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Increasing interest in novel aircraft propulsion systems and potential for unwanted heat generation, or 

capture and reuse of waste heat, may require increasingly lightweight and high performing heat exchangers. 

Advances in manufacturing technologies have shown potential to create complex designs, but design tools need 

more flexibility. This study utilizes genetic algorithm-driven topology optimization to develop high 

performance heat exchanger fins for critical applications such as aerospace. The solid domain is generated 

using voxel representation where a voxel value of 1 indicates the solid domain and a voxel value of 0 refers to 

the fluid domain. The use of voxel representation somewhat matches the digitization of a model that is required 

to fabricate using additive manufacturing, and also allows for a highly unconstrained geometry. To test the 

topology optimization approach, a three-dimensional (3D) baseline offset strip fin geometry in steady laminar 

flow (Reynolds number = 215) with conjugate heat transfer (simultaneous solution of solid and fluid 

temperature fields) is optimized. New designs are generated using the genetic algorithm (GA) and sent to 

evaluation by the CFD software OpenFOAM; then the GA sorts and selects the reproduction pool for the 

following generation. This process is repeated for 60 generations. The study also investigates the effect of fin 

material on the performance of the GA and the resulting designs. The results show that the optimal designs 

have overall performance improvement of 18% relative to the baseline. Additionally, a fin constructed of a 

lower conductivity material (such as an Inconel superalloy that might be necessary for waste heat recovery 

applications) results in lower overall performance improvement (11%) and optimal designs with higher 

pressure drop relative to their baseline, and relative to optimal designs produced using higher conductivity 

materials. 

Key words: 3D Optimization, Voxel Based Design, Heat Exchangers, Pressure Drop, Heat Transfer, Topology 

Optimization, Genetic Algorithm, CFD,  Conjugate Heat Transfer, Additive Manufacturing. 

I. Nomenclature 

A = cross-sectional area (m2) 

As = heat transfer surface area (m2) 

Cp = specific heat, or static pressure coefficient = 
𝑑𝑃

0.5(Uin)2 

Dh = hydraulic diameter, Dh = 
2(𝑡∗Lf)

(t+Lf
  

dP = pressure drop 

dPb= pressure drop from the baseline fin  

F = fitness function 

Fb = baseline fitness 

f = average Fanning friction factor in the offset strip fin array, f = w/(0.5(Uin)2) 

h = height of the offset strip fin channel, or heat transfer coefficient 

i = initial population 

j = Colburn factor [j= St Pr2/3 or Nu/(Re Pr1/3)] 

L = material thickness 

Lf = length of fin 

Ld = length of fluid domain 

N = number of generations 

n = population size of one generation 

m = mass flow rate (kg/s)  

Nu = average overall Nusselt number based on hydraulic diameter 
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P = static pressure 

Pr = Prandtl number 

Qb = overall heat transfer from the baseline fin 

Q = heat transfer rate per unit area (W/m2), given by Q = m*Cp*(Ts – Tin) 

Re = Reynolds number  

St = Stanton number  

s = lateral fin spacing 

T = temperature in Kelvin (K) 

Ts = wall temperature 

Tin = Temperature at the inlet of the fluid domain 

t = fin thickness 

Uin= velocity at the inlet of fluid domain 

u = x-component of velocity 

v = y-component of velocity 

Z = width of fluid domain 

z = distance along the z-axis 

Greek Symbols 

 = nondimensional temperature, 𝜃 =
Ts − T

Ts − Tin
 

Abbreviations 

2D  = two-dimensional 

3D  = three-dimensional 

AM = additive manufacturing  

CFD = computational fluid dynamic 

GA = genetic algorithms 

HEX = heat exchanger 

IMaxM = initial maximum mutation 

IMinM= initial minimum mutation 

OSF = offset strip fin 

TO  = topology optimization 

II. Introduction 

 Heat exchangers (HEXs) can be classified based on flow configuration to co-flow, counter flow, and crossflow. 

Sub-categories of these classifications include shell and tube heat exchangers, double pipe heat exchangers, plate heat 

exchangers, condensers, evaporators, and boilers. Of interest to this study are what is commonly known as compact 

heat exchangers. Compact heat exchangers have a high area density (high surface area to volume ratio). Generally,  a 

compact heat exchange surface is defined as one that has an area density greater than 700 m2/m3 (213 ft2 / ft3). 

Examples of compact heat exchangers are finned tubes, plate-fin heat exchangers, and microchannel heat exchangers. 

 Compact heat exchangers are widely used in aerospace applications where the need for lightweight, space saving 

heat exchangers is very critical. Thermal management systems for aircraft are becoming a major engineering challenge 

for a variety of aerospace applications. Initial concept studies of hybrid electric aircraft have indicated significant 

possible efficiency gains and emissions reductions by coupling a traditional fuel-based powerplant with electric 

components, but more detailed design studies are finding that the additional subsystems required to dissipate heat 

from electric motors could add up to 1000 lbs. to the airplane and almost negate all benefits of hybrid-electric operation 

[1]. For military aircraft, weapons systems are requiring more significant electrical power (up to 1000 kW) [2] which 

generates heat that must be dissipated in a way that does not increase the detectability of the aircraft by enemies. In 

both of these applications, thermal management is defined as the approach to transfer heat produced in the aircraft, to 

locations where it can be dissipated. Obviously, it is desirable that this be as lightweight and non-obtrusive as possible. 

A critically important component of a thermal management system is a heat exchanger, which transfers heat from a 

source (electric motor, laser weapon) to a sink (air, or even aircraft fuel). 

Current heat exchanger design is generally restricted to geometries that have well known performance 

characteristics (pressure drop, heat transfer), where the geometries are very often limited by manufacturability. This 

also implies a limited ability to integrate the thermal management system closely to the aircraft. Advancement in 

additive manufacturing allowed for the use of design tools such as topology optimization (TO) to design highly 

complex heat exchangers and thermo-fluid equipment. This paper attempts to significantly broaden our ability to 
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generate novel geometries using evolutionary TO methods, in concert with computational fluid dynamics (CFD), and 

advanced manufacturing capabilities, to enable highly integrated heat exchanger designs. 

The main objective of this paper is to introduce a three dimensional (3D) voxel-based topology optimization 

approach for heat exchanger fins. The conjugate heat transfer problem is considered for more realistic representation 

of solid-fluid-thermal interaction in the domain. A previous 2D study by the authors [3] has validated the concept of 

coupling GA-based TO with CFD to produce organic high performance fin designs. In the previous 2D study, a 

rectangular fin geometry was used as a baseline from which new designs were generated using the GA through the 

concept of voxel mutation. This is a simple configuration and unrealistic for full heat exchanger applications but 

enabled testing of the approach with minimal computational resources. Three-dimensional optimization creates a more 

realistic representation of a heat exchanger and tests the design flexibility of the genetic algorithm but does introduce 

more design freedom (higher dimensionality of the optimization). In 2D, the number of pixels that can be turned on/off 

(mutated) is limited. Expanding the domain to 3D increases the number of voxels that can be mutated by orders of 

magnitude. This is expected to result in better performing designs since the GA now has a larger domain that allows 

for unique combinations. A 3D solid-fluid domain with two rectangular baseline fins arranged in an offset strip fin 

(OSF) configuration with conjugate heat transfer boundary conditions and laminar flow regime is used.  

The study also aims to understand the effect of fin material type on the performance of GA and the resulting 

designs. There are many available materials that can be used for heat exchangers depending on the targeted application. 

There are many factors that influence the selection process such as cost, weight, thermal efficiency, durability, and 

corrosion resistance. For example, in ground applications such as industrial and power plants, cost typically plays a 

more important role than size and weight restrictions. Thus a low-cost material is selected over a potentially more 

expensive material with higher thermal performance [4]. In aerospace applications on the other hand, the weight and 

size restrictions, and the high performance requirements are much more important factors than the cost [5]. 

III. Previous Studies 

The advent of additive manufacturing (AM) provided more flexibility to design heat exchangers. Researchers are 

able to design and manufacture complex fin shapes and full-size heat exchangers and other thermal-fluid equipment 

(heat sinks). Saltzman et al. [6] used AM to create an aircraft oil cooler heat exchanger and experimentally compared 

its performance to a traditionally manufactured one of similar geometry. Their results showed that the additively 

manufactured HEX (as is, no postprocessing) has a 10% heat transfer performance improvement over the traditional 

HEX, however, this comes with the expense of added pressure drop. They noted that the enhanced heat transfer 

performance is due to the roughness associated with AM. This study demonstrates AM capability to produce fully 

functioning heat exchangers for real life applications. Wong et al. [7] additively manufactured heat sinks with unique 

and uncommon geometries which demonstrated AM potential for building unique and creative designs. Advancement 

in AM has encouraged researchers to design more complex shapes using tools such as topology optimization.  

Topology optimization (TO) is mainly used in the field of structural optimization to design mechanical parts in 

which it is desired to reduce the material without compromising the mechanical strength of the parts. TO was 

introduced by Bensoe and Kikuchi in 1988 [8]. Since then, it has been expanded to many other applications including 

the design of thermo-fluid equipment such as heat exchangers. Generally, TO approaches can be classified into 

gradient based and non-gradient-based methods. Gradient-based methods (level set, density, phase field) [9–13], also 

known as non-evolutionary methods, use mathematical programing techniques such as the method of moving 

asymptotes, and the optimal criteria algorithm. Non-gradient methods (also known as evolutionary methods) such as 

genetic algorithm and simulated annealing  rely on heuristic approaches to navigate the design space. 

Most TO studies focused on the design of thermo-fluid equipment such as HEX have used gradient based 

approaches. Hoghoj et al. [14] used density based topology optimization method to optimize a HEX with two fluids. 

The objective was to maximize the heat transfer while maintaining a fixed pressure drop value. A 2D domain was 

used to validate the methodology which was then tested on a 3D shell-and-tube case. The results showed that the full 

freedom topology optimization approach is shown to yield performance improvements over the baseline of up to 113% 

under the same pressure drop. Feppon et al. [15] optimized three-dimensional fluid-thermal-structural systems. They 

performed shape and topology optimization using the methods of Hadamard and modified level set, respectively. The 

developed method is tested on true multiphysics cases represented by fluid-structure interaction, and convective heat 

transfer. They found that remeshing explicitly the fluid-solid interface at every iteration with a locally high resolution 

allowed them to obtain very original designs which could have been difficult to capture with more classical methods 

relying on fixed meshes.  

Gradient-based TO methods used for the design of heat exchangers and other complex thermo-fluids equipment 

are generally based on parametric definition of small to moderate number of constraints, so that the change of the 
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objective function with a change in the design parameter (gradient) can be simply evaluated and the optimization can 

be fast. However, they have some major drawbacks [16]: 

• They can easily get trapped in local optima and are therefore highly sensitive to the provided starting 

point, especially when strongly nonlinear systems are studied. 

• They can easily become computationally prohibitive as the number of design parameters increases 

because they require evaluating the gradient at each instance. 

• Their efficiency is severely challenged in situations where the objective function exhibits discontinuities 

(discrete problems) or is strongly non-linear.  

Evolutionary methods [17–19], such as genetic algorithms are not required to have parametric constraints unless 

desired by the design problem. All solutions in a population are searched simultaneously, which greatly decreases the 

probability that the algorithm is trapped in a local optimal solution [20]. They can have a broader search space but can 

take more computational resources to evaluate candidate designs.  

The bulk of the studies utilized GA for the design of HEX have focused on parametric optimization of fin 

dimensions (height, width, thickness, pitch, etc.) to meet certain criteria of pressure drop and heat transfer [21–23]. 

Obviously, parametric optimization approach does not fully take advantage of the GA ability to optimize a large 

number of degrees of freedoms to produce freeform designs that are far better performing than parametrized designs. 

For this reason, a previous study by the authors [3] successfully coupled GA with CFD and produced organic designs 

that have at least 45% performance improvement over a rectangular baseline design. The GA was given the freedom 

to generate freeform designs, and the only dimensional constraint was the total volume of the solid-fluid domain. 

Furthermore, of the few papers that utilized GA for HEX design, only a limited number of them have considered the 

three-dimensionality of the problem. The proposed study aims to optimize the fin shapes in 3D using the methods 

articulated in [3]. The three-dimensionality will also provide a more realistic understanding of flow physics. In 

addition to understanding the effect of three-dimensionality on the performance of the resulting designs, this study 

also investigates the effect of different fin materials on the performance of the GA and the resulting fin shapes. 

IV. Modeling and Optimization Methodology 

 The modeling and optimization process consists of two parts: generation of new designs using the GA, and 

evaluation of generated designs using CFD. First, to allow for a significant parameter space, a 3D rectangular shaped 

baseline fin geometry with two rows of fins arranged in an offset strip fins setting (OSF) is created using voxel 

representation, where a voxel in the design space is denoted as solid or fluid and can be switched from one to the other 

by the optimization software. To generate optimal designs, an initial population is generated by mutating the baseline 

fin a random number of times between the Initial Minimum Mutation (IMinM) and Initial Maximum Mutation (IMM). 

The population members are then each evaluated in a 3D CFD simulation in OpenFOAM to calculate the performance 

of each design, as determined by pressure drop and heat transfer. The genetic algorithm is applied to select best 

designs, merge them (reproduction), and apply random mutations to generate a new generation. The new generation 

is re-evaluated in CFD for performance, and the process is repeated for a sufficient number of generations to achieve 

optimal performance. These steps are summarized in Fig. 1 (adopted from previous 2D study) which describes the 

overall CFD-GA approach used here. The process is executed in a Python code with embedded functions that 

communicate with the CFD evaluation software, and has been validated using the 2D study[3].  

 

 
Fig. 1 Overall optimization process workflow [3]. 

 The size and shape of the fluid domain remains the same for each fin while the fin dimensions are allowed to 

change to any size within the domain. The fluid domain is chosen to be 17.5mm in length (x-direction), 5mm in height 
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(y-direction), and 3mm in width (z-direction). Each fluid domain is simulated using a structured mesh with equal cell 

sizes. The domain is meant to simulate a two fin unit in a plate fin heat exchanger similar to those used as oil coolers 

in small airplanes[24]. Fig. 2 shows the domain of the baseline geometry along with boundary conditions. The periodic 

boundary shown allows the simulation to act as an infinitely wide array of fins in the traverse direction with fin spacing 

of 3mm. The flow is not periodic in the streamwise direction for the purpose of simplicity. For a closer representation 

of an actual HEX, conjugate heat transfer is simulated by setting the top and bottom surfaces of the domain, including 

the ends of the fin surfaces, to a constant surface temperature of 450K. Fourier’s conduction equation is solved to 

obtain the temperature field inside the fins. Fluid properties are set to be temperature dependent, using OpenFOAM 

polynomial transport model [25]. The incoming fluid is at a uniform temperature of 300K and inlet velocity of 2 m/s 

(Re_Dh= 223). Table 1 provides a summary of the boundary conditions. 

The fluid solver is chtMultiRegionSimpleFoam, which is a steady-state solver for buoyant, turbulent fluid flow 

and solid heat conduction with conjugate heat transfer between solid and fluid region. A laminar model is used with 

a Gauss linear gradient scheme for pressure and Bounded Gauss Upwind divergence scheme for all field variables. 

The Semi-implicit Method for Pressure-linked Equations (SIMPLE) algorithms have been employed to solve for 

velocity and pressure equations. A Geometric agglomerated Algebraic MultiGrid (GAMG) solver with Diagonal 

incomplete-Cholesky (DIC) preconditioner is used to solve for pressure while a Stabilized Preconditioned Bi-

Conjugate Gradient (PBiCGStab) solver with Diagonal incomplete-LU (DILU) preconditioner is used to solve for the 

rest of the field variables. The solution is deemed converged if all the residuals fall under a tolerance value of 10-6 or 

stop changing over 10 iterations.  

 

 
 

Fig. 2 The baseline geometry used for 3D optimization along with boundary conditions. 

Table 1: summary of domain boundary conditions 

Location Boundary type Flow condition Thermal condition 

Inlet Velocity inlet Laminar @ 2m/s T = 300K 

Outlet Pressure outlet Laminar T = 300K 

Front & back Periodic  Periodic Periodic 

Top – fluid & fins  Constant temperature wall No slip T = 450K 

Bottom – fluid & fins Constant temperature wall No slip T = 450K 

 

A. CFD Grid Study 

 OpenFOAM was chosen to perform the optimization because of an easy linkage with the GA code through the 

Python programming language. This allows for the automation of the entire process and seamless transmission of the 

new design geometries. As pointed out in [3], there are no published results known to the authors that provide heat 

transfer and pressure drop for only two rows of fins arranged in an offset strip fashion. For this reason, the baseline 

geometry in Fig. 2 is simulated in ANSYS Fluent and the results are used as a benchmark to check the validity of the 

results obtained by OpenFOAM. This enabled the determination of the minimum mesh size in OpenFOAM required 
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to properly capture gradients. Note that the flow regime considered here is restricted to laminar so the governing 

equations for the fluid domain are straightforward, without assumptions about an eddy viscosity.  

Four mesh sizes (60000, 120000, 250000, 500000 cells) were considered in OpenFOAM and Fluent and the field 

parameters of interest, the overall heat transfer rate and the overall pressure coefficient are calculated and compared 

for each mesh. The overall heat transfer used in the GA fitness function is calculated using the mass averaged 

temperature at the outlet of the domain. The static pressure coefficient is calculated using the definition provided in 

the nomenclature section in which the pressure drop (dP) is evaluated through the difference in average inlet and outlet 

pressure. Fig. 3a and b respectively shows the total heat transfer from the solid-fluid domain and the pressure 

coefficient for every Fluent and OpenFOAM mesh. In Fig. 3a the Fluent and OpenFOAM meshes show a good 

agreement for a given solver, but the OpenFOAM meshes predicted slightly higher values with a maximum of 10% 

(0.23W) difference for the 500k mesh. The overall pressure coefficient in Fig. 3b shows the best agreement in the 

meshes among each other and between the two solvers.  

The absence of wall resolved meshing in OpenFOAM implementation is the main reason for the variation observed 

in Fig. 3. Fluent and OpenFOAM meshes are equal in size, but for purpose of simplicity in the voxel-based design 

tool, OpenFOAM meshes are simple structured meshes with equal cell size and no clustering. Also, some slight 

differences might be as to how the solvers are set up, such as convection divergence term schemes (bounded Gauss 

upwind in OpenFOAM vs Least Squares Cell Based in Fluent). Since the focus of this study is to generate unique 

designs by combining GA with CFD, the lowest mesh size has been chosen. This allows for shorter calculation times 

and reasonable accuracy of physics. Fig. 4 shows the CPU and clock time used per simulation for each mesh size in 

OpenFOAM. It demonstrates the large time savings gained by considering the smallest mesh presented here. The CPU 

execution time is calculated by running each simulation on the same machine using a single core and same memory 

characterization. It should be noted that the actual simulation time (clock time) for each case is longer than the CPU 

execution time when running the coupled GA and CFD code due to the GA steps, and it could vary significantly if the 

mesh size is larger than the smallest mesh chosen, as it can be seen in Fig. 4 in the case of 250k and 500k meshes.  

 

 

 
Fig. 3 a) Total heat transfer rate per unit area calculated for three different Fluent and OpenFOAM meshes. 

b) static pressure coefficient for three different Fluent and OpenFOAM meshes. 

 
Fig. 4 CPU execution time and clock time for each OpenFOAM mesh in minutes calculated by running each 

simulation on the same CPU machine. 
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B. Description of GA Procedure 

 There are three typical operators that are used to create new generations in a GA: crossover, mutation, and elitism. 

The crossover operator combines couples of parents to produce offspring. The mutation operator randomly modifies 

the characteristic of the offspring produced by crossover, to ensure genetic diversity. Elites are the highest performing 

individuals that will be directly carried over to the next generation. They are used to eliminate regression in 

performance from one generation to the next. This study employs another operator that is used during the selection 

process to determine the reproduction pool. This operator is given the term “cutoff” which is defined as the number 

of top performing elements that will be used as the reproduction pool for the next generation. Depending on how this 

number is chosen, it can include part, or all of the elites. For example, in the standard GA parameters considered in 

this study, the number of elites and cutoff is set to be equal. This means all of the elites are part of the reproduction 

pool for the next generation. 

To generate new designs, the GA starts with creating the initial generation which has a total of 95 members. The 

rest of the standard GA parameters that were chosen for this study are listed in Table 2. Each member is generated by 

mutating the baseline geometry a random number of times between 500 (IMinM) and 5500 (IMaxM). The domain is 

divided into a 50x50x50 grid of voxels. A mutation is defined as randomly changing one voxel that bounds the fin, 

either by removing or adding it. Only border voxels are subject to mutations. For a voxel to be added it must be a fluid 

voxel that is adjacent to a solid voxel of the fin. For a voxel to be subtracted it must be a solid voxel that is immediately 

adjacent to a fluid voxel. When a mutation is invoked it first randomly determines whether the mutation will be an 

addition or subtraction. After this is determined, a voxel is randomly picked. If the chosen voxel fulfills the criterion 

for either an addition or subtraction, the mutation is finished. If not, a new voxel will be chosen and checked until this 

criterion is fulfilled. Constraints to prevent the attachment of fins, and formation of islands to ensure a continuous 

solid fin are applied. Example of the mutation process is shown in Fig. 5. Fig. 6 shows the bottom view of the initial 

generation designs generated by mutating the baseline geometry a random number of times. In this figure and 

throughout this manuscript, the white space represents the solid fin body, and the black space represents the fluid 

domain. 

The performance of each member of the initial population is evaluated in a separate CFD simulation in 

OpenFOAM. Since the individual evaluations are uncoupled, they are run in parallel. The metrics of interest are the 

total heat transfer and pressure drop for the fin domain, where the goal is to maximize heat transfer to the fluid and 

minimize pressure drop. The overall heat transfer is calculated from the mass flow rate and the change in mass 

averaged temperature from inlet to exit. Pressure drop is determined from the difference in average pressures from 

inlet to outlet. The presence of two objectives would normally require multi-objective optimization, but in this study 

a composite fitness function is optimized. The definition of fitness (F) below allows for simpler single objective 

optimization. Note that F is not unitless here. 

𝑭 =
𝑸

𝒅𝑷𝟏/𝟑  
[𝑾]

[𝑷𝒂]
               (1) 

The pressure drop is raised to the 1/3 power per the methodology of Webb and Eckert [26], so that the thermal 

performance is evaluated for equivalent pumping power of the fluid. The designs are ranked by fitness after 

simulations are successfully completed. A simulation is considered complete if all the residuals of streamwise velocity, 

cross stream velocity, temperature, and pressure have stopped changing or are below 1x10-6. Then the elites from the 

design pool will be advanced directly to be part of the next generation. A “cutoff" specifies the number of designs that 

will get to reproduce, and any designs below the cutoff will be eliminated from the reproduction pool.  

After completing the ranking, the second generation is created. The number of members that need to be created 

for the second generation is equal to the total population (95) minus the number of elites. There are three different 

mechanisms to generate new members. The first is used to generate the initial generation from the baseline geometry 

by simply mutating it a random number of times until all the designs are generated. The second and third mechanisms 

are used to generated designs after the first generation. They are similar in that they employ crossover operator to 

generate a child using two parent designs, and then further mutate it to increase its diversity. However, the first 

mechanism crosses-over a voxel only if it has the same value in both parents. More details about these mechanisms 

are found in [3] and will not be further discussed here. The GA will start over again by evaluating the new population 

in CFD followed by the selection process and crossover and mutation. Fig. 5 shows an example of the second 

mechanism crossover process used to produce a “child” from two “parents”. These steps are repeated until an 

asymptotic behavior of the performance is achieved, or until a certain number of generations to limit the GA from 

running indefinitely. 
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Fig. 5 Example of crossover and mutation processes used by the genetic algorithm to generate new designs.  

 
Fig. 6 Population members of the first generation generated from the baseline geometry through the 

mutation process – bottom view. 

Table 2 Standard GA Parameters 

n Elites Cutoff IMaxM/IMinM 

95 36 36 5500/500 

 

V. Results and Discussion 
 The GA is initially run for 60 total generations for the nominal conditions of Re = 334 (based on the hydraulic 

diameter) and the standard parameters in Table 2 above, using AlSi10Mg (properties given in Table 3)  as the solid 

fin material. Fig. 7a depicts the individual fitness, the average fitness, and the maximum fitness at each generation as 

a function of generation number. The limit for the number of generations was initially determined based on results 

from the previous 2D study (Fig. 7b). However, contrary to Fig. 7b, as the generations progress, the best and the 

average fitness values are still changing. This indicates that the GA will likely produce even better designs if it is run 

for more generations, but this was not possible at the time of writing this paper due to high computational requirements. 

Despite that, after 60 generations, the GA produced a geometry that performed over 18% better than the baseline 

rectangular fins from which the algorithm started.  
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 Fig. 8 is a Pareto chart for the nominal GA results, with pressure drop on the horizontal axis and heat transfer on 

the vertical axis both normalized by their respective baseline design values, where the baseline is the rectangular fin 

geometry. The various designs are colored by generation number, starting with dark colors, and progressing to lighter 

colors toward generation number 60. The resultant population shows a clear tradeoff between pressure drop and heat 

transfer. The best designs all lie on the upper leftmost front of this grouping (note the location of baseline and optimal 

designs colored in red). In the case of Fig. 8a, which represents 3D fin results, the pressure drop for some of the 

optimal designs is more than 17% less than that of the baseline value while achieving heat transfer improvement up 

to 20% for a combined overall performance improvement of more than 18%. Fig. 8b represents the 2D results from 

the previous study [3], which have similar reduction in pressure drop values for a few of the optimal designs, but with 

heat transfer enhancement up to 55% and overall performance improvement of 60%. In addition to the aforementioned 

fact about the lack of asymptotic behavior in the 3D case after 60 generations, a range of assumptions to simplify the 

2D case may have directly contributed to the resulting high performance-improvement. Most important of these 

assumptions is the 100% fin efficiency (no conjugate heat transfer). Fig. 8 also shows that the majority of designs 

generated in the 3D case have  pressure drop value somewhat similar to the baseline value with maximum increase of 

~30% and a considerable number of high performing designs with a pressure drop lower than the baseline. An 

interesting phenomenon in this case is that the GA tended to improve the performance by increasing the surface area 

(increased pressure drop) at the beginning of the optimization process and up to generation ~25. After that a clear 

trend of decreasing the pressure drop is observed until the end of the optimization process, leading to many optimal 

and semi-optimal designs with lower pressure drop as can be seen in Fig. 8a. On the other hand, the majority of 

generated designs in the 2D case have much higher pressure drop values compared to the baseline with maximum 

increase of 400% in one of the designs. This indicates that the GA was trying to maximize the fitness function by 

increasing the heat transfer surface area, which subsequently increases the pressure drop. Ultimately, the GA 

understood that striking a balance between the heat transfer enhancement and the pressure drop penalty is important 

to maximize the fitness function. Even though there was a single objective function, the algorithm clearly produces a 

range of optimal designs that would achieve high overall performance. 

Fig. 9a shows the optimal designs for both cases (bottom view for the 3D case) along with baseline geometries. 

The optimal fins in the 2D case are longer and thicker than the baselines which is consistent with what  was mentioned 

earlier about the GA tendency to maximize the fitness function by increasing the heat transfer surface area. Fig. 9b 

shows an isometric view of the optimal geometry in the 3D case along with the baseline geometry. It can be observed 

that the GA removed more material from the leading edge of the first fin to generate an aerodynamic shape that helps 

reducing the pressure drop, while adding or maintaining material elsewhere, especially in the first fin. It also appears 

that the GA mutates (add or remove voxels) the first fin more aggressively, suggesting that a more aggressive 

randomization approach is needed. More details about the hydraulic and thermal performance characteristics of this 

geometry is provided in the following sections.  

 
Fig. 7 The individual, average, and maximum fitness of each generation. a) 3D case. b) 2D case [3]. 
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Fig. 8 Comparison of Pareto front for the nominal conditions a) 3D case. b) 2D case [3]. 

 
 

 
Fig. 9 a) the baseline and the resulting optimal designs for the 2D case (top) and 3D case (bottom) b) isometric view of 

the baseline and the resulting geometry of the 3D case after 60 generations. 

A. Effect of Fin Material 

This study evaluates and compares the performance of resulting designs optimized using two heat exchanger 

materials: AlSi10Mg and Inconel 718. These two alloys are commonly used for additively manufactured HEXs. The 
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standard GA parameters settings remained similar in both cases. Table 3 provides details of  the two materials’ 

properties relevant to the optimization process. 

 

Table 3 Material properties for AlSi10Mg and Inconel 718 [27] 

Material Thermal Conductivity 

W/m2.K 

Specific heat, 

j/kg.K 

Density, 

kg/m3 

AlSi10Mg 110 915 2670 

Inconel 718 12 435 8190 

 

The resulting optimal designs have a maximum fitness improvement of 18% in the case of AlSi10Mg and 11% 

improvement in the Inconel 718 case. An apparent reason for the reduction in overall performance improvement in 

the case of Inconel 718 is the reduction in heat diffusion in the fin body due to the much lower thermal conductivity 

compared to AlSi10Mg. This phenomenon is demonstrated in Fig. 10 which shows the front view of temperature 

distribution on the fin body. In both cases the fin body temperature decreases from top and bottom towards the center, 

and from left to right in the streamwise direction due to heat diffusion and convection effects, respectively. However, 

in the case of AlSi10Mg (Fig. 10a), the temperature across the fin body is much closer to the upper and lower boundary 

condition which is set to a constant surface temperature of 450K. As pointed out earlier, this is due to the high thermal 

conductivity of AlSi10Mg. In Fig. 10b, the temperature across the fin body is much lower than the upper/lower 

boundaries, when compared to AlSi10Mg case. This distinction between the two cases is amplified in the overall heat 

transfer from the domain (important for the calculation of fitness function) which is evaluated using the average 

temperature at the outlet of the solid-fluid domain. Fig. 11 shows this temperature distribution at the outlet for both 

cases. The average outlet temperature in the case of AlSi10Mg is about 2.63K higher than the Inconel case resulting 

in a 3.5% higher overall heat transfer. To compensate for the low thermal conductivity in the case of the Inconel 718, 

the GA increased the heat transfer surface area, which resulted in higher pressure drop levels relative to the AlSi10Mg 

case.  

 
Fig. 10 Temperature distribution in the pair of fins for the optimal designs for a) AlSi10Mg b) Inconel 718. 
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Fig. 11 Temperature distribution at the outlet of the fluid domain of a) AlSi10Mg and b) Inconel 718.  

Fig. 12 shows the bottom views of the solid-fluid domain for the resulting optimal designs along with their 

respective fitness values plotted at the bottom left of the domain. Fig. 13 is an isometric view of the optimal fins 

(without the fluid domain) for both cases. These two figures clearly show that in the case of AlSi10Mg, the GA 

removed more material from the leading edge of the first fin and throughout the remainder of the two fin bodies which 

resulted in optimal designs that have more than 20% decrease in pressure drop compared to the baseline, as discussed 

earlier. In the case of Inconel 718 however, the GA added more surface area to enhance the heat transfer in the domain 

to compensate for the relatively low thermal conductivity of the fin material. This resulted in optimal designs that 

have pressure drop increase of more than 10% relative to the baseline, and more than 30% when compared to the 

optimal designs of AlSi10Mg material. These variations in pressure drop and heat transfer trends for the resulting 

designs from the two cases are highlighted in Fig. 14 which shows the pressure drop and heat transfer Pareto Front. 

The majority of the optimal designs in the AlSi10Mg case lie in the upper left front and to the left of the baseline 

geometry indicating lower pressure drop and higher heat transfer, which is ideally desired. The optimal designs in the 

case of Inconel 718 lie in the upper front and slightly to the right of the baseline. This does not necessarily mean theses 

designs are ineffective. The optimal designs from both cases provide significant improvement over the baseline, and 

their effectiveness is application dependent. For instance, aluminum and aluminum alloy (such as AlSi10Mg) heat 

exchangers are used in applications where thermal efficiency and the need to remove a considerable amount of heat 

is important. However, aluminum HEXs are limited by the maximum operating temperature. This is where HEXs 

made of Inconel and other high temperature tolerant alloys are more appropriate in applications such as gas turbine 

engines and other space related applications. Note that the thermal conductivity of the fin material is important in this 

analysis because the heat transfer is a major component of the defined fitness function that guide the performance of 

the GA. The role of thermal conductivity on the behavior of the GA could be attenuated by altering the fitness function 

if other properties such as density (weight) are more important to the targeted application. 

 

 
Fig. 12 Bottom view of the baselines and optimal designs for AlSi10Mg (top) and Inconel 718 (bottom) with the fitness 

value at the lower left corner of the solid-fluid domain and the design number on the upper right. 
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Fig. 13 shows isometric views of the optimal designs for a) AlSi10Mg and b) Inconel 718. 

 
Fig. 14 The Pareto front of resulting designs for two different materials. a) AlSi10Mg b) Inconel 718. 

B. Manufacturability of Optimized Designs 

The GA was developed with additive manufacturing (AM) in mind as a potential manufacturing process to build 

the resulting designs. AM capabilities allow for seamless digital transformation of the optimal designs. Additionally, 

manufacturing constraints such as the minimum build layer and bend radius can be implemented in the GA after 

identifying them in the targeted AM process. In the current study, the minimum voxel dimension is 0.06mm which is 

within the limits of what can be printed using metal AM processes [28]. However, a valid concern about the optimal 

designs presented here is the ability to manufacture the long extensions highlighted in Fig. 15. Incorporating a support 

structure during the build process might help manufacturing them, but the durability of such weak links in harsh 

operating conditions is still questionable. This issue can be overcome by implementing constraints in the GA solver 

to prevent the formation of such extensions from a single voxel unit in the smaller dimension (the width). A long 

extension with at least two voxels stacked along the width will be easy to manufacture and might result in further 

performance enhancement. Additionally, a Bezier curve or b-spline algorithm can be used to smooth out the sharp 

edges.  
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Fig. 15 An optimal design with long extensions at the leading edge highlighted.  

VI. Conclusions 
This study demonstrated the ability to produce three-dimensional (3D) non-intuitive designs using computation 

fluid dynamics combined with genetic algorithms and compared the results to a previously validated two-dimensional 

(2D) model. After 60 generations, it was found that the fitness function is still changing, suggesting that the GA might 

need to be run longer to determine it has reached to a global maxima. Despite that, the results showed that the optimal 

designs after 60 generations have overall performance improvement of 18% relative to the baseline. The optimal 

designs also have more than 20% reduction in pressure drop relative to their baseline compared to more than 200% 

increase in pressure drop in the case of 2D optimal designs relative to their baseline. Overall, the improvement  level 

from the 3D optimization are more realistic. Concerns about the manufacturability of resulting designs can be 

overcome by implementing a range of smoothing techniques and manufacturing constraints. 

The study also investigated the effect of varying the fin material on the resulting designs. It was found that low 

thermal conductivity materials lead to a lower overall performance improvement, with optimal designs that have 

pressure drop larger than their respective baseline designs when compared to designs produced using relatively high 

thermal conductivity. The definition of the fitness function should be re-evaluated when considering the effect of 

material properties on the overall performance. 
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