Applied Aerodynamics Conference, 2005, p. 5093.

[31] Matthies, H. G., and Steindorf, J., “Partitioned but strongly coupled iteration schemes for nonlinear fluid–structure interaction,”
Computers & structures, Vol. 80, No. 27-30, 2002, pp. 1991–1999.

[32] Warner, J., Niemoeller, S. C., Morrill, L., Bomarito, G., Leser, P., Leser, W., Williams, R. A., and Dutta, S., “Multi-Model
Monte Carlo Estimators for Trajectory Simulation,” AIAA Scitech 2021 Forum, 2021, p. 0761.

[33] Biedron, R. T., Carlson, J. R., Derlaga, J. M., Gnoffo, P. A., Hammond, D. P., Jones, W. T., Kleb, B., Lee-Rausch, E. M.,
Nielsen, E. J., Park, M. A., et al., FUN3D Manual: 13.6, 2019.

[34] Alexandrov, N., Atkins, H., Bibb, K., Biedron, R., Carpenter, M., Gnoffo, P., Hammond, D., Jones, W., Kleb, W., and
Lee-Rausch, E., “Team software development for aerothermodynamic and aerodynamic analysis and design,” 2003.

[35] Dyakonov, A. A., Glass, C. E., Desai, P. N., and Van Norman, J. W., “Analysis of Effectiveness of Phoenix Entry Reaction
Control System,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, 2011, pp. 746–755.

[36] Striepe, S., Powell, R., Desai, P., Queen, E., Way, D., Prince, J., Cianciolo, A., Davis, J., Litton, D., Maddock, R., Shidner, J. D.,
Winski, R. G., O’Keefe, S. A., Bowes, A. G., Aguirre, J. T., Garrison, C. A., Hoffman, J. A., Olds, A. D., Dutta, S., Brauer,
G. L., Engel, M. C., and Marsh, S. M., Program To Optimize Simulated Trajectories II (POST2): Utilization Manual, 2015.

18

[37] Kornfeld, R. P., Prakash, R., Devereaux, A. S., Greco, M. E., Harmon, C. C., and Kipp, D. M., “Verification and Validation of
the Mars Science Laboratory/Curiosity Rover Entry, Descent, and Landing System,” Journal of spacecraft and rockets, Vol. 51,
No. 4, 2014, pp. 1251–1269.

[38] White, J., Bowes, A. L., Dutta, S., Ivanov, M. C., and Queen, E. M., “LDSD POST2 Modeling Enhancements in Support of
SFDT-2 Flight Operations,” 2016.

[39] Petitgenet, V., Hickey, A., Robertson, B., and Mavris, D., “Actuating Reaction Control System Jets in a Time-Accurate
Supersonic Cross Flow,” AIAA Scitech 2022 Forum (submitted for publication), 2022.

[40] Shoemake, K., “Animating rotation with quaternion curves,” Proceedings of the 12th annual conference on Computer graphics
and interactive techniques, 1985, pp. 245–254.

[41] Myoung-Jun Kim, S. Y. S., Myung-Soo Kim, “A General Construction Scheme for Unit Quaternion Curves with Simple
High Order Derivatives,” SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, edited by editor, ACM, 1985. doi:10.445/218380.218486.

[42] MacAllister, L., “The Aerodynamic Properties of a Simple Non Rolling Finned Cone-Cylinder Configuration Between Mach
Numbers 1.0 and 2.5,” Tech. rep., Army Ballistic Research Lab, Aberdeen Proving Ground, MD, 1955.

[43] Dupuis, A. D., and Hathaway, W., “Aeroballistic Range Tests of the Basic Finner Reference Projectile at Supersonic Velocities,”
Tech. rep., Defence Research Establishment Valcartier (Québec), 1997.

[44] Sahu, J., and Heavey, K. R., “Parallel CFD Computations of Projectile Aerodynamics with a Flow Control Mechanism,”
Computers & Fluids, Vol. 88, 2013, pp. 678–687.

[45] Dykes, J., Montalvo, C., Costello, M., and Sahu, J., “Use of Microspoilers for Control of Finned Projectiles,” Journal of
Spacecraft and Rockets, Vol. 49, No. 6, 2012, pp. 1131–1140.

[46] Ernst, Z. J., Hiller, B. R., Johnson, C. L., Robertson, B. E., and Mavris, D. N., “Coupling Computational Fluid Dynamics
with 6DOF Rigid Body Dynamics for Unsteady, Accelerated Flow Simulations,” 2018 AIAA Atmospheric Flight Mechanics
Conference, 2018, p. 0291.

[47] Dupuis, A., “Aeroballistic Range and Wind Tunnel Tests of the Basic Finner Reference Projectile From Subsonic to High
Supersonic Velocities,” Defense R&D Canada, Technical Memorandum TM 2002-136, 2002.

[48] Giersch, L., Rivellini, T., Clark, I. G., Sandy, C., Sharpe, G., Shook, L. S., Ware, J. S., Welch, J., Mollura, J., and Dixon, M.,
“SIAD-R: A supersonic inflatable aerodynamic decelerator for robotic missions to mars,” AIAA Aerodynamic Decelerator
Systems (ADS) Conference, 2013, p. 1327.

[49] Wilder, M. C., Brown, J. D., Bogdanoff, D. W., Yates, L. A., Dyakonov, A. A., Clark, I. G., and Grinstead, J. H., “Aerodynamic
Coefficients from Aeroballistic Range Testing of Deployed-and Stowed-SIAD SFDT Models,” 2017.

[50] Ernst, Z. J., Hickey, A., Robertson, B., and Mavris, D., “Impact of Roll Rate on Free-Flight CFD Modeling of Entry Vehicles,”
Journal of Spacecraft and Rockets (submitted for publication), 2021.

[51] Cook, B. T., Blando, G., Kennett, A., Heydt, M. V. D., Wolff, J. L., and Yerdon, M., “High Altitude Supersonic Decelerator Test
Vehicle,” AIAA Aerodynamic Decelerator Systems (ADS) Conference, American Institute of Aeronautics and Astronautics,
2013. doi:10.2514/6.2013-1353.

[52] Wilcox, D. C., “Formulation of the kw turbulence model revisited,” AIAA journal, Vol. 46, No. 11, 2008, pp. 2823–2838.

[53] PACE, Partnership for an Advanced Computing Environment (PACE), 2022. URL http://www.pace.gatech.edu.

[54] Spalart, P. R., “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach,” Proceedings of first
AFOSR international conference on DNS/LES, Greyden Press, 1997.

[55] Van Albada, G. D., Van Leer, B., and Roberts, W., “A comparative study of computational methods in cosmic gas dynamics,”
Upwind and high-resolution schemes, Springer, 1997, pp. 95–103.

19

http://www.pace.gatech.edu

	Introduction
	CFD/RBD Model
	Framework Construction
	Flow Solver
	Trajectory Propagator
	Communication
	Data Transformation
	Angular Components
	Linear Components
	Jet Plenum Conditions
	Aerodynamic Coefficients
	State Interpolation for Larger POST2 Time Steps

	Cross-Code Verification
	Grid Generation
	Startup Procedure

	Validation
	Results
	Cross-Code Verification
	Validation

	Conclusion
	Acknowledgements

