Computational Assessment of Inlet Backflow Effects on Rotating Detonation Engine Performance and Operability

Daniel E. Paxson and Kenji Miki
NASA Glenn Research Center
Cleveland, Ohio

SciTech 2022
60th AIAA Aerospace Sciences Meeting
Hybrid Edition
January 3-7, 2022
Motivation

- Rotating Detonation Engines (RDE’s) are a promising approach to Pressure Gain Combustion (PGC) for airbreathing propulsion applications
 - High pressure gain potential
 - Compact
 - Low emissions
 - No moving parts
- Successful development requires overcoming several critical challenges
- Inlet design is one such challenge
 - Must provide low total pressure loss to fluid entering the channel
 - Must provide a thrust surface in the high-pressure region behind the detonation
 - Must prevent backflow into the inlet manifold in the high-pressure region behind the detonation
- Competing objectives make optimal design difficult
- Losses associated with forward flow and backflow are not well understood
- RDE mission and benefits studies are difficult without a reasonable assessment of inlet effects on performance

This Paper Describes a Computational Assessment of These Losses for a Basic Inlet Design Using Idealizations That Isolate the Inlet From Other Loss Sources
In-House Codes and Configuration

Quasi-Two-Dimensional (Q2D)
- Detonation frame of reference
- Single calorically perfect gas
- Single step, 2 species, ultra-simplified reaction with limited deflagration
- 200 azimuthal X 70 axial grid
- Inlet modeled in boundary conditions
 - Forward flow loss = $f(A_i/A_{ch}, \text{mass flow rate})$
 - Backflow = $f(A_i/A_{ch}, \text{pressure, diodicity})$
 - Diodicity, $\delta = (1 - A_i, \text{backflow}/A_i, \text{forward})$
- No manifold, prescribed P_m, T_m
- Prescribed axial reaction delay
 - No combustion allowed upstream of a prescribed axial distance
 - Ensures that backflow won’t be combustion products
 -Crudely simulates a non-premixed RDE
- Seconds per wave revolution on PC

Three-Dimensional (3D): OpenNCC
- Laboratory frame of reference
- Mixed thermally perfect gas
- Two step, 6 species, Arrhenius reaction with limited deflagration
- 800 azimuthal X 200 axial X 15 radial grid
- Inlet in computational domain
 - Basic annular slit
 - Aerodynamic leading edge
 - Sharp trailing edge
- Manifold in computational domain, prescribed head end mass flux, T_m
- No combustion allowed upstream of inlet trailing edge
- Hours per wave revolution on supercomputer (360 cores)

C\textsubscript{2}H\textsubscript{4}/air-stoichiometric
- $P_m = 290$ psia
- $T_m = 540$ R
- Mass Flux = 43.9 lb\textsubscript{m}/ft2\textperiodcentered s
Preliminary Q2D Performance $A_i/A_{ch}=0.5$

- Backflow affects performance by:
 - Being heated and returning to channel
 - Creating blockage
 - Reducing high pressure region

Contours of Temperature in the RDE Annulus

Equivalent Available Pressure (EAP) Gain vs. Diodicity (δ)

$\delta, \frac{1-A_{i,\text{back}}}{A_{i,\text{forward}}}$

EAP = An Averaged Total Exit Pressure Based on Ideal Specific Thrust

$$PG = \frac{EAP}{P_m} - 1$$

Backflow Can Profoundly Affect RDE Performance
3D Code Should Provide δ Estimate
3D Instability $A_i/A_{ch}=0.5$

Characteristics:
- Commences approximately 20 wave revolutions after simulation initiation
- Grows to detonation failure approximately 25 wave revolutions after detection
- Periodic fluctuations in inlet mass flow caused by periodic fluctuations in backflow
- Periodic fluctuations in detonation height
- Period is 2 wave revolutions

Instability is Self-Exciting and Grows Continuously Until Detonation Failure

Is This Peculiar to the 3D Code, or Real Physics?
Q2D Instability $A_i/A_{ch}=0.5; \delta=0.50$

Channel Length Shortened by 7%

Characteristics:
- Commences immediately after configuration change
- Grows to simulation failure approximately 35 wave revolutions after configuration change
- Periodic fluctuations in inlet mass flow caused by periodic fluctuations in backflow
- Periodic fluctuations in detonation height
- Period is 2 wave revolutions

Small Configuration Modification Shows Same Instability in Q2D
Apparently, It's Physics!
Stable Limit Cycle 3D & Q2D Performance $A_i/A_{ch}=0.4$

Contours of Temperature in the RDE Annulus

- At diodicity value $\delta=0.6$, Q2D and 3D:
 - Channel flowfields are similar
 - Backflow rates agree within 3.5%
 - Pressure gains are the same

Simplified Q2D With Inlet Sub-Models Can Reasonably Match 3D
Summary

- The impact of flow reversal, or backflow at the inlet of an airbreathing RDE was investigated using Q2D and 3D CFD simulations.
- The simulations were idealized to isolate the effects of backflow from other loss-inducing RDE phenomena.
- The results showed that RDE inlets allowing significant backflow suffer substantial performance loss.
- Both simulations also exhibited a novel instability that developed in certain RDE configurations with large backflows
 - The instability appears to be physical (under the idealizations) rather than due to numerical anomaly and may be relevant to real-world RDE’s
- Comparison of the Q2D and 3D results established a reasonable value for the Q2D diodicity parameter
 - Provides confidence in the Q2D output
 - Q2D is far less resource intense than 3D
 - Readily used for parametric optimization and mission analysis
- All results highlight need for sophisticated RDE inlets designs that provide low loss when flow is inward, and high resistance during backflow
Thank You for Viewing