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ABSTRACT

Supermassive black hole binaries are likely to accrete interstellar gas through a circumbinary disk.

Shortly before merger, the inner portions of this circumbinary disk are subject to general relativistic

effects. To study this regime, we approximate the spacetime metric of close orbiting black holes by

superimposing two boosted Kerr-Schild terms. After demonstrating the quality of this approximation,

we carry out very long-term general relativistic magnetohydrodynamic simulations of the circumbinary

disk. We consider black holes with spin dimensionless parameters of magnitude 0.9, in one simula-
tion parallel to the orbital angular momentum of the binary, but in another anti-parallel. These are

contrasted with spinless simulations. We find that, for a fixed surface mass density in the inner cir-

cumbinary disk, aligned spins of this magnitude approximately reduce the mass accretion rate by 14%

and counter-aligned spins increase it by 45%, leaving many other disk properties unchanged.

Keywords: accretion — supermassive black holes — rotating black holes — magnetohydrodynamical

simulations

1. INTRODUCTION

The existence of supermassive binary black holes

(SMBBH) is a natural prediction of the current hierar-

chical models of galaxy formation (Merritt & Milosavl-
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jević 2005). After two galaxies merge, there are reasons

to think the orbit of the newly formed binary will shrink

to a sub-parsec scale by dynamical friction and interac-

tion with surrounding gas (Begelman et al. 1980; Mayer

et al. 2007; Escala et al. 2004, 2005; Merritt 2004, 2006;

Dotti et al. 2007; Dotti et al. 2009b; Shi et al. 2012;

Sesana & Khan 2015; Mirza et al. 2017; Khan et al.

2019; Tiede et al. 2020). From then on, the emission

of gravitational waves becomes an efficient mechanism

http://orcid.org/0000-0002-4882-5672
mailto: fglsma@rit.edu


2 Lopez Armengol, et al. (2021)

for energy and angular momentum extraction until coa-

lescence (Pretorius 2005; Campanelli et al. 2006; Baker

et al. 2006). This emission of gravitational waves makes

SMBBHs the primary targets in the mHZ frequency win-

dow by the future Laser Interferometer Space Antenna

(LISA, Amaro-Seoane et al. 2017) and by pulsar timing

techniques in the nHz range (Alam et al. 2020; Babak

et al. 2016; Reardon et al. 2016).

Unlike stellar-mass binary black hole systems, the en-

vironment of SMBBHs might be rich in gas (Barnes

& Hernquist 1992; Barnes & Hernquist 1996; Mihos &

Hernquist 1996; Mayer et al. 2007; Dotti et al. 2012;

Mayer 2013; Derdzinski et al. 2019), allowing the system

to emit electromagnetic (EM) radiation. Many signa-

tures have been proposed as ways to hunt for SMBBHs

in the EM spectrum: periodic light curves in active

galactic nuclei (AGN; Valtonen et al. 2006; Graham

et al. 2015a,b; Liu et al. 2019; Saade et al. 2020), in-

terrupted jet activity (Schoenmakers et al. 2000; Liu

et al. 2003), traces of jet precession or “spin-flips” in

X-shaped radio galaxies (Merritt & Ekers 2002), dual

compact radio cores (Rodriguez et al. 2006), shifts in

the profiles of broad emission lines (Dotti et al. 2009a;

Bogdanović et al. 2009), X-ray emission from streams

striking the accretion disks around the individual black

holes or a “notch” in the optical/IR spectrum (Roedig

et al. 2014; Krolik et al. 2019). However, it is not at

all clear whether any of these can be truly expected.

Numerical simulations are key guides to this search be-

cause they may unveil unique dynamics and radiative

properties.

Matter flows toward these systems through a cir-

cumbinary disk because interstellar gas at the center of

merged galaxies is expected to have far too much angu-

lar momentum to approach the binary directly (Springel

et al. 2005; Chapon et al. 2013). Circumbinary disks

differ in many respects from accretion disks around sin-

gle black holes (BHs), especially for mass-ratios close

to unity. The most striking differences originate in the

strong gravitational torques that the orbiting BHs ex-

ert on the surrounding matter. Early one-dimensional

work suggested that these torques would prevent any

gas from falling toward the binary (Lin & Papaloizou

1979; Pringle 1991), but more recent multi-dimensional

simulations showed that most of the externally-supplied

mass is accreted and an approximate inflow equilibrium

can be reached (see, for instance, Artymowicz & Lubow

1996; MacFadyen & Milosavljević 2008; Noble et al.

2012; Shi et al. 2012; D’Orazio et al. 2013; Farris et al.

2014; Zilhão et al. 2015; Shi & Krolik 2015; Rafikov 2016;

Tang et al. 2017; Miranda et al. 2016).

These simulations also showed that the circumbinary

disk is truncated at a distance ≈ 2b from the binary

center-of-mass, where b denotes the binary separation.

Outside this truncation radius, mass piles up, forming

a local peak in the surface density profile; inside this

radius, the accretion flow onto the binary is confined

within two narrow streams traversing a low-density gap.

Each of these streams is associated with one of the black

holes.

These streams are complex systems. A portion of their

mass receives enough angular momentum from the bi-

nary torques to be flung back to the inner edge, trans-

ferring significant amounts of angular momentum to the

disk. Their impact can cause a steady growth in an

m = 1 mode of the azimuthal distribution of matter at

the inner edge, giving rise to an orbiting overdensity at

2b < r < 4b that can be the dominant source of mat-

ter for accretion onto the binary. This is the so-called

“lump”.

When the accretion streams enter the binary, each

feeds a small accretion disk surrounding one of the

black holes; the so-called mini-disks (see, for instance,

Hayasaki et al. 2007; Farris et al. 2012, 2014; Gold et al.

2014; Bowen et al. 2017, 2018, 2019; Muñoz et al. 2019,

2020; Moody et al. 2019). If the binary separation is

more than a few tens of M , where we use geometrical

units and M is the mass of the system, accretion of each

mini-disk is slow because it is limited by internal angu-

lar momentum transport. However, at smaller binary

separations, the ratio between the radius of each mini-

disk’s outer edge and its ISCO shrinks to be only order

unity; in that situation, the need for angular momen-

tum transport diminishes, and their mass content be-

comes far more time-variable (Bowen et al. 2017, 2018,

2019). Efforts toward producing realistic spectra from

these simulations have begun (d’Ascoli et al. 2018).

The techniques used to achieve these results are highly

diverse, but a key feature of the system has remained

elusive: the spin of the BHs. In fact, most of these

works assume Newtonian gravity, while black hole spin

is inherently relativistic. Although some works evolved

the full set of Einstein Field Equations (EFE) for the

metric of the spacetime and matter fields (Farris et al.

2011; Bode et al. 2011; Giacomazzo et al. 2012; Gold

et al. 2014), they focused on binaries close to merger

(b ≤ 10M), where the strong tidal interactions and short

inspiral timescale prevent the formation of mini-disks.

An intermediate strategy in modeling the gravitational

field has been to employ an approximate metric for the

background spacetime, still capturing the relativistic na-

ture of the system while being freed from the computa-

tional load of integrating the EFE. For instance, Noble
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et al. (2012) excised the inner region and used a Post-

Newtonian (PN) metric of order 2.5-PN to integrate the

equations of general relativistic magnetohydrodynamics

(GRMHD) in the circumbinary region. Bowen et al.

(2017, 2018, 2019) used the global approximate metric

of Mundim et al. (2014) to explore the relativistic dy-

namics of the mini-disks in non-spinning binaries. The

approach of Mundim et al. (2014) for building the ap-

proximate spacetime can be generalized to spinning bi-

naries (Gallouin et al. 2012; Ireland et al. 2016), but

the analytical metric becomes too complex and compu-

tationally expensive for GRMHD simulations.

In this work, we perform the first simulations of this

system including spin. To do so, we construct a new

approximate metric for the spacetime of a pair of spin-

ning black holes by linearly superimposing two individ-

ual BHs in the Kerr-Schild gauge. This new metric,

which we call Superposed Kerr-Schild (SKS), presents

many advantages over our previous approach. It is well-

behaved in every region of spacetime, it is easy to imple-

ment, it is computationally efficient, and it permits easy

inclusion of spin. Using this approximate spacetime, we

have been able to conduct lengthy GRMHD simulations

of circumbinary accretion onto a SMBBH whose black

holes spin.

Our work is organized as follows. In Section 2 we in-

troduce the Kerr-Schild gauge and construct the SKS

metric for the BBH spacetime. In Section 3 we analyze

the validity of the SKS metric as a solution of EFE in

vacuum. Then, in Section 4, we describe the configura-

tions of our GRMHD simulations of circumbinary disks

around spinning binaries. Section 5 is devoted to our

main results on the effects of the spins on the properties

of the evolved circumbinary disks. Finally, in Section 6,

we summarize our main conclusions. Throughout this

paper, Latin indices denote spatial indices, running from

1 to 3; Greek indices denote spacetime indices, running

from 0 to 3 (0 is the time coordinate); and the Einstein

summation convention is used. We work on geometrical

units where G = c = 1, and the total mass of the binary

M is normalized to unity.

2. SPACETIME CONSTRUCTION

2.1. Kerr-Schild form for single black holes

The Kerr-Schild form of the metric for the spacetime

of a single, rotating, black hole is (see the republication

Kerr & Schild 2009)

gµν = ηµν + 2Hlµlν , (1)

where, in Kerr-Schild Cartesian coordinates xα =

(t, x, y, z), ηµν = diag(−1, 1, 1, 1), lµ denotes a null

vector with respect to both metrics gµν lµlν = ηµν lµlν =

0, andH is a scalar function of coordinates. These read:

lµ =

(
1,
rKSx+ ay

r2
KS + a2

,
rKSy − ax
r2
KS + a2

,
z

rKS

)
, (2)

H =
MrKS

r2
KS + a2 cos2 θ

, (3)

with the auxiliary functions

rKS
2 =

1

2

(
ρ2 − a2

)
+

√
1

4
(ρ2 − a2)

2
+ a2z2 , (4)

ρ2 = x2 + y2 + z2 , (5)

cos θ =
z

rKS
, (6)

being M the ADM mass of the black hole, and a its

specific angular momentum.

Kerr-Schild coordinates are widely used for their com-

putational advantages. The coordinates xα are horizon-

penetrating, and singular regions are contained within

the event horizon. This allows the excision of singu-

larities from the computational domain while keeping

the physics at the exterior of the black hole unaffected.

Furthermore, the Kerr-Schild form is invariant under a

Lorentz-boost transformation:

x̄α = Λαβx
β , (7)

H̄ (x̄α) = H
(

[Λ−1]αβ x̄
β
)
, (8)

l̄µ (x̄α) = Λνµlν

(
[Λ−1]αβ x̄

β
)
, (9)

where Λαβ are the components of the usual Lorentz ma-

trix for uniform velocity vi. The resulting metric repre-

sents the spacetime of a moving, rotating, black hole.

The invariance of the Kerr-Schild form under boosts

is useful for approximating the spacetime of multiple

moving black holes by linearly superposing terms of the

form 2H(n)l
(n)
µ l

(n)
ν to the same asymptotic background

ηµν , where n = 1, 2, ... accounts for each black hole,

with mass M (n) and specific angular momentum a(n).

2.2. Superposed Kerr-Schild as initial data for black

hole binaries

As mentioned in Section 1, our approach for evolv-

ing the spacetime of spinning BBHs is to construct an

approximate metric based on the superposition of two

Kerr-Schild black holes. In this subsection, we briefly re-

view how an equivalent superposition has been used for

setting initial data (ID) in Numerical Relativity simula-

tions, i.e. simulations that evolve EFE for the spacetime

metric (see Duez & Zlochower 2018, for a review). In-

deed, in the context of Numerical Relativity, one needs a

valid set of ID that solves the constraints of EFE at some

Cauchy surface. The standard case, where one solves the
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initial metric for a given distribution of matter, presents

the problem of having to determine 12 degrees of free-

dom from just 4 equations Cook (2000). Some tech-

niques have been proposed for fixing free degrees of free-

dom in advance, while simplifying the constraint equa-

tions.

For instance, the Conformal-Transverse-Traceless

(CTT) decomposition (York 1971; Bowen & York 1980)

asks for a conformally-related spatial metric γ̃ij , and the

trace and conformal traceless part of the extrinsic curva-

ture, before solving the remaining 4 degrees of freedom,

contained in the conformal factor ψ, and potential func-

tions W i. This technique is particularly convenient for

conformally flat spacetimes, where the resulting equa-

tions simplify significantly, but BBH spacetimes are not

conformally flat (Damour et al. 2000) and this technique

possesses some limitations. For instance, it is not pos-

sible to construct ID for BBHs with spins larger than

∼ 0.93 from a conformally flat approach (Dain et al.

2002; Lousto et al. 2012).

An alternative prescription for the conformal met-

ric γ̃ij was introduced by Matzner et al. (1998), based

on the linear superposition of two boosted Kerr-Schild

black holes:

γ̃ij = δij + 2H̄(1) l̄
(1)
i l̄

(1)
j + 2H̄(2) l̄

(2)
i l̄

(2)
j . (10)

Using this approach, Marronetti et al. (2000) and Mar-

ronetti & Matzner (2000) solved the resulting constraint

equations for ψ and W i and found that the solution was

in good agreement with the conformal ansatz (10), even

for close separations (∼ 10M). Additionally, Bonning

et al. (2003) supported this claim, and demonstrated

that this proposal is well suited for capturing the physics

of the BBH inspiral as it contains the right Newto-

nian binding energy for wide separations (b > 15M).

More recently, Lovelace et al. (2008, 2012); Scheel et al.

(2015); Healy et al. (2016); Ruchlin et al. (2017); Zlo-

chower et al. (2017) used the superposition of confor-

mally Kerr-Schild black holes to develop new ID that

can be used to evolve BBH with spins as high as 0.994.

We conclude that, although some junk gravitational ra-

diation might be present (Pfeiffer et al. 2002), the ansatz

(10) approximates the spacetime of widely separated

BHs at a given time.

2.3. Time-dependent Superposed Kerr-Schild for

binary black hole evolution

Motivated by the success of the superimposed pre-

scription (10) as ID, we model the four-dimensional

spacetime of a BBH system with a superimposition of

two boosted Kerr-Schild black holes, updating the posi-

tion and velocity of each black hole for a given trajectory.

We call this metric Superposed Kerr-Schild (SKS) and

reads:

gµν = ηµν + 2Ĥ(1) l̂(1)
µ l̂(1)

ν + 2Ĥ(2) l̂(2)
µ l̂(2)

ν , (11)

where

x̂(n)α = Λ
(n)
circ (xα) , (12)

Ĥ(n)(x̂(n)α) = H(n)
[
Λ

(n)
circ

−1
(x̂α)

]
, (13)

l̂(n)
µ (x̂(n)α) = Λ(n)ν

µl
(n)
ν

[
Λ

(n)
circ

−1
(x̂α)

]
. (14)

We apply standard Lorentz transformations Λ(n) to vec-

tor fields l(n), so we keep an inertial frame ηµν at infin-

ity, but we apply a non-linear transformation Λ
(n)
circ to

coordinates in order to force the BHs to move on the

desired trajectory. We call this last transformation cir-

cular boost and we introduce it below.

Each black hole is boosted with a different velocity

v(n)i, updated as a function of time to be the tangential

velocity of a given orbit. In a first approximation, we

consider equal-mass black holes, and Keplerian circular

trajectories in the x-y plane, with separation b:

x
(1)
K =

b

2
cos(φ) , y

(1)
K =

b

2
sin(φ) , z

(1)
K = 0 , (15)

x
(2)
K = − b

2
cos(φ), y

(1)
K = − b

2
sin(φ), z

(2)
K = 0 , (16)

where φ = Ωt, and

Ω =

√
M (1) +M (2)

b3
. (17)

The time-dependent velocities are derived by v(n)i =

dx
(n)i
K /dt.

The non-linear transformation Λ
(n)
circ is constructed as

follows: A standard boost of coordinates Λ(n) results on

the BH moving on a straight line, with uniform velocity

vi. This is encoded on time dependent terms of the

form vit in the transformation. Here, we replace such

terms with the trajectories
(
x

(n)
K , y

(n)
K , z

(n)
K

)
given by

Eqs. (15) and (16). The transformation reads:
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Λ
(n)
circ

−1
(x̂α) =




γ(n)t̂− γ(n)v̌(n)xx̂− γ(n)v̌(n)y ŷ

−x(n)
K +

[
1 +

(
γ(n) − 1

) (
v̌(n)x

)2]
x̂+

[(
γ(n) − 1

)
v̌(n)xv̌(n)y

]
ŷ

−y(n)
K +

[(
γ(n) − 1

)
v̌(n)y v̌(n)x

]
x̂+

[
1 +

(
γ(n) − 1

) (
v̌(n)y

)2]
ŷ

ẑ




, (18)

where v̌(n)i = v(n)i/|~v(n)| are the normalized compo-

nents of the boost velocities. The transformation Λ
(n)
circ

is non-linear in the sense that it cannot be written as the

linear product of a matrix and the coordinates x̂µ. How-

ever, its expansion for short intervals of time reduces to

a standard boost Λ(n)−1
to the rest frame of the BH,

followed by a solid translation to the BH center.

3. SPACETIME VALIDATION

The SKS metric represents an approximate vacuum

solution of EFE. Therefore, it should approximately sat-

isfy Rµν = 0, where Rµν is the Ricci tensor. To quantify

deviations from a vacuum solution, following Mundim

et al. (2014), we calculate and analyze the Ricci scalar

R := Rµνg
µν for the SKS metric.

Even though the metric is analytical, we compute the

required derivatives numerically. We include the SKS

metric (11) in a stand-alone code that builds a uniform,

three-dimensional, Cartesian grid, and computes the re-

quired first and second-order derivatives by fourth-order

finite differences. We evaluate the metric components at

the corners of the Cartesian cells since these positions

are shared by different resolutions and this is useful for

later convergence analysis.

In Fig. 1, we plot the resulting values of the Ricci

scalar R at t = 0 in the plane of the BHs, for different

spatial scales, and spin values. We study the case of

equal-mass BHs M (1,2) = 0.5M , separated by b = 20M .

The top row shows the results for a grid centered at the

center of mass of the system. For coordinates (x, y, z)

the domain dimensions are (160, 160, 40)M , and there

are 320 × 320 × 80 cells. In the left, middle, and right

columns, the BH spins are −0.9M (1,2), 0 and 0.9M (1,2),

respectively. Within the circumbinary region, the vio-

lations of R = 0 are comparable to those of Mundim

et al. (2014), and this result is independent of spin for

the three cases we explored.

In the middle row of Fig. 1, we focus on the orbital

region by reducing the grid dimensions to (40, 40, 10)M

while keeping the same number of cells. In the domain

of the binary (r < b/2), particularly between the BHs,

the quality of the spacetime is not as good as in the

circumbinary region, but the values of R are still com-

parable to those of Mundim et al. (2014). The bot-

tom row shows the Ricci scalar R for grid lengths of

(5, 5, 1.25)M , centered on one of the BHs, while keep-

ing the same number of cells. We notice the metric

captures the singularities of spinning BHs.

Convergence testing proves that the numerical calcu-

lation of the Ricci scalar R converges to the analytical

value. To that end, we recalculate the Ricci scalar for

the region of the middle row of Fig. 1 with successively

coarser resolutions: 160 × 160 × 40 and 80 × 80 × 20.

Then we calculate the local convergence factor,

pR =
1

log 2
log

∣∣∣∣
R∆0 −R∆1

R∆1
−R∆2

∣∣∣∣ , (19)

where R∆0
, R∆1

and R∆2
are, respectively, the values

of R for the coarsest, middle, and finest resolutions,

computed at the corners of the coarsest grid cells be-

cause these positions are shared by the three resolu-

tions. Fig. 2 shows these values of pR in the BH or-

bital plane; throughout this region pR ≈ 4, as expected

from a fourth-order finite differencing scheme. The ap-

parent non-convergence in the regions close to the BHs

is because the coarsest grid fails to resolve such high
curvatures.

In this section we analyzed the Ricci scalar R for the

SKS metric and find it is approximately zero, as ex-

pected for a vacuum solution of EFE. The accuracy of

this four-dimensional scalar allows us to use the SKS

metric as a time-dependent geometry for the background

spacetime in GRMHD simulations. Though not in-

cluded in this article, we also checked for the Hamil-

tonian and momentum constraints, and found them to

be satisfied to the same degree of accuracy as the Ricci

scalar R. As a further validation test, in Appendix B

we prove the expansion of this metric agrees with the

lowest PN expansion of the metric of spinning binaries.

4. CIRCUMBINARY DISK MODELS

As a first application of the SKS metric (11), we build

and evolve a torus of gas in the circumbinary region. We



6 Lopez Armengol, et al. (2021)

-60 -40 -20 0 20 40 60

y [M ]

-60

-40

-20

0

20

40

60

x
[M

]
b20-spins

-60 -40 -20 0 20 40 60

y [M ]

b20

-60 -40 -20 0 20 40 60

y [M ]

b20+spins

−7

−6

−5

−4

−3

−2

−1

0

1

-15 -10 -5 0 5 10 15

y [M ]

-15

-10

-5

0

5

10

15

x
[M

]

b20-spins

-15 -10 -5 0 5 10 15

y [M ]

b20

-15 -10 -5 0 5 10 15

y [M ]

b20+spins

−7

−6

−5

−4

−3

−2

−1

0

1

-2 -1 0 1 2

y [M ]

8

9

10

11

12

x
[M

]

b20-spins

-2 -1 0 1 2

y [M ]

b20

-2 -1 0 1 2

y [M ]

b20+spins

−7

−6

−5

−4

−3

−2

−1

0

1

Figure 1. Ricci scalar at the equator for the SKS metric for anti-aligned spins (left), non-spinning (center), and
aligned spins (right), at different scales (top, center, bottom). Solid-grey circles estimate the BHs horizons at r(1,2)2 =

2M (1,2)
(
M (1,2) +

√
M (1,2)2 − a(1,2)2

)
, solid-black circles estimate the BHs singular regions at r(1,2) =

∣∣∣a(1,2)∣∣∣, where r(n)

is the radial distance from the n-th BH. These estimations follow from known singularities and horizons for a single BH in
Cartesian-KS coordinates. Dashed circles represent the limit of the excised region of the domain of our GRMHD simulations,
at r = 15M . The Ricci scalar is calculated through 4th-order finite differencing of the SKS metric (11), in Cartesian-KS
coordinates, with 320 × 320 × 80 cells, for grid lengths of (160, 160, 40) (top), (40, 40, 10) (center), and (5, 5, 1.25) (bottom),
respectively for x, y, z.
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Figure 2. Convergence factor pR (Eq. (19)) in linear col-
orscale, measured in the BH orbital plane, as determined
from resolutions: ∆1x = 0.5, ∆2x = 0.25, ∆3x = 0.125.

evolve the system integrating the GRMHD equations

of motion (EoM) with the well-tested code Harm3d

(Gammie et al. 2003; Noble et al. 2006, 2009). We ne-

glect the contribution of matter fields to spacetime cur-

vature and use the SKS metric as the background geom-

etry. Since we focus on the features of the circumbinary

disk, we excise a spherical region at the center of the

domain that contains the BHs.

4.1. GRMHD evolution

The evolution of the circumbinary disk follows from

the integration of the GRMHD EoM on the background

SKS metric. These equations are the continuity equa-

tion, the local conservation of energy and momentum,

and Maxwell’s equations (see Noble et al. 2009). In flux-

conservative form, these read:

∂tU(P) = −∂iFi + S(P) , (20)

where P is the vector of primitive variables, U the vector

of conserved variables, F the fluxes, and S the sources.

They read:

P =
[
ρ, P, ũk, Bk

]T
, (21)

U(P) =
√−g

[
ρut, T tt + ρut, T tj , B

k
]T
, (22)

Fi(P) =
√−g

[
ρui, T it + ρui, T ij ,

(
biuk − bkui

)]T
,

(23)

S(P) =
√−g

[
0, TκλΓλtκ −Ft, TκλΓλjκ −Fj , 0k

]T
,

(24)

where g denotes the determinant of the SKS metric, ρ is

the rest mass density, uµ is the fluid four-velocity, and

ũµ is the fluid four-velocity as measured by a zero angu-

lar momentum observer (ZAMO). The magnetic field is

represented by Bk = ∗F kt
√

4π, where ∗Fµν is the dual

of the Maxwell tensor, bµ = (δµν + uµuν)Bν is the pro-

jection of the magnetic field into the fluid’s comoving

frame. In addition, Γλµν is the affine connection for the

SKS metric and Tµν is the sum of the stress-energy ten-

sor of a perfect fluid and the EM stress energy tensor,

defined as:

Tµν = (ρh+ 2pm)uµuν + (p+ pm) gµν − bµbν , (25)

where p denotes the the pressure of the fluid, h =

1 + ε + p/ρ the specific enthalpy, ε the specific internal

energy, and pm = bµbµ/2 the magnetic pressure. The

internal energy is u = ρε, and we assume an adiabatic

Γ-law equation of state: P = (Γ − 1)u, with Γ = 5/3,

corresponding to a non-relativistic fluid without internal

degrees of freedom.

In accretion disks, dissipation converts magnetic and

kinetic turbulence into heat. To regulate the consequent

growth in the temperature, we follow Noble et al. (2009)

and include a sink term Fµ in the conservation equa-

tions (20). This term portrays the effect of optically-thin

radiative cooling. For isotropic emission in the fluid’s

frame, the sink term takes the form Fν = Lcooluν , where

Lcool is the cooling function, defined as the rate of ra-

diated energy per unit of proper time. We set Lcool to

follow the local increase in entropy S, cooling the plasma

to the initial entropy S0 (Noble et al. 2012):

Lcool =
ρε

tcool

(
∆S

S0
+

∣∣∣∣
∆S

S0

∣∣∣∣
)1/2

, (26)

where ∆S = S − S0, S = p/ρΓ, S0 = 0.01, and tcool =

2π(r/M)3/2. We do not cool unbound material, defined

as the portion of the plasma where (ρh+ 2pm)ut < −ρ.

By controlling the temperature, the cooling function sta-

bilizes the aspect ratio H/r of the disk (see Eq. (A3));

at the same time, it also estimates the luminosity. Noble

et al. (2012) did not claim to include the square root in

Eq. (26), but this is a typo in the manuscript and the

square root was actually included in the computational

code (personal communication).

We integrate the conservation equations (20) with

high-resolution shock-capturing schemes implemented in

Harm3d (Gammie et al. 2003; Noble et al. 2006, 2009).

After reconstruction of the primitive variables to the

cell interfaces through a piecewise parabolic method, we

apply the Lax-Friedrichs formula to compute the local

fluxes (Gammie et al. 2003). We use fourth-order fi-

nite differences for spatial derivatives, and the method of

lines for time integration with a Runge-Kutta method of
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second-order. If the updates of ρ or u go below the corre-

sponding atmosphere values ρatm = 2×10−10(r/M)−3/2,

uatm = 2× 10−12(r/M)−5/2 they are reset to the latter.

The primitive variables are recovered from the conserved

variables with the scheme described in Noble et al.

(2006). We use the constrained transport (FluxCT)

algorithm (Toth 2000) to maintain the solenoidal con-

straint, ∂i
(√−gBi

)
= 0. For more details on the nu-

merical implementation, see Noble et al. (2009).

4.2. Circumbinary disk initialization

As initial data for the matter fields, we construct

a torus in nearly hydrostatic equilibrium at the cir-

cumbinary region. Fishbone & Moncrief (1976) and

Chakrabarti (1985) presented this solution to the rel-

ativistic Euler’s equations for the case of stationary and

axisymmetric spacetimes in Boyer-Lindquist (BL) co-

ordinates, where the only non-zero off-diagonal compo-

nents of the metric are gBL
tφ and gBL

φt . To use the same

technique and build the torus on the stationary and ax-

isymmetric spacetime, we transform the SKS metric (11)

to BL-like coordinates and take a φ-average of the metric

as we explain below.

First, we transform the whole SKS metric (11) from

Cartesian-KS to BL-like coordinates using the standard

transformations for a single, non-spinning black hole

with mass M = M (1) + M (2). The transformation is

given by:

t = uBL − rBL +

∫
drBL

rBL

rBL − 2M
, (27)

xKS = rBL sin θBL cosφBL , (28)

yKS = rBL sin θBL sinφBL , (29)

zKS = rBL cos θBL (30)

The metric transforms in the usual way:

gBL
µν =

dxαKS

dxµBL

dxβKS

dxνBL

gKS
αβ . (31)

The SKS spacetime has a helical Killing symmetry

through the Killing vector Kµ = (∂t)
µ

+ Ωbin (∂φ)
µ
,

where Ωbin is the binary orbital frequency, and the time

average of the metric coincides with the corresponding

azimuthal average. Then, following the procedure of

Noble et al. (2012), we construct a stationary and ax-

isymmetric spacetime from the azimuthal average:

g̃BL
µν =

∫
gBL
µν

√
gBL
φφ dφ

∫ √
gBL
φφ dφ

. (32)

We then follow the steps of Noble et al. (2012) for the

construction of the torus over the metric (32). The free

parameters of this model are the radial distance to the

disk inner edge rin, the radial distance to the maximum

of pressure rp, and the specific angular momentum of the

fluid at the inner edge lin. From such a procedure, we ob-

tain the hydrodynamic properties of the fluid, including

its four-velocity in BL coordinates uµBL. Transforming

the four-velocity to Cartesian-KS via uµKS =
dxµ

KS

dxα
BL
uαBL,

we obtain the hydrodynamical ID for the torus in a co-

ordinate system consistent with the SKS metric (11).

We include random perturbations of the internal energy

u = ρε, with amplitude 10−2, to precipitate turbulence

and accretion.

We initialize the magnetic field in the interior of the

disk as a set of dipolar loops that follow the lines of

constant density of the fluid. The corresponding vector

potential Aµ in spherical coordinates (t, r, θ, φ) has one

non-vanishing component:

Aφ = A0max [(ρ− ρcut) , 0] , (33)

where ρcut = 0.25 ρmax so the initial magnetic field is en-

tirely confined within the torus and the field lines wrap

around the region of maximum density ρmax. The con-

stant A0 is chosen such that the initial ratio of the fluid

integrated pressure to the magnetic integrated pressure

satisfies:

∫
p
√−g d3x∫

pm
√−g d3x

∼ 100. (34)

In this way, the initial equilibrium between thermal and

magnetic stresses is comparable for different simulations.

In the next subsection, we explain how these spherical

coordinates (t, r, θ, φ) relate to the Cartesian-KS. No-

ble et al. (2012) claimed that the ratio of the fluid’s

total internal energy to the total magnetic energy was

initialized to 100, but this is a typo in the manuscript

and actually the condition (34) was demand (personal

communication).

We fill the region outside the torus with an atmo-

sphere, or numerical vacuum, modeled by a tenuous,

non-magnetized, static fluid in approximate hydrostatic

equilibrium: ρatm = 2 × 10−10(r/M)−3/2, uatm = 2 ×
10−12(r/M)−5/2, and uiatm = 0.

The last step of the initialization involves the transfor-

mation of the SKS metric (11), the initial four-velocity

uµKS, and the initial four-vector potential Aµ, to the

numerical coordinates used for the integration of the

GRMHD EoM (see the next subsection).

4.3. Numerical grid, boundary conditions, and

simulation parameters

Numerical errors in conservation of momentum are

smallest in the direction of coordinate lines; conse-
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quently, given the approximate axisymmetry of the sys-

tem, the Cartesian-KS basis would be a poor choice for

the global coordinates of the simulation. We move to a

spherical basis through a standard spatial transforma-

tion:

t = t , (35)

xKS = r sin θ cosφ , (36)

yKS = r sin θ sinφ , (37)

zKS = r cos θ . (38)

These are the physical coordinates in our simulation 1.

For the actual integration of the EoM we move to a

numerical coordinate system
(
x(0), x(1), x(2), x(3)

)
that

relates to the physical one by:

t = x(0) , (39)

r
(
x(1)

)
= Mex

(1)

, (40)

θ
(
x(2)

)
=
π

2

[
1 + (1− ξ)

(
2x(2) − 1

)
+ (41)

+

(
ξ − 2θc

π

)(
2x(2) − 1

)n]

φ
(
x(3)

)
= x(3) , (42)

where n = 9, ξ = 0.87, and θc = 0.2. We construct

a uniform grid of
(
x(1), x(2), x(3)

)
where the center of

the i, j, k-cell has coordinates
(
x

(1)
i , x

(2)
j , x

(3)
k

)
, with

x
(1)
i = x

(1)
b + (i + 1/2)∆x(n), and equivalently for x

(2)
j

and x
(3)
k . The grid, then, is determined by the param-

eters: x
(1)
b = ln(rmin/M), ∆x(1) = ln(rmax/rmin)/N (1),

rmin = 15M , rmax = 300M , N (1) = 300, x
(2)
b = 0,

∆x(2) = 1/N (2), N (2) = 160, x
(3)
b = 0, ∆x(3) =

2π/N (3), and N (3) = 400. A uniform grid of these nu-

merical coordinates implies better resolution at smaller

physical radii and at the equatorial plane of the sys-

tem. Noble et al. (2012) showed that, in these condi-

tions, this grid resolves the magnetorotational instabil-

ity (MRI) (Velikhov 1959; Chandrasekhar 1960; Balbus

& Hawley 1991) and spiral density waves generated by

the binary torques 2. We evolve this sytem from t = 0 to

1 These coordinates are not the usual spherical Kerr-Schild coordi-
nates used in the literature of accretion disks (see, for instance,
Gammie et al. (2003)), but they result from a standard spherical
transformation of the Cartesian Kerr-Schild coordinates usually
used in the literature of Numerical Relativity (see, for instance,
Matzner et al. (1998))

2 There is a small difference between our grid and the one used by
Noble et al. (2012). The latter set rmax = 260M , but we extend
it to rmax = 300M . Our grid still satisfies the physical resolution
requirements.

t = 1.5×105M , using a dynamical step ∆t = 0.45∆tmin,

where ∆tmin is the shortest cell crossing time of matter

fields over the domain at each time.

Boundary conditions are imposed through zeroth-

order extrapolation of primitive variables into ghost

zones. Specifically, outflow boundary conditions are ap-

plied on x(1) and x(2)-boundaries, while periodic bound-

ary conditions are used on x(3)-boundaries. We force

ur = 0 if it points into the domain at the r-boundaries.

This diode-type condition was found to be unstable in

some circumstances involving low-density regions by No-

ble et al. (2012) but successfully used in Newtonian sim-

ulations by MacFadyen & Milosavljević (2008), Shi et al.

(2012), D’Orazio et al. (2013), among others.

We perform a set of five runs, denoted: b20-spins,

b20 v0, b20 v1, b20 v2, b20+spins. In every run, the

BHs have equal masses: M (1) = M (2) = 0.5, so the

total mass of the system is M = 1; the distance between

them is fixed to b = 20M . The disk’s initial inner edge

is at rin = 60M , and the initial pressure maximum is at

rp = 100M .

The spins of the BHs in b20-spins are a(1) = a(2) =

−0.9M (1,2), i.e. opposite to the angular momentum of

the binary. The spins in run b20+spins have the same

magnitude but are aligned with the orbital angular mo-

mentum. Runs b20 v0, b20 v1, b20 v2 have no spin.

These three runs differ from one another only in the

random initial perturbations of the internal energy; the

goal of these runs is to calibrate the size of intrinsic fluc-

tuations due to turbulence so that we can tell whether

the spin runs differ significantly. In Table 1 we gather

the relevant properties of the binaries and initial disks

of our runs.

The specific angular momentum of the fluid at the in-

ner edge of the disk lin is set so the ratio H/r equals

0.1 at rp. This results in lin = 8.62M , 8.60M , 8.60M ,

8.60M and 8.57M for b20-spins, b20 v0, b20 v1,

b20 v2 and b20+spins, respectively (see Table 1).

5. CIRCUMBINARY DISK DYNAMICS

To globally characterize the dynamics of these sim-

ulations, in Fig. 3 we plot the accretion rate Ṁ as a

function of time (see Eq. (A4)) at the innermost radial

boundary of the domain. We distinguish three dynami-

cal stages in this plot: MRI growth (t = 0 – 30×103M),

in which the MRI grows to its saturated amplitude; sub-

sequent relaxation (t = 30 – 75 × 103M), in which the

accretion rate progressively diminishes over time; and a

steady state (t = 75 – 150× 103M). The first is a tran-

sient period, and will not be included in our analysis.

The second stage is still affected by the initial transient
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b [M ] M (1,2) [M ] Ωbin a(1,2) lin [M ] Σ0 [M−1]

b20-spins 20 0.5 b−3/2 −0.9M (1,2) 8.62 0.1070

b20 v0 20 0.5 b−3/2 0.0 8.60 0.1066

b20 v1 20 0.5 b−3/2 0.0 8.60 0.1066

b20 v2 20 0.5 b−3/2 0.0 8.60 0.1066

b20+spins 20 0.5 b−3/2 0.9M (1,2) 8.57 0.1063

Table 1. Properties of the binary system for our runs, and the initial values of lin and Σ0. In every case the BHs separation is
fixed to b = 20M , they have equal masses M (1,2) = 0.5M , and move in Keplerian orbits with Ωbin = b−3/2. We explore different
values for the spins of the BHs. Notice runs b20 v0, b20 v1 and b20 v2 have identical settings. They only differ on the random
initial perturbations on the internal energy u.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t [104M ]

0.00

0.02

0.04

0.06

0.08

−
d
M
/d
t

[√
M
bΣ

0
]

MRI growth Relaxation Steady state

b20-spins

b20 v0

b20+spins

0 50 100 150 200 250
Orbit #

Figure 3. Accretion rate integrated at the innermost boundary of the grid, as a function of time. From this plot, we distinguish
three dynamical stages: MRI growth (t = 0 – 30 × 103M), relaxation (t = 30 – 75 × 103M), and steady state (t = 75 –
150× 103M).

and will not be used for our main conclusions. We will

focus, instead, on the steady state epoch.

We organize our results in three subsections. First, we

focus on the properties of the plasma that are sensitive

to the spins; these properties are mostly related to the

cavity and the accretion streams. Then, in the second

subsection, we interpret these spin-sensitive results in

terms of the gravitational potential of the linearized SKS

metric. Finally, in the third subsection, we describe the

bulk properties of the circumbinary disk, all of them

insensitive to the spin of the BHs.

Because MHD turbulence is a fundamental property

of accretion disks, all our results are subject to intrinsic

variance. This fact complicates the identification of sub-

tle physical processes such as the effect of the spins on

the circumbinary disk. To quantify this variance, we use

the subset of runs b20 v0, b20 v1, and b20 v2. The pa-

rameters of these three runs are identical and their only

differences arise from stochastic processes triggered by

random initial perturbations in the internal energy of

the fluid. Specifically, given a physical quantity Pi with

i = 0, 1, 2 for runs b20 v0, b20 v1, and b20 v2, we will

express the result as 〈P〉a=0 ± σP , where

〈P〉a=0 =
1

3

2∑

i=0

Pi (43)

is the mean of Pi over the non-spinning runs, and

σP =

√√√√
2∑

i=0

(〈P〉a=0 − Pi)
2

3− 1
(44)

is a coarse measure of the corresponding standard devia-

tion. To determine whether a run with different param-

eters differs significantly from the three non-spinning

runs, we measure the deviation Z of its prediction P ′,
in units of standard deviations by

Z =
P ′ − 〈P〉a=0

σP
. (45)

Following Noble et al. (2012), many of our

results will be expressed in units of Σ0, the

initial maximum value of the surface density

Σ(r, φ) (see Eq. (A1)). These values are Σ0 =
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Figure 4. Integrated luminosity L (see Eq. (A6)) as a func-
tion of time for three of our runs.

0.1070M−1, 0.1066M−1, 0.1066M−1, 0.1066M−1 and

0.1063M−1 for runs b20-spins, b20 v0, b20 v1, b20 v2

and b20+spins, respectively (see Table 1).

5.1. Spin-Sensitive Results

The spin of a BH has important effects on matter or-

biting near the horizon, but these effects decline rapidly

with radius; frame-dragging terms in the effective grav-

itational potential for spinning black holes are ∝ r−3

(see Appendix B). For this reason, we do not expect

the spin of the BHs will have a direct impact on the

bulk properties of the circumbinary disk, whose inner

edge lies at r ≈ 50M . The accretion streams, on the

contrary, reach distances close enough to the black hole

that these effects may be relevant.

Since the accretion streams carry nearly all the mat-
ter accreted by the binary, we begin by exploring the

effect of the spins on the accretion rate. For all three

non-spinning cases, the time-averaged accretion rate at

the inner boundary during the steady state period is

(see Fig. 3) (5.0± 0.4)× 10−3
√
MbΣ0. Strikingly, runs

b20-spins and b20+spins deviate from this mean value

by +5.7 and −1.8 standard deviations, respectively. In

other words, the circumbinary accretion rate is enhanced

(reduced) by +45% (−14%) if the spin of the BHs are

anti-parallel (parallel) to the angular momentum of the

binary.

As found in previous works with similar parameters

(Shi et al. 2012; Noble et al. 2012), a portion of the

falling streams receives enough angular momentum from

the binary and is flung back to the circumbinary disk,

impacting the inner edge and causing strong shocks

whose dissipation contributes significantly to the lumi-

nosity. Having found that the accretion rate is sensitive

to spin, we might therefore expect that the luminosity

is likewise. In particular, compared with non-spinning

runs, the stronger streams of b20-spins should increase

the total luminosity of the system, and the opposite for

the weaker streams of b20+spins. In Fig. 4 we plot

L as a function of time for our runs. The average of

L during the steady state period of non-spinning runs

was (1.76 ± 0.07) × 10−3GMΣ0c
−2. The correspond-

ing averages for b20-spins and b20+spins depart from

this mean by +7.49 and −3.17 standard deviations, re-

spectively, a very significant effect. These differences

correspond to a change of +29% and −12% in the total

luminosity of the system, respectively, with respect to

non-spinning runs.

Besides carrying the accretion flow and driving shocks

that contribute to the integrated luminosity, the streams

also play an important role in angular momentum trans-

port. As they plunge toward the binary, the streams are

subjected to strong torques by the binary. The por-

tion of the stream flung back outward then transfers

this added angular momentum to the inner edge of the

circumbinary disk. As explained by Shi et al. (2012),

because the local angular momentum J =
∫
jt
√−gdV

with jµ = Tµφ should be constant in a time-steady disk,

this supplemental angular momentum is transferred to

adjacent layers by internal stresses.

To study the angular momentum budget of the cir-

cumbinary disk, we unpack ∂r∂tJ into its several com-

ponents. We refer the reader to Appendix C of Noble

et al. (2012) for the explicit expansion (see also Farris

et al. 2011). Five stresses contribute: the gravitational

stress TG, whose radial gradient produces the gravi-

tational torque TµνΓνµφ; the Maxwell stress ∂rM
r
φ,

which is the EM part of T rφ; turbulent Reynold stresses

∂rR
r
φ = ρδurδuφ, resulting from local perturbations of

the fluid velocity; the advected Reynolds stress Arφ as-

sociated with the mean velocities ur and uφ; and the

radiative stress Fφ from the radiative cooling function.

Summed, these produce the local torque

∂r∂tJ = ∂rTG − {Fφ} − ∂r {Mr
φ} (46)

−∂r {Rrφ} − ∂r {Arφ} ,

In Fig. 5 we plot each term on the RHS of Eq. (47)

as a function of r, averaged over the period t = 70

– 150 × 103M . The total angular momentum flux

(black) is approximately constant as a function of ra-

dius, as expected for a steady state flow. In the cav-

ity (i.e., r < 2b), there is a significant difference be-

tween our non-spinning and spinning runs. The maxi-

mum of the gravitational torque (blue) for non-spinning

runs is (2.011 ± 0.053) × 10−2MbΣ0, while b20-spins
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Figure 5. Shell-integrated torques as a function of r, averaged over the period t = 70 – 150 × 103M . We distinguish the
gravitational torques excerted by the binary (green/down triangle), the density of advected angular momentum (gold/plus),
radiative losses (cyan/triangle up), and the net flux of angular momentum (black/diamond).

and b20+spins differ by 7.11 and −2.40 standard devia-

tions, respectively. In other words, the stronger (weaker)

streams from b20-spins (b20+spins) increase (reduce)

the maximum of the gravitational torque density by 18%

(−6%). The Reynold stresses (green) are increased (re-

duced) accordingly because once additional angular mo-

mentum is deposited by gravitational torques, it must

be carried away by fluid motions.

Contrasts in accretion rate must also, through mass

conservation, affect the radial distribution of mass in the

system. To search for this effect, we contrast the surface

density of gas Σ(r, φ) (see Eq. (A1)) in the corotating

frame of the binary with the surface density in non-

spinning runs:

ηΣ(r, φcor) =
Σ(r, φcor)[Σ0]− 〈Σ(r, φcor)[Σ0]〉a=0

〈Σ(r, φcor)[Σ0]〉a=0

,

(47)

where φcor = φ − Ωbint, and the brackets [Σ0] denote

that each surface density is taken in units of their initial

maximum Σ0. In Fig. 6 we plot the average of this resid-

ual over the steady state period for b20-spins (left) and

b20+spins (right), and in Fig. 7 we plot the averaged

surface density in the corotating frame of the binary for

non-spinning runs, which is the reference function for

the latter residuals.

The residual ηΣ(r, φcor) is greatest inside the cavity,

where the spin effects should be largest. The sign of

the effect is such that the residual in the cavity is pos-

itive for b20-spins but negative for b20+spins—and

flips in the bulk of the circumbinary disk (r > 4b). This

is consistent with our results on enhanced (reduced) cir-

cumbinary accretion. If, independent of spin, the system

is in approximate inflow equilibrium, enhancement (or

reduction) of the accretion rate implies that, averaged

over time, the cavity must contain more (or less) gas

mass for a fixed mass near the circumbinary disk’s inner

edge. In addition, the outer disk is drained a bit more

when there is a higher accretion rate at its inner edge

when all the different initial disk masses were the same.

Beyond the amount of matter and angular momentum

that the streams carry, the spin of the BHs may affect

the streams’ trajectories. In Fig. 8 (top) we plot the av-

eraged surface density during the steady state period, in

the corotating frame of the binary, evaluated at the ra-

dial inner boundary of the domain rin, for spinning runs

and the average of non-spinning runs (b20 av). We no-

tice two distinctive peaks at φcor ≈ 0.06π, 1.06π that we

associate with the narrow streams that fall toward each

BH (see also Fig 7). At a first glance, the curves for

spinning and non-spinning runs look equivalent, but the

zoom-in plot, and the percent deviations (bottom), show

some interesting results. First, we notice the peaks for

the different runs are shifted in φcor, in ascending order

b20-spins, b20 av, b20+spins. Regarding the percent

deviations of spinning runs, we notice b20-spins finds
local maxima behind the peaks of the surface density,

and local minima ahead, and b20+spins present the

opposite behavior. In the next subsection, we explain

these results from the effective gravitational potential of

spinning binaries.

5.2. Interpretation of Spin-Sensitive Results

In Section 5.1 we found that the spin of the BHs in

a binary system has significant effects on the circumbi-

nary accretion and related quantities. In this subsection,

we explain the causes of these effects in simple physical

terms.

In Appendix B, we analyze the equations of motion

of particles orbiting near spinning binaries. We find the

spin of the BHs introduces two effects to the lowest PN

expansion of the gravitational potential. First, the spin
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Figure 6. Residuals of the surface density with respect to non-spinning runs for b20-spins (left) and b20+spins (right),
averaged over the steady state period (see Eq. (47)).

Figure 7. Average of the surface density over the steady
state period for non-spinning runs, in the corotating frame
of the binary (logarithmic scale). We notice the piling-up of
matter in the inner region 2b < r < 4b, the evacuated inner
cavity in r < 2b, and the falling streams toward each BH.
This function is the reference for the residuals in Fig. 6.

couples to the orbital velocity of the BH, as seen from

the second and fourth terms of Eq. (B19). Far from

the source and averaging in φ, however, this effect is

canceled for the case of identical BHs. The second effect

is frame-dragging, or twist of spacetime geodesics, as

seen in Eq. (B26). Interestingly, this effect remains after

expanding for large radius r and averaging in φ, and

couples to the orbital angular momentum of the fluid.

In the following, we explore how this term affects the

process of stream formation and accretion.
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Figure 8. Top: Surface density, averaged during the steady
state period, in the corotating frame of the binary, and eval-
uated at the radial inner boundary of the domain rin, for
spinning runs and the average of non-spinning runs (b20 av).
Bottom: Persent deviation of curves for spinning runs with
respect to the non-spinning average.

Shi & Krolik (2015) found that, in the phase-space

of positions and velocities of the orbiting fluid, the vol-

ume of infalling trajectories from the inner edge of the

circumbinary disk is severely constrained. Gas with an-

gular momentum close to the circular orbit angular mo-

mentum at the inner-edge radius falls in so slowly that

the binary torques raise its angular momentum and the

gas is cast back out to the circumbinary disk. Only gas

with angular momentum at least ' 15% less than that

of a circular orbit can fall in quickly enough to avoid ac-
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quiring too much angular momentum. Such gas parcels

must, in addition, begin their fall from a specific angle

relative to the binary separation axis. The upper limit

for the angular momentum J of the fluid to be accreted is

well approximated by the condition Φeff(rin) ≤ 0, where

Φeff is the gravitational effective potential of the binary,

evaluated at the inner boundary of the domain. As de-

rived in Eq. (B26):

ΦEff = −M
r
− 1

16

b2M

r3
+
J2

2r2
+
MJ

3r3

(
2a+

L

4

)
. (48)

The condition Φeff(rin) ≤ 0 is equivalent to J ≤
(6.54, 6.51, 6.48) for a = (−0.9, 0, 0.9), respectively. In

other words, spins opposite (parallel) to the angular

momentum of the binary extend (reduce) the volume

of infalling trajectories in the phase-space of position

and velocity of the orbiting fluid. This fact explains

the enhanced (reduced) accretion in the run b20-spins

(b20+spins).

In Fig. 8 we noticed the accretion streams for

b20-spins (b20+spins) lie behind (ahead) in φcor with

respect to non-spinning runs. In other words, the gas

swings in azimuth by a smaller (larger) angle while

traversing the cavity before passing through the inner

boundary. This is also consistent with frame-dragging

effects.

5.3. Spin-Insensitive Results and Comparison with

Previous Works

In this subsection, we describe the properties of the

circumbinary disk that are not significantly affected by

spins, but the length of our simulations has revealed

new aspects of them, not seen in previous, shorter sim-

ulations.

In binaries with mass-ratio close to unity and low

orbital eccentricity, a remarkable m = 1 mode in the

φ-distribution of matter develops in the radial range

2b < r < 4b; the so-called lump. This lump arises as

a result of phase-coherence in the trajectory of matter

that falls a short way but then is propelled back out af-

ter the binary torques add to its angular momentum (see

Shi et al. 2012; Noble et al. 2012; D’Orazio et al. 2013;

Farris et al. 2014; Miranda et al. 2016; Tang et al. 2017).

As we will show, our longer simulations reveal that the

dynamics of the lump are predictable from the time of its

formation, and its orbit stabilizes after ∆t ∼ 40×103M .

To characterize the amplitude of the lump, we calcu-

late the power of the Fourier modes m = 0 and m = 1

in the vertically integrated density as a function of ra-

dius and time (see Eq. (A8), and Cuadra et al. (2009),

Noble et al. (2021), in prep.). We denote these modes

Figure 9. Power of m = 1 mode of the vertically integrated
density, as function of radii and time, for b20 v2. We notice
the growth and saturation of the lump at 2b < r < 4b. The
dashed line represents the moment of lump formation tlump.
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Figure 10. Evolution of the ratio of the power of the
Fourier mode m = 1 and m = 0 of the vertically inte-
grated surface at the lump formation region. The inter-
section of the black dashed and solid curves defines the
time of lump formation. In ascending order, tlump/M =
36390, 39690, 47550, 50280, 64650.

A0(t, r) and A1(t, r), respectively. In Fig. 9, we plot

A1(t, r) for b20 v2 and, indeed, we notice the growth

and saturation of the lump at 2b < r < 4b.
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Figure 11. Surface density Σ(r, φ) in units of Σ0 at different
times for run b20 v0. We distinguish the double accretion
streams during the first orbits of the binary (top, left), the
formation of the lump (top, right), the growth of the lump
and the transition to a single accretion stream (bottom, left),
and the saturated lump at the end of the simulation (bottom,
right).

To determine the time tlump when the lump forms, we

integrate Am(t, r) over the radial range 2b < r < 3b

and define tlump as the time when the ratio of this in-

tegral of A1(t, r) to the total surface density (this in-

tegral of A0(t, r)) is larger than 0.2. To visualize the

different tlump for each run, in Fig. 10 we plot the evo-

lution of the ratio of the m = 1 and m = 0 inte-

grals for our runs. For non-spinning runs, the lump

forms at 36390, 64650, 47550M , resulting in an average

tlump = (5.0±1.5)×104M . In Fig. 11 (top, right) we plot

the surface density Σ(r, φ) (see Eq. (A1)) at t = tlump

for b20 v0, where we notice the recently formed lump

in the positive y hemisphere. For runs b20-spins and

b20+spins, the lump forms at 50280M and 39690M re-

spectively, in concordance with non-spinning values.

To characterize the orbital dynamics of the lump, we

define rlump(t) as the radial position of the maximum

value of A1(t, r) as a function of time (see Fig. 9). We

define Ωlump(t) in terms of the time-derivative of the

Fourier phase for the m = 1 mode (see Eq. (A11), and

Noble et al. (2021), in prep.). Lastly, we define the

eccentricity elump(t) in terms of the ratio between the

lump’s radial and azimuthal velocity components (see

Eq. (A5) and Shi et al. (2012)). In Fig. 12 we plot these

quantities as a function of t− tlump, for each of our runs.

In each of the three panels, all five curves follow very

nearly the same paths. This means that, although tlump

is subject to a considerable dispersion among our runs,

once the lump forms, its dynamics are robust and pre-

dictable.

In Fig. 12 we notice the orbit of the lump stabi-

lizes after ∆t ∼ 40 × 103M . Its radial position rlump

grows approximately linear in time and then gradu-

ally equilibrates. For the first ∆t = 20 × 103M , non-

spinning runs present rlump = (2.48 ± 0.05) b, but for

the last ∆t = 4× 103M we find rlump = (3.05± 0.05) b.

The angular frequency of the lump decreases accord-

ingly, following a Keplerian behavior. For the first

∆t = 20 × 103M we find Ωlump = (0.25 ± 0.01) Ωbin

but for the last ∆t = 40 × 103M it reduces to Ωlump =

(0.197± 0.003) Ωbin. This values are in agreement with

previous works. While the early value of Ωlump agrees

with Noble et al. (2012) who evolved the system for the

earlier stages of the lump development, the stabilized

value of Ωlump agrees with longer two-dimensional hy-

drodynamical simulations (e.g., Miranda et al. (2016)).

Regarding the eccentricity, initially we find ln elump =

−3.6±0.2 for non-spinning runs, but later it stabilizes to

ln elump = −2.91± 0.04, in agreement with results from

Shi et al. (2012). Regarding our spinning runs, every

quantity lies within ±1.5 times the standard deviation,

implying the dynamics of the lump are independent of

the spin of the BHs.

In addition to the overdense lump, matter tends to

pile up at the inner edge of the circumbinary disk. This

is as a consequence of the interplay between the internal

stresses that remove angular momentum from matter

just outside the inner edge and the gravitational torques

that add angular momentum to streams in the cavity in-

side the inner edge. Our longer simulations reveal that

this piling-up saturates during the steady state. To ana-

lyze the dynamics of this overdense region, in Fig. 13 we

plot the θ-integrated and φ-averaged density Σ(r) (Eq.

(A2)) in the period t = 70 – 150 × 103M . Each curve

represents an average over ∆t = 2×103M and, through

colors violet to red, they span the entire steady state pe-

riod. The maximum of the averaged curves (dashed) for

non-spinning runs is (0.76± 0.07) Σ0, and its radial po-

sition is (2.80± 0.06) b. Noble et al. (2012) found that,

when the binary evolution is frozen, the peak surface

density increased steadily up to t ≈ 75× 103M ; Fig. 13

reveals that their simulation stopped just at the point

where the growth in peak surface density ceases.

The length of our simulations makes them ideal to

study the characteristic frequencies of the system. As

expected from the predominant quadrupole mode of the

binary potential, accretion into the inner boundary is

initially carried by two narrow streams that extend from
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Figure 12. Evolution of the radial position of the lump
(top), its orbital frequency (middle), and orbital eccentricity
(bottom). We plot the evolution of these quantities from the
moment of lump formation tlump until tlump + 8× 104M .

the inner edge of the disks toward each BH (see Fig. 11

(top, left)). In the steady state, however, accretion is

dominated by a single stream that is produced when a

BH passes near the lump (see Fig. 11 (bottom, left)).

The frequency of this occurrence is 2(Ωbin − Ωlump) ∼
1.6Ωbin. Indeed, in Fig. 14 (left) we plot the Fourier

Power Spectrum (FPS) of the accretion rate during the

steady state (see also Fig. 3) and find the expected peak

at ω = 1.6Ωbin. Fig. 14 (left) also presents a strong peak

at ω = 0.12Ωbin, which corresponds to a lower-frequency

modulation of the accretion rate, as seen in the spikes

of Fig. 3 during the steady state.

This modulation is caused by an oscillation of the ra-

dial position of the lump. Indeed, in Fig. 14 (right) we

plot the FPS of rlump(t) during the stabilized period of

the orbit of the lump 40×103M < t−tlump < 80×103M

(see also Fig. (12) (top)), and find its maximum at

ω = 0.12Ωbin. The causes of this radial oscillation will

be addressed in subsequent work.

Although the bimodal distribution of the FPS of the

accretion rate at the cavity is in agreement with previous

works (MacFadyen & Milosavljević 2008; Shi et al. 2012;

D’Orazio et al. 2013; Muñoz & Lai 2016, among others),

the precise values of the peak frequencies claimed in this

work differ with such references.

In the following, we analyze if our longer simulations

approach inflow equilibrium. In Fig. 15 we plot the av-

erage of the radial profile of the accretion rate (see Eq.

(A4)) over the period t = 70 − 150 × 103M (dashed,

red), and over four equally spaced sub-periods with

∆t = 20×103M (dark to light curves). While we notice

the average curve has a systematic growth from r > 3b,

implying the disk has not reached inflow equilibrium,

we also notice an improvement of this inflow condition

if compared with previous three-dimensional MHD sim-

ulations that evolved the system for earlier stages (Shi

et al. 2012; Noble et al. 2012). In those earlier papers,

the ratio of the accretion rate at r ' 3−4b to the accre-

tion rate crossing the inner edge was about a factor of 3;

extending the duration of the simulation from 70×103M

to 150 × 103M reduces that contrast to a factor ≈ 1.5.

Thus, for these conditions, the inflow equilibration time

at this radius is t ∼ 105M .

Interestingly, also in Fig. 15, we notice periods when

the accretion rate becomes negative at regions close to

the inner edge of the disk. In other words, the inner

edge presents periods of slowly outward receding.

Finally, we analyze the mechanisms of angular mo-

mentum transport during the steady state of our longer

runs. Comparing our results on shell-integrated torques

in Fig. 5 with those of Shi et al. (2012) and Noble et al.

(2012) for earlier epochs of the system, we find that dur-

ing the steady stage Maxwell stresses (red) are signifi-

cantly reduced at the bulk of the disk. On the contrary,

Reynolds stresses are strengthened and show traces of a

propagating wave through the fluid. Shi & Krolik (2015)

also found a significant growth of turbulent torques in

the steady state period of a related system, and associ-

ated it with the propagation of a single-armed wave. We

will study these issues in detail in a subsequent work.

5.4. Summary

We found the spin of the BHs have a direct impact

on processes that take place in the inner cavity. Specifi-

cally, negative (positive) spins enhance (reduce) the cir-

cumbinary accretion by +45% (−14%) with respect to

the non-spinning case. The stronger (weaker) accretion

streams enhance (decrease) the globally integrated lu-

minosity by +29% (−12%), and the peak of the grav-

itational torques at the cavity by +18% (−6%), with

respect to non-spinning runs. In the long-term, these

effects can discreetly influence the bulk of the disk, as

we found a reduction (increment) of the surface density

for r > 4b. Finally, we found that the spin of the BH

affects the shape of the accretion streams, as they fall
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behind (advanced) in φ with respect to the non-spinning

case. Other properties of the circumbinary such as the

dynamics of the lump, the piling-up of matter at the

inner edge, or the radial profile of the accretion rate,

remain unaffected by the spin of the BHs.

The length of our runs allowed us to reach an unprece-

dented steady state in three-dimensional GRMHD simu-

lations. We found interesting differences with respect to

early epochs, as described by Shi et al. (2012) and Noble

et al. (2012). In particular, the dynamics of the lump are

robust and predictable since its formation and its orbit

stabilizes after ∆t ∼ 40×103M , the growth of the lump

and the piling up of matter at the inner edge of the disk

saturates and remains steady, there are regions within

the inner part of the circumbinary where the accretion

rate becomes negative, and the role of Reynolds stresses

grow at the bulk of the disk, but the role of Maxwell

stresses diminishes, revealing a demagnetization of the

plasma. We intend to explore these results in detail in

an upcoming work.

6. CONCLUSIONS

We presented a new approximate metric for the space-

time of widely separated BBHs in the relativistic regime

(b ≥ 20M). This metric is unique in the sense that it

can be used in the strong field regime, is easy to imple-

ment, it has an optimal performance, and includes the

spins of the BHs as free parameters. We computed and

analyzed its Ricci scalar R at different scales and con-

cluded the metric is an acceptable approximation for a

vacuum solution of EFE. Further, we proved its expan-

sion agrees with the lowest PN expansion of the metric

of a binary system of spinning BHs.

As a first application, we set and evolved a series of

magnetized circumbinary disks around an equal-mass bi-

nary system, with separation fixed at b = 20M . We ex-

plored different values for the spins of the BHs, aligned

and counter-aligned with the orbital angular momen-

tum of the binary, and performed three identical non-

spinning runs to study the effect of random perturba-

tions in our predictions (see Table 1). We followed

closely the techniques of Noble et al. (2012) that ex-

plored the same system (non-spinning) but for earlier

stages and with a different approach and gauge for the

spacetime construction. We evolved the system for

longer than previous three-dimensional MHD simula-

tions, until t = 150 × 103M or 266 orbits of the bi-

nary system. We noticed that the circumbinary disk

reaches a steady state from t = 75 × 103M onwards,

and focused our results on this period. Our results are

consistent with previous works on non-spinning binaries,

and with expectations for the effect of the spins on the

circumbinary disks, proving the physical validity of the

SKS spacetime. We conclude the spin of the BHs, via

frame-dragging effects, can significantly affect the cir-

cumbinary accretion and luminosity. Specifically, spins

counter-aligned (aligned) with the orbital angular mo-

mentum of the binary enhance (reduce) the circumbi-

nary accretion with respect to the non-spinning case.

Further, the spin twists the spacetime geodesics at the

cavity, and the streams reach the inner cavity behind

(forward) in φ with respect to the non-spinning case.

We will explore the dynamics of mini-disks around spin-

ning binaries in a subsequent work (Combi, et al., in

prep.).
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APPENDIX

A. DIAGNOSTICS

We summarize usual conventions and quantities used in the analysis of accretion disks:

• Surface density:

Σ(r, φ) =

∫
ρ
√−g dθ√

gφφ(θ = π/2)
, (A1)

and its φ-average:

Σ(r) =

∫
ρ
√−g dθ dφ∫ √

gφφ(θ = π/2) dφ
. (A2)

• Height of the disk:

H =

〈
ρ
√
gθθ |θ − π/2|

〉

〈ρ〉 . (A3)

• Accretion rate as a function of r:

dM(r)

dt
= −

∫
ρur
√−g dθ dφ . (A4)

• Eccentricity of the fluid in the lump region:

elump =

∣∣∣
∫ 4b

2b

〈
hvre

iφ
〉
dr
∣∣∣

∫ 4b

2b
〈hvφ〉 dr

. (A5)

• Integrated luminosity:

L =

∫
utLc

√−g dr dθ dφ . (A6)

• Fourier transformation with respect to φ of the vertically integrated density:

Bm(r, t) =
{
ρeimφ

}
, (A7)

and the corresponding mode power

Am(r, t) = |Bm(r, t)| . (A8)
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• Since the vertically integrated surface is a real function, its Fourier modes satisfy:

Bm(r, t)eimφ = Re [Bm(r, t)] cos(φ)− Im [Bm(r, t)] sin(φ) . (A9)

The maximum of these modes is found at the phase:

φm(r, t) = arctan

[
− Im [Bm(r, t)]

Re [Bm(r, t)]

]
. (A10)

where the function arctan is defined to return the value of φm in the range [0, 2π], checking on the sings of

Im [Bm(r, t)] and Re [Bm(r, t)]. Identifying the phase of the lump as the maximum of the m = 1 mode integrated

at the lump region 2b < r < 4b, we obtain the angular frequency of the lump:

Ωlump =
d

dt
φm=1(t) . (A11)

B. POST-NEWTONIAN APPROXIMATION

The linearity of the SKS metric (11) implies that its expansion to the lowest order in the boost velocities and large

radius, reproduces the lowest PN metric of a spinning compact binaries (see Tagoshi et al. 2001):

g00 =−(1 + 2Φ) +O(v2
K) , (B12)

gij = δij(1− 2Φ) +O(v2
K) , (B13)

g0i=−4ξi +O(v2
K) , (B14)

where the scalar and vector potentials read:

Φ :=−M
(1)

r(1)
− 2

S(1)ij ř(1)iv
(1)j
K

r(1)2
+ [(1)→ (2)] , (B15)

ξi :=
M (1)

r(1)
v(1)i + 2

ř(1)k

r(1)2
S(1)ki + [(1)→ (2)] , (B16)

being S(n)ij := εijkS(n)k with S(n)k := δkzM
(n)a(n) for spins aligned with the z-axis, ~r(n) = (x(n), y(n), z(n)) the

positional vector referred to the n-th BH frame, ř(n)i=r(n)i/r(n), and v
(n)i
K the spatial velocity of the n-th BH.

In the PN approximation, the equations of motion for a test particle with velocity ~V are given by the so called

gravitomagnetic analogue of Lorentz equations (see, for instance, Mashhoon 2003):

dV i

dt
= −∇iΦ− (~V × (∇× ~ξ))i . (B17)

In the following we derive the dominant terms in these equations for the case of identical BHs orbiting in circular

orbits, and we discuss the effect of the spins.

The scalar potential can be written as:

Φ = −M
(1)

r(1)
+ 2

ř(1) · (~S(1) × ~v(1)
K )

r(1)2
+ [(1)→ (2)] (B18)

= −M
(1)

r(1)
+ 2

M (1)a(1)v
(1)
K cosφ(1)

r(1)2
+ [(1)→ (2)] , (B19)

where ~S(n) × ~v(n)
K points towards the center of mass and thus φ(n) is the angle between ř(n) and −ř(n)

K , being ř
(n)
K =

~r
(n)
K /|~r(n)

K | the normalized vector of the position of the n-th BH (see Eqs. (15) and (16)). The second and fourth terms

in Eq. (B19) represent spin-orbit coupling effects.

Taking into account the following expressions:

r(1,2)2
= r2 +

1

4
b2 ∓ rb cos (φ− Ωbint) , (B20)

cosφ(1,2) =
±x(1,2)

K ∓ x
r(1,2)

, (B21)
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where b is the separation of the binary, ~r = (x, y, z) is the position vector of the particle in Cartesian coordinates with

respect to the center of mass of the binary, and φ = arctan(y/x), we expand Eq. (B19) for large radius r and average

in φ and t, to obtain:

Φ = −M
r
− 1

16

b2M

r3
+O

(
1

r4

)
, (B22)

where M = M (1) +M (2). In this equation we recognize the well-known multipole expansion of equal-mass binaries in

the Newtonian regime (see, for instance, MacFadyen & Milosavljević 2008). We also notice that spin-orbit coupling

terms canceled out in this limit, because of the symmetries of the system.

Regarding the vector potential ξi, we obtain the Cartesian components:

~ξ =
M (1)

r(1)
~v(1) + 2

a(1)M (1)

r(1)3

(
y(1), −x(1), 0

)
+ [(1)→ (2)] . (B23)

Replacing this expression in the second term of Eq. (B17), transforming to a spherical basis, expanding for large radius

r, and averaging in φ, we obtain the radial component:

(~V × (∇× ~ξ))r =
MJ

r4

(
2a+

L

4

)
+O

(
1

r5

)
, (B24)

where we have defined J = xV y − yV x as the specific angular momentum of the particle, L = bv
(1)
K = bv

(2)
K as the

specific orbital angular momentum of the binary, and a = a(1) = a(2).

Applying Newton’s second law in spherical coordinates for the force terms derived from Eq. (B22) and (B24), we

obtain:

r̈ = −M
r2
− 3

16

b2M

r4
+
J2

r3
+
MJ

r4

(
2a+

L

4

)
+O

(
1

r5

)
. (B25)

The latter equation of motion can be derived from the effective potential:

ΦEff = −M
r
− 1

16

b2M

r3
+
J2

2r2
+
MJ

3r3

(
2a+

L

4

)
+O

(
1

r4

)
. (B26)
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Bogdanović, T., Eracleous, M., & Sigurdsson, S. 2009, ApJ,

697, 288, doi: 10.1088/0004-637X/697/1/288

Bonning, E., Marronetti, P., Neilsen, D., & Matzner, R.

2003, Phys. Rev. D, 68, 044019,

doi: 10.1103/PhysRevD.68.044019

Bowen, D. B., Campanelli, M., Krolik, J. H., Mewes, V., &

Noble, S. C. 2017, ApJ, 838, 42,

doi: 10.3847/1538-4357/aa63f3

Bowen, D. B., Mewes, V., Campanelli, M., et al. 2018,

ApJL, 853, L17, doi: 10.3847/2041-8213/aaa756

https://arxiv.org/abs/2005.06495
https://arxiv.org/abs/1702.00786
http://doi.org/10.1086/310200
http://doi.org/10.1093/mnras/stv2092
http://doi.org/10.1103/PhysRevLett.96.111102
http://doi.org/10.1086/170270
http://doi.org/10.1146/annurev.aa.30.090192.003421
http://doi.org/10.1086/177957
http://doi.org/10.1038/287307a0
http://doi.org/10.1088/0004-637x/744/1/45
http://doi.org/10.1088/0004-637X/697/1/288
http://doi.org/10.1103/PhysRevD.68.044019
http://doi.org/10.3847/1538-4357/aa63f3
http://doi.org/10.3847/2041-8213/aaa756


22 Lopez Armengol, et al. (2021)

Bowen, D. B., Mewes, V., Noble, S. C., et al. 2019, ApJ,

879, 76, doi: 10.3847/1538-4357/ab2453

Bowen, J. M., & York, J. W. 1980, Phys. Rev. D, 21, 2047,

doi: 10.1103/PhysRevD.21.2047

Campanelli, M., Lousto, C. O., Marronetti, P., &

Zlochower, Y. 2006, Phys. Rev. Lett., 96, 111101,

doi: 10.1103/PhysRevLett.96.111101

Chakrabarti, S. K. 1985, ApJ, 288, 1, doi: 10.1086/162755

Chandrasekhar, S. 1960, Proceedings of the National

Academy of Sciences of the United States of America, 46,

253

Chapon, D., Mayer, L., & Teyssier, R. 2013, Monthly

Notices of the Royal Astronomical Society, 429, 3114,

doi: 10.1093/mnras/sts568

Cook, G. B. 2000, Living Reviews in Relativity, 3,

doi: 10.12942/lrr-2000-5

Cuadra, J., Armitage, P. J., Alexander, R. D., & Begelman,

M. C. 2009, Monthly Notices of the Royal Astronomical

Society, 393, 1423, doi: 10.1111/j.1365-2966.2008.14147.x

Dain, S., Lousto, C. O., & Takahashi, R. 2002, Physical

Review D, 65, doi: 10.1103/physrevd.65.104038

Damour, T., Jaranowski, P., & Schäfer, G. 2000, Phys. Rev.
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ApJL, 643, L9, doi: 10.1086/505039

Velikhov, E. 1959, Sov. Phys. JETP, 36, 995

York, J. W. 1971, Phys. Rev. Lett., 26, 1656,

doi: 10.1103/PhysRevLett.26.1656

Zilhão, M., Noble, S. C., Campanelli, M., & Zlochower, Y.

2015, PhRvD, 91, 024034,

doi: 10.1103/PhysRevD.91.024034

Zlochower, Y., Healy, J., Lousto, C. O., & Ruchlin, I. 2017,

Physical Review D, 96, doi: 10.1103/physrevd.96.044002

http://doi.org/10.1103/PhysRevD.63.044006
http://doi.org/10.1093/mnras/stx1130
http://doi.org/10.3847/1538-4357/aba432
http://doi.org/https://doi.org/10.1006/jcph.2000.6519
http://doi.org/10.1086/505039
http://doi.org/10.1103/PhysRevLett.26.1656
http://doi.org/10.1103/PhysRevD.91.024034
http://doi.org/10.1103/physrevd.96.044002

	Introduction
	Spacetime construction
	Kerr-Schild form for single black holes
	Superposed Kerr-Schild as initial data for black hole binaries
	Time-dependent Superposed Kerr-Schild for binary black hole evolution

	Spacetime validation
	Circumbinary disk models
	GRMHD evolution
	Circumbinary disk initialization
	Numerical grid, boundary conditions, and simulation parameters

	Circumbinary Disk Dynamics
	Spin-Sensitive Results
	Interpretation of Spin-Sensitive Results
	Spin-Insensitive Results and Comparison with Previous Works
	Summary

	Conclusions
	Diagnostics
	Post-Newtonian approximation

