2022 AIAA SciTech Forum

Higher-Order Approximations for Stabilizing Zero-Energy Modes in Peridynamics Crystal Plasticity Models with Large Horizon Interactions

Iman Javaheri

PhD Candidate, Aerospace Engineering, University of Michigan, Ann Arbor, MI

Pathways Student, Durability, Damage Tolerance, & Reliability NASA Langley Research Center, Hampton, VA

Advisors: Veera Sundararaghavan, Andy Newman January 03, 2022

E-mail: imanajv@umich.edu

Copyright © by Iman Javaheri. Published by AIAA, Inc., with permission.

Background

Tensile strain fields of Ti-Al intermetallic turbine blade

Questions

- Can we predict these microscale shear bands numerically?
- Can any numerical framework
 naturally handle high-strain
 gradients and cracks?
- Is Peridynamics numerical method accurate, **stable**, and efficient?

State-Based Peridynamics

Correspondence Model*

$$\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega \big(\underline{\mathbf{Y}} \otimes \boldsymbol{\xi} \big) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1}$$

bond $\boldsymbol{\xi} = \mathbf{x}' - \mathbf{x}$ deformed bond $\underline{\mathbf{Y}} = \mathbf{y}' - \mathbf{y}$ influence function $\boldsymbol{\omega} = \boldsymbol{\omega}(|\boldsymbol{\xi}|)$ shape tensor $\mathbf{K} = \int_{\mathcal{H}_{\mathbf{x}}} \boldsymbol{\omega}(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) dV_{\mathbf{x}'}$

Governing Equation

$$\int_{\mathcal{H}_{\mathbf{X}}} \{ \underline{\mathbf{T}}[\mathbf{x}, \mathbf{t}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}', \mathbf{t}] \langle \mathbf{x} - \mathbf{x}' \rangle \} d\mathbf{V}_{\mathbf{x}'} + \mathbf{b} = \rho \ddot{\mathbf{u}}$$

* S. A. Silling, et al., *Journal of Elasticity*, 82.2 (2007): 151-184.

Adaptive Dynamic Relaxation Solver (ADRS)

Consider

 $\ddot{\mathbf{u}} + c\dot{\mathbf{u}} = \mathbf{f}(\mathbf{u}, \mathbf{x}, t)$ $\mathbf{f}(\mathbf{u}, \mathbf{x}, t) = \mathbf{L}/\rho$

Newmark's scheme (central difference on *t*):

$$\mathbf{u}^{n+1} = \frac{4\mathbf{u}^n + (c\Delta t - 2)\mathbf{u}^{n-1} + 2\Delta t^2 \mathbf{f}^n}{2 + c\Delta t}$$

Time Step ⊿t*

 $\Delta t \le f(h,\delta) \sqrt{\rho/E_{max}}$

Damping Ratio
$$c^{**}$$

$$c^{n} = 2\sqrt{\frac{(\mathbf{u}^{n})^{T}\mathbf{k}^{n}\mathbf{u}^{n}}{(\mathbf{u}^{n})^{T}\mathbf{u}^{n}}}$$

$$k_{ii}^{n} = -(f_{i}^{n} - f_{i}^{n-1})/(u_{i}^{n} - u_{i}^{n-1})$$

Convergence Condition $e_1 \sim ||\mathbf{L}||_2$ and $e_2 \sim ||\delta \mathbf{u}||_2$

* J. Luo, et al., International Journal of Solids and Structures, 130 (2017): 36-48. ** B. Kilic, et al., Theoretical and Applied Fracture Mechanics, 53.3 (2010): 194-204.

Algorithm Flowchart

Zero-Energy Modes

Gradient Tensor

$$\begin{aligned} \mathbf{F}_{\text{new}} &= \left(\int_{\mathcal{H}_{x}} \omega (\underline{\mathbf{Y}}_{\text{new}} \otimes \boldsymbol{\xi}) d\mathbf{V}_{x'} \right) \mathbf{K}^{-1} \\ &= \left(\int_{\mathcal{H}_{x}} \omega [(\underline{\mathbf{Y}}_{\text{old}} - \mathbf{u}_{d}) \otimes \boldsymbol{\xi}] d\mathbf{V}_{x'} \right) \mathbf{K}^{-1} \\ &= \mathbf{F}_{\text{old}} - \mathbf{u}_{d} \otimes \int_{\mathcal{H}_{x}} \omega \boldsymbol{\xi} d\mathbf{V}_{x'} \mathbf{K}^{-1} \end{aligned}$$

1. Supplementary Particle Forces

$$\underline{\mathbf{T}}[\mathbf{x},t]\langle \mathbf{x}'-\mathbf{x}\rangle = \omega \mathbf{P}\mathbf{K}^{-1}\mathbf{\xi} + \underline{\mathbf{T}}_{a}[\mathbf{x}]\langle \mathbf{x}'-\mathbf{x}\rangle$$

2. Stress-Point Approach

 $\mathbf{F} = \frac{1}{2}(\mathbf{F}_{s1} + \mathbf{F}_{s2}) \text{ or } \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}_{s1} + \boldsymbol{\sigma}_{s2})$

3. Higher-Order Approximations

 $\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega(\mathbf{Y} \otimes \boldsymbol{\xi}) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1} \approx \partial \mathbf{y} / \partial \mathbf{X}$

- Springs*: $\underline{\mathbf{T}}_{a}[\mathbf{x}] = C_{1}\omega[\mathbf{u}(\mathbf{x}') - \mathbf{u}(\mathbf{x})]$
- Average displacement states**:

$$\underline{\mathbf{T}}_{\mathbf{a}}[\mathbf{x}] = C_2 \int_{\mathcal{H}} \omega[\mathbf{u}(\mathbf{x}') - \mathbf{u}(\mathbf{x})] \, d\mathbf{V}_{\mathbf{x}'}$$

* M.S. Breitenfeld, et al., *Computational Methods Applied Mechanical Engineering*, 272, (2014): 233-250. ** S.A. Silling, *Computational Methods Applied Mechanical Engineering*, 322, (2017): 42-57.

 $\underline{\mathbf{T}}[\mathbf{x},\mathbf{t}]\langle\mathbf{x}'-\mathbf{x}\rangle = \omega \mathbf{P}\mathbf{K}^{-1}\mathbf{\xi} + \underline{\mathbf{T}}_{a}[\mathbf{x}]\langle\mathbf{x}'-\mathbf{x}\rangle$

2. Stress-Point Approach

$$\mathbf{F} = \frac{1}{2}(\mathbf{F}_{s1} + \mathbf{F}_{s2}) \text{ or } \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}_{s1} + \boldsymbol{\sigma}_{s2})$$

3. Higher-Order Approximations

 $\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega (\underline{\mathbf{Y}} \otimes \boldsymbol{\xi}) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1} \approx \partial \mathbf{y} / \partial \mathbf{X}$

* J. Luo, et al., International Journal of Solids and Structures, 150 (2018): 197-207.

SHAPING THE FUTURE OF AEROSPAC

1. Supplementary Particle Forces

 $\underline{\mathbf{T}}[\mathbf{x},\mathbf{t}]\langle\mathbf{x}'-\mathbf{x}\rangle = \omega \mathbf{P}\mathbf{K}^{-1}\mathbf{\xi} + \underline{\mathbf{T}}_{a}[\mathbf{x}]\langle\mathbf{x}'-\mathbf{x}\rangle$

2. Stress-Point Approach

$$\mathbf{F} = \frac{1}{2}(\mathbf{F}_{s1} + \mathbf{F}_{s2}) \text{ or } \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}_{s1} + \boldsymbol{\sigma}_{s2})$$

3. Higher-Order Approximations

 $\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega (\underline{\mathbf{Y}} \otimes \boldsymbol{\xi}) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1} \approx \partial \mathbf{y} / \partial \mathbf{x}$

Orientation changes with nearestneighbor horizon $\delta = h$

* J. Luo, et al., International Journal of Solids and Structures, 150 (2018): 197-207.

1. Supplementary Particle Forces

 $\underline{\mathbf{T}}[\mathbf{x},\mathbf{t}]\langle\mathbf{x}'-\mathbf{x}\rangle = \omega \mathbf{P}\mathbf{K}^{-1}\boldsymbol{\xi} + \underline{\mathbf{T}}_{a}[\mathbf{x}]\langle\mathbf{x}'-\mathbf{x}\rangle$

2. Stress-Point Approach

 $\mathbf{F} = \frac{1}{2}(\mathbf{F}_{s1} + \mathbf{F}_{s2}) \text{ or } \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}_{s1} + \boldsymbol{\sigma}_{s2})$

3. Higher-Order Approximations

$$\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega (\underline{\mathbf{Y}} \otimes \boldsymbol{\xi}) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1} \approx \partial \mathbf{y} / \partial \mathbf{X}$$

Taylor series expansion of **F** (using *Einstein index notation*):

$$F_{pq} = F_{pq} + \frac{1}{2! h^2 \Omega} G_{pij} \sum_{a=1}^{N} \omega_a \left(\delta x_i \delta x_j \delta x_q \right)_a$$
$$+ \frac{1}{3! h^2 \Omega} H_{pijk} \sum_{a=1}^{N} \omega_a \left(\delta x_i \delta x_j \delta x_k \delta x_q \right)_a + \mathcal{O}(h^3)$$

Constraint equation: $\Omega(\omega_1, \omega_2, \omega_3, ...) \neq 0$

1. Supplementary Particle Forces

 $\underline{\mathbf{T}}[\mathbf{x},\mathbf{t}]\langle\mathbf{x}'-\mathbf{x}\rangle = \omega \mathbf{P}\mathbf{K}^{-1}\mathbf{\xi} + \underline{\mathbf{T}}_{a}[\mathbf{x}]\langle\mathbf{x}'-\mathbf{x}\rangle$

 $\mathbf{F} = \frac{1}{2}(\mathbf{F}_{s1} + \mathbf{F}_{s2}) \text{ or } \boldsymbol{\sigma} = \frac{1}{2}(\boldsymbol{\sigma}_{s1} + \boldsymbol{\sigma}_{s2})$

3. Higher-Order Approximations

$$\mathbf{F} = \left(\int_{\mathcal{H}_{\mathbf{X}}} \omega (\underline{\mathbf{Y}} \otimes \boldsymbol{\xi}) d\mathbf{V}_{\mathbf{X}'} \right) \mathbf{K}^{-1} \approx \partial \mathbf{y} / \partial \mathbf{X}$$

1D particle-discretized bar w/ constant spacing h

discrete weight function values for 1D domain

Horizon Size	Weight Function Values				Leading
	ω_1	ω2	ω_3	ω_4	Error
$\delta = h$	1	0	0	0	$\mathcal{O}(h^2)$
$\delta = 2h$	1	-1/16	0	0	$\mathcal{O}(h^4)$
$\delta = 3h$	1	-1/10	1/135	0	$\mathcal{O}(h^6)$
$\delta = 4h$	1	-1/8	1/63	-1/896	$\mathcal{O}(h^8)$

1D discretized cantilever bar

Variable Young's modulus of elasticity

Elastic Cantilever Bar

• Variable elastic modulus

Mesh Size

500 equally-distant particles

Boundary Condition

 $u_{end} = 0.005 L_{tot}$

Elastic Cantilever Bar

• Variable elastic modulus

Mesh Size

500 equally-distant particles

Boundary Condition

 $u_{end} = 0.005 L_{tot}$

Elastic Cantilever Bar

• Variable elastic modulus

Mesh Size

500 equally-distant particles

Boundary Condition

 $u_{end} = 0.005 L_{tot}$

Orientation distributions

Polycrystals

- 21 grains (*Voronoi tessellation*)
- 2 slip systems with hardening rule*: $h^{\alpha\beta} = h_0^\beta \left(q + (1-q)\delta^{\alpha\beta} \right) \left(1 - \frac{s^\beta(t)}{s_s^\beta} \right)^a$

Mesh Size

• Uniform 50 × 50 particles

Boundary Condition

- Velocity gradient
- Performed in 30 steps

* S. Sun, et al., International Journal of Solids and Structures, 51.19 (2014): 3350-3360.

 θ (rad)

1.5

0.5

0

-0.5

-1.5

-1

SHAPING THE FUTURE OF AEROSPAC

Orientation changes for 2500 particles under a *y*-axis compression test obtained from crystal plasticity finite element (FE) and peridynamics (PD) simulations with different horizon sizes δ

Composite

- Transversely-isotropic elastic matrix with dimension l = 3.0 mm
- Soft precipitate with stiffness ratios $r_c = 1, 10^{-1}, ..., 10^{-5}$ and diameter d = 0.875 mm at the center

 $C^{ppt} = r_c C^{mat}$

Mesh Size

• Uniform $48 \times 48 \times 48$ grid

Boundary Condition

Velocity gradient: $\mathbf{L} = diag(1.0, -0.5, -0.5)$

Displacements under *x*-axis tension obtained from peridynamics models with "**No Control**" of zero-energy modes against proposed "**Higher-Order**" stabilization approach for $\delta = 2h$ and 3h at midsection z = 1.5 mm

Displacements through centerline for two horizon interactions along midsection z = 1.5 mm

Variations in the displacement components at the center of the spherical precipitate in terms of the stiffness ratio r_c for different horizon sizes δ

3D Polycrystalline with Void

Polycrystals

- WE43 alloy-T5 temper w/ 78 grains
- 18 slip systems*
- Soft precipitate w/ stiffness ratio $r_c = 0.1$ and d = 0.875 mm at the center

Mesh Size

• Uniform $48 \times 48 \times 48$ grid

Boundary Condition

- Velocity gradient:
 - $\mathbf{L} = \text{diag}(1.0, -0.5, -0.5)$

* A. Lakshmanan, et al., International Journal of Plasticity, 142 (2021): 102991.

SHAPING THE FUTURE OF AEROSPACE

3D Polycrystalline with Void

Equivalent strains under *x*-axis tension test obtained from crystal plasticity finite element (FE) and peridynamics (PD) simulations with different horizon sizes δ at midsection z = 1.5 mm

- 1. Background
- 2. State-Based Peridynamics with Adaptive Dynamic Relaxation Solver (PD-ADRS)
- 3. Control of Zero-Energy Modes
- 4. Higher-Order Approximation Weight Functions
- 5. Multi-Dimensional Numerical Examples
- 6. Summary

Thank You

Questions can be directed to imanajv@umich.edu.

