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Advanced Air Mobility (AAM) aircraft require perception systems for precision approach
and landing systems (PALS) in urban, suburban, rural, and regional environments. The current
state-of-the-art methods approved for automated approach and landing will be difficult to utilize
in support of AAM operational concepts. However, there are technology and systems from
other applications and lower-TRL research that use vision, IR, radar, and GPS methods to
provide baseline perception and sensing requirements for AAM aircraft approach and landing.
This paper focuses on vision-based PAL to demonstrate a closed-loop baseline controller while
adhering to the Federal Aviation Administration requirements and regulations. The coplanar
algorithm determines pose estimation, which feeds into an Extended Kalman filter. Combining
IMU with vision creates a sensor fusion navigation solution for GPS-denied environments. The
state estimate leads to glideslope and localizer error computations, which will be pertinent for
designing and deriving guidance laws and control laws for AAM PALS. The IMU and vision
navigation solution provides promising simulation results for AAM PALS, and higher fidelity
simulations will include computer graphics rendering and feature correspondence.

I. Introduction

Advanced Air Mobility (AAM) assists emerging aviation markets by developing safe air transportation systems in
urban, suburban, rural, and regional environments by utilizing revolutionary models to transport people and cargo.

These AAM aircraft will benefit the public and air transportation sectors but need autonomy to increase performance
capabilities and efficiency. Implementing autonomy onboard AAM aircraft removes the need for human pilots, which
increases the payload capacity. AAM aircraft will need an accurate and autonomous approach and landing system
onboard to ensure safe landings. AAM operational concepts may struggle with implementing current state-of-the-art
methods for automated precision approach and landing (PAL). However, baseline perception and sensing requirements
for AAM aircraft approach and landing can draw from existing technology and systems such as vision, IR, radar,
glideslope indicators, and GPS.

A. Traditional and Current Landing Systems
There are several types of traditional and current aircraft landing systems. Instrument Landing Systems (ILS) provide

aircraft approach navigation aids with three components: glideslope, localizer, and marker beacons. The glideslope
provides vertical guidance, the localizer provides horizontal guidance, and the marker beacons provide radio checks
during descent. There are also Visual Approach Slope Indicator (VASI) systems, which give approach slope information
during aircraft descent. There are many VASI systems, but a common theme is white light beams for flying above the
glidepath and red light beams for flying below the glidepath. The Precision Approach Path Indicator (PAPI) systems
replace the older VASI systems with a similar strategy: more red than white lights indicates flying below the glidepath,
more white than red lights indicates above the glidepath, and an even distribution between the red and white lights shows
flying on the glidepath. A glidepath light variation includes tri-color: red for below, green for on, and yellow for above
the glidepath. A visual approach variation includes pulsating lights such that pulsating red lights indicate well below the
glidepath, pulsating white lights indicate well above the glidepath, and steady red or white indicates smaller glideslope
altitude offsets [1]. Ground Based Augmentation Systems (GBAS) have more flexibility and economic benefits than ILS
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by allowing up to 192 approaches from different approach angles at the same frequency of ILS. However, transitioning
from ILS to GBAS at airports will potentially take decades due to operational differences [2].

Some studies utilize GPS and IR beacons for aircraft navigation and landing. One study shows an onboard integrity
monitoring and a laser tracker system with accuracies less than 1 ft, and a Kinematic GNSS Landing System (KGLS)
provides real-time centimeter-level accuracy with integrity beacons [3]. Flight test results for autolanding a Boeing 737
by the Integrity Beacon Landing System (IBLS) have 0.6 ft error or better [4]. A common issue with GPS and integrity
beacons is that GPS alone is not sufficient such that a beacon is needed. It is important to note that IR beacons are most
effective in lower light environments but limited to weather conditions and ground topography such as vegetation [5].
Another study shows that an autonomous IR landing system for UAVs with one IR source is sufficient for the landing
zone [6]. Setting up IR beacons provides waypoints for an efficient guidance system for commercial aircraft between the
runway and parking area [7].

B. Vision-Based Navigation
Similar but smaller vehicles such as unmanned aerial vehicles (UAV) have vision-based studies that apply to AAM

aircraft precision approach and landing (PAL). Gautam et al. provide a survey of UAV vision-based methods and
controllers that has indoor and outdoor landings with pure and pseudo pursuit targets [8]. Utilizing inertial optical
flow, a vertical proportional-integral thrust controller, and a pyramidal implementation of the Lucas-Kanade algorithm
for hovering and landing [9]. Min et al. demonstrate a feedback guidance law based on time-to-go, velocity, altitude,
and gravity computes acceleration commands to change the flight path angle with lateral acceleration constraints for
rotary-wing and fixed-wing UAVs [10]. Landing a UAV without GPS can be achieved by inserting computer vision in a
feedback control loop to solve the classic ego-motion estimation problem with all the feature points lying on a plane, i.e.,
landing pad [11].

There are also studies for larger aircraft with vision-based methods. A vision-based closed-loop feedback method
occurs in the final approach for eVTOL vehicles and generates accuracies less than 1.5 m when less than 25 m away
from the target [12]. A vision-based system for guidance and autonomous safe landing for helicopters in a partially
known environment is robust to occlusions and light variations by having a hierarchical controller switch between GPS
and vision input data [13]. Equipping an autonomous helicopter with vision in its control loop provides position and
velocity estimates of features in an urban environment relative to the helicopter, which leads to guidance and real-time
feature tracking [14]. Maritime augmented guidance with integrated controls for carrier approach and recovery enabling
technologies (MAGIC CARPET) allows fighter pilots to make simple, precise, repeatable, and consistent landings on
aircraft carriers by removing coupled interactions between control inputs [15].

Other studies combine computer vision and Kalman filtering techniques for estimating states. Utilizing a Kalman
filter for estimating the camera pose and 3D to 2D line correspondences with pose priors and line features is robust
to occlusion and clutter, and a line based pose estimation algorithm for known correspondences has accurate and
efficient performance for the model-to-image registration problem [16]. Another study uses an extended Kalman filter
to estimate the position of 3D coplanar points when there are four stationary reference points with known coordinates
[17]. Combining a landmark-based vision method with an INS to form a loosely-coupled navigation system yields a
Kalman filter navigation solution that can operate in GPS-denied environments [18].

C. Computer Vision Research
Some computer vision studies involve extracting the fundamental and essential matrices to determine pose estimation.

Estimating the fundamental matrix allows one to compute the essential matrix, which determines the rotation matrix
and translation vector between two images. Some methods that estimate the fundamental matrix are the unnormalized
and normalized 8-point algorithm, algebraic minimization algorithm, minimizing the Sampson cost function through
an iterative-minimization method, and the Gold Standard algorithm [19]. Alternatively, the 5-point algorithm with
RANSAC computes the essential matrix directly to obtain the rotation and translation between two images [20]. Having
the normalized image coordinates for the two images leads to computation of the essential matrix with four possible
solutions for the second camera matrix, which contains the relative rotation and translation [19].

There are also computer vision studies that directly estimate the rotation matrix and translation vector. A least
squares fit of two 3D sets of points with SVD yields the relative rotation and translation between the two sets of points
[21]. The Pose from Orthography and Scaling with Iterations (POSIT) algorithm determines pose from orthographic
projections of an image with noncoplanar feature points of an object [22]. Modifying the POSIT algorithm to scenarios
with images containing coplanar points leads to a coplanar POSIT algorithm with a limiting factor that there must be at
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least four coplanar points [23]. The SoftPOSIT algorithm combines softassign and pose from orthography and scaling
with iterations (POSIT). Softassign solves the image correspondence problem by computing correspondences between
object and image points when correspondences are unknown, and POSIT iteratively computes the pose estimation by
providing the rotation matrix between the object and camera and translation vector from the camera’s center to the
object’s origin [24].

D. Overview of Work
It is not clear how much overlap exists between current and AAM aircraft PALS due to the lack of available

requirements and standards for AAM aircraft. At the time of writing this paper, the FAA has no active Vertiport
Design document since FAA AC 150/5390-3: Vertiport Design was canceled in 2010 [25]. However, FAA AC
150/5390-2C: Heliport Design provides adequate estimations of requirements and standards as a guideline for future
vertiport requirements and standards [26].

Navigation techniques containing computer vision and vision-based methods might apply to AAM PALS. This paper
will provide an initial study on vision-based PALS to determine future PALS research and applications requirements.
Thus, the goal of this paper focuses on vision-based PALS to demonstrate an AAM navigation solution for PAL while
adhering to the Federal Aviation Administration requirements, regulations, and standards. Overall, as AAM research,
operations, and technology progress, NASA will address technical and structural research gaps. At the same time, the
FAA has the most critical role of enabling AAM operations with support from state and local governments [27].

The authors of this paper desired to find an easy-to-implement and open-source vision-based algorithm. Initial tests
of the open-source SoftPOSIT algorithm ∗ seemed promising but were inadequate in scenarios with coplanar points
such as landing lights or markings on the ground or runway. Email correspondence with the second author of Ref. [24]
confirmed that the current SoftPOSIT algorithm is not applicable for coplanar points and would have to be modified
significantly, which led the authors to download the open-source coplanar POSIT algorithm † described in Ref. [23] for
an initial vision-based PAL navigation solution.

Figure 1 shows the proposed software architecture for vision-based AAM PAL. The green blocks work together via
post-processing, and the blue blocks are currently under development. This paper shows a post-processed implementation
of the green blocks. Solving the feature correspondence and extraction problem will complete the "Image processing
(feature correspondence)" blue block. Obtaining the simulated X-Plane telemetry data in real-time to feed into "Vehicle
State Estimation Filter" will complete the "Simulated Vehicle Sensor Data Interface" blue block, which currently
utilizes simulated telemetry data from the Vertical Motion Simulation (VMS) ‡ and a Cessna plane in the X-Plane
flight simulator. Inserting a notification or color scheme like the PAPI or ILS systems will complete the "Pilot GUI
Interfaces (PFD)" block to simulate the pilot seeing glideslope and localizer errors. Deriving guidance laws based on
the glideslope and localizer errors will complete the "Approach/ Descent Mode Flight Controller" blue block. Finally,
creating a main function or wrapper to combine all the vision-based functions and computations into one consolidated
package will create the Vision-Based Estimation System.

The "X-Plane Interface (XPI)" has a UDP connection for real-time implementation to connect to X-Plane but
remains offline in this paper because the blue blocks are work-in-progress. The "Xplane & World Editor" and "Plug-in to
Xplane" green blocks provide an a priori rendered scenery and environment, and the "Video Frame Capture Interface" is
currently a recorded video of the X-Plane flight. The "Vision-Based Vehicle State Estimator" contains the coplanar
POSIT algorithm, which provides position and attitude estimation. The "Vehicle State Estimation Filter" block uses an
extended Kalman filter to combine VMS IMU measurements and pose from coplanar POSIT to output the state estimate
to feed into the "Vision-Replaced ILS Landing System Loc/GS Emulator" block, which computes the glideslope and
localizer errors.

This initial vision-based AAM PAL study has the potential to impact many areas. First, it will deliver perception
PALS requirements and data sets to other NASA projects and industry partners, identifying gaps in perception,
technology, and data for verification and validation and characterization to present to other NASA projects and industry
partners. Second, AAM aircraft need safe and accurate PALS to ensure the successful transportation of people and
cargo. Third, having autonomous PALS removes the need for AAM pilots, which increases efficiency and payload
capacity. Finally, it paves the way for new AAM PALS research activities to enhance future AAM operations.

∗http://www.daniel.umiacs.io/SoftPOSIT.txt
†http://www.daniel.umiacs.io/Site_2/Code.html
‡https://www.nasa.gov/ames/vms
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Fig. 1 Proposed Software Architecture Diagram: the green blocks work together via post-processing, and the
blue blocks are under development

This paper’s organization is as follows. Section II discusses the state vector, coordinate frames, kinematics, and
dynamics for AAM aircraft, and section IV provides proposed the approach and landing profile at vertiports. Section V
mentions the design and approach for the navigation solution’s extended Kalman filter, section VI provides simulation
results, and section VII ends with a summary and concluding remarks.

II. Kinematics & Dynamics
This section discusses the state vector, coordinate frames, kinematics, and dynamics for AAM aircraft.

A. State Vector
The state vector of the AAM aircraft is defined as:

𝒔 = [𝐸 𝑁 𝑈 𝑣𝑁 𝑣𝐸 𝑣𝑈 𝜙 \ 𝜓 ]𝑇 . (1)

The state vector 𝒔 decomposes to three vectors:

𝒔 =
[
𝒑 𝒗 𝚯

]
, (2)

where each of them is defined as

𝒑 =

[
𝐸 𝑁 𝑈

]
, 𝒗 =

[
𝑣𝑥 𝑣𝑦 𝑣𝑧

]
, 𝚯 =

[
𝜙 \ 𝜓

]
. (3)

The vector 𝒑 is in East, North, and Up (ENU) coordinates in the inertial frame, fixed on the ground at the helipad
landing site. The translational velocities in 𝒗 are in the inertial frame. The Euler angles are the roll, pitch, and yaw
angles (𝜙, \, 𝜓).

B. Coordinate Frames
The world coordinate system (WCS) is an inertial frame fixed on the ground in which gravity is pointing in the

negative U-direction, i.e., down. The vehicle coordinate system (VCS) is on the body frame on the aircraft such that the
x-axis points right, the y-axis point forward, and the z-axis points up in the same direction as the motor axes. The camera
coordinate system (CCS) has the camera fixed to the aircraft’s body, angled down, and pointed in the positive z-axis.
Its x-axis points right like in VCS, and the y-axis points down and behind the aircraft. Figure 2 shows the WCS axes
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denoted by 𝐸, 𝑁,𝑈, the VCS axes denoted by 𝑉𝐶𝑆𝑥 , 𝑉𝐶𝑆𝑦 , 𝑉𝐶𝑆𝑧 , and the CCS axes denoted by 𝐶𝐶𝑆𝑥 , 𝐶𝐶𝑆𝑦 , 𝐶𝐶𝑆𝑧 .
A rotation matrix following the (3-1-2) sequence is applied to rotate the aircraft from the inertial frame to the body
frame [28].

Fig. 2 Inertial, Body, and Camera Frames of AAM Aircraft

C. Euler Angles
This paper utilizes the (3-1-2) sequence of the direction cosine matrix rotates the inertial frame to the body frame

through the Euler angles [28]:

R = R𝑦 (𝜙)R𝑥 (\)R𝑧 (𝜓) =


−𝑠𝜓𝑠\𝑠𝜙 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑠\𝑐𝜓 + 𝑐𝜙𝑠𝜓 −𝑠𝜙𝑐\

−𝑐\𝑠𝜓 𝑐\𝑐𝜓 𝑠\

𝑐𝜙𝑠\𝑠𝜓 + 𝑠𝜙𝑐𝜓 −𝑐𝜙𝑠\𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑐\

 . (4)

where 𝑐\ and 𝑠\ denote cos \ and sin \ respectively. R𝑧 (𝜓) is the rotation matrix around the z-axis by 𝜓, R𝑥 (\) is the
rotation matrix around the once rotated x-axis by \, and R𝑦 (𝜙) is the rotation matrix around the twice rotated y-axis
by 𝜙. The relationship between the angular velocity and Euler angular rates for the (3-1-2) direction cosine matrix
sequence is [28]:

Ω =


0 cos 𝜙 − cos \ sin 𝜙
1 0 sin \
0 sin 𝜙 cos \ cos 𝜙


¤Θ (5)

such that Ω = [𝑟𝑞𝑝]𝑇 and ¤Θ = [ ¤𝜓 ¤\ ¤𝜙]𝑇 .

D. Position and Velocity
Transposing the direction cosine matrix of the prior subsection relates the time derivative of the inertial position

vector and the body frame’s velocity vector:
𝑣𝑁

𝑣𝐸

𝑣𝑈

 =

−𝑠𝜓𝑠\𝑠𝜙 + 𝑐𝜙𝑐𝜓 −𝑐\𝑠𝜓 𝑐𝜙𝑠\𝑠𝜓 + 𝑠𝜙𝑐𝜓

𝑠𝜙𝑠\𝑐𝜓 + 𝑐𝜙𝑠𝜓 𝑐\𝑐𝜓 −𝑐𝜙𝑠\𝑐𝜓 + 𝑠𝜙𝑠𝜓

−𝑠𝜙𝑐\ 𝑠\ 𝑐𝜙𝑐\



𝑢

𝑣

𝑤

 (6)
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E. Translational Dynamics
The general aircraft translational dynamic equations are [29]:

𝐹𝑥 = 𝑚( ¤𝑢 + 𝑞𝑤 − 𝑟𝑣) + 𝑚𝑔 sin \
𝐹𝑦 = 𝑚( ¤𝑣 + 𝑟𝑢 − 𝑝𝑤) − 𝑚𝑔 cos \ sin 𝜙
𝐹𝑧 = 𝑚( ¤𝑤 + 𝑝𝑣 − 𝑞𝑢) − 𝑚𝑔 cos \ cos 𝜙 ,

(7)

in which 𝑚 is the mass, 𝑔 is the acceleration due to gravity, 𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 are the aerodynamic forces, 𝑢, 𝑣, 𝑤 are the
velocities in the body frame, 𝑝, 𝑞, 𝑟 are the angular velocities in the body frame, and 𝜙, \, 𝜓 are the roll, pitch, and yaw
Euler angles. Modeling specific forces as accelerometer measurements at the aircraft’s center of gravity measure the
specific aerodynamic forces: [29]

𝐹𝑥 = 𝐴𝑥𝑚 , 𝐹𝑦 = 𝐴𝑦𝑚 , 𝐹𝑧 = 𝐴𝑧𝑚 (8)
such that 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 are the accelerometer measurements at the aircraft’s center of gravity. Inserting Eq. (7) into Eq.
(8) yields:

¤𝑢 = 𝐴𝑥 − 𝑔 sin \ − 𝑞𝑤 + 𝑟𝑣 ,

¤𝑣 = 𝐴𝑦 − 𝑔 cos \ sin 𝜙 − 𝑟𝑢 + 𝑝𝑤 ,

¤𝑤 = 𝐴𝑧 + 𝑔 cos \ cos 𝜙 − 𝑝𝑣 + 𝑞𝑢 ,

(9)

which removes mass and forms a set of kinematic equations for all types of aircraft regardless of mass.

III. Tentative Vertiport Landing Light Configuration

A. Pre-existing Information and Sources
Since there are no active FAA vertiport design documents, baseline requirements, and light configurations come

from the FAA heliport design document, AC 150/5390-2C - Heliport Design. Figure 2-2 of Ref. [26] states that the
minimum TLOF and FATO lengths should be one rotor diameter and 1.5 diameters, respectively. However, these
minimum lengths depend on helicopters instead of AAM aircraft. Ref. [30] provides a figure and dimensions for a
VTOL Cessna model with a 36 ft wingspan, which resembles future lift-plus-cruise AAM aircraft. Replacing rotor
diameter with a wingspan in the FAA Heliport Design document gives a minimum TLOF length of 36 ft and a minimum
FATO length of 54 ft.

The FAA Heliport Design document provides several figures and types of landing lights for a baseline landing light
configuration. Note to readers: figures referenced in this paragraph all refer to Ref. [26] with citations omitted for the
reader’s convenience. There are sixteen TLOF lights near the inner square’s perimeter and twenty-eight FATO lights
near the outer square’s perimeter (see Fig. 2-29). It also includes five omnidirectional green lights in front of the helipad
(see Fig. 2-31). Seven optional TLOF lights are placed vertically on the TLOF, twelve edge bar lights, and twelve wing
bar lights (see Fig. 6-2). Finally, there are thirty approach lights in a triangle or Christmas tree configuration (see Fig.
6-31). Ultimately, putting this all together yields one hundred ten lights, which provides a tentative baseline landing
light configuration. The following subsection provides the method for determining the light locations.

B. Landing Light Configuration
Figure 3a shows the landing lights in the WCS with the origin located at the center of the landing pad. Transforming

the landing lights from WCS to CCS and following the light rendering pipeline from Caltech § leads to an initial
rendering of the landing lights. Fig. 3b shows the landing lights when the aircraft is 950 m south from the center of the
landing pad at an altitude of 152 m.

The initial rendering parameters for generating Fig. 3b follows the SL1250 Telephoto 4K resolution day/night lenses
for 1/1.7" sensors.¶ The aircraft has neutral Euler angles, i.e., 𝜙 = \ = 𝜓 = 0, and the camera is tilted down by 9◦ to
align with the 9◦ glideslope. The camera is 2 m forward from the aircraft’s center of gravity, i.e., 2 m positive along the
y-axis. The camera’s resolution is 4000 × 2000 pixels, which places the camera’s center at (2000, 1000) with the origin
at the bottom left corner of the image. The camera’s horizontal field of view is 36◦, and its vertical field of view is 26◦.
The focal length ranges from 12 to 50 mm, which yields a focal length of 5263 pixels.‖ Using the relationship between

§http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
¶https://www.rmaelectronics.com/content/Theia-Technologies-Lenses/SL1250%20spec-short%20form%20150408.pdf
‖https://answers.opencv.org/question/17076/conversion-focal-distance-from-mm-to-pixels/
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Fig. 3 Landing Lights in World Coordinates and Pixel Coordinates

the focal length, the sensor width/height, and field of view leads to the computation of the pixels in the horizontal and
vertical axes:

𝑓𝑥 =
pixelwidth/2

tan 𝐹𝑂𝑉ℎ

, 𝑓𝑦 =
pixelheight/2

tan 𝐹𝑂𝑉𝑣

(10)

in which 𝐹𝑂𝑉ℎ and 𝐹𝑂𝑉𝑣 are the horizontal and vertical fields of view in radians, and 𝑓𝑥 and 𝑓𝑦 are the horizontal and
vertical focal lengths in pixels [31].

IV. Approach and Landing Profile
Figure 4 shows a screenshot of slide 27 from Ref. [32], which presents a tentative approach profile for UAM

vertiports. The authors assume that the glidepath, horizontal distances, altitude, and decelerations are in the WCS fixed
to a static location such as the touchdown point (TDP). Important AAM aircraft kinematic parameters to note are the
glidepath deceleration of −1.6 𝑓 𝑡/𝑠2, glidepath distance of 3156 ft, initial altitude of 500 ft, and an initial Final Approach
Fix (FAF) forward velocity of 70 KIAS pointed towards the TDP. There are no official and active FAA Vertiport Design
documents, but the vertiport glidepath provided in Ref. [32] contains the same glideslope angle of 9◦ in Ref. [25].
Assembling all this information tentatively provides an adequate baseline approach path for vision-based AAM PALS.
Figure 5 modifies the vertiport approach profile in Fig. 4 by including the last row of HALS lights and using the last row
of HALS lights as the origin instead of the TDP. The flight phases are outlined as:

• A→B: glideslope descent
– Start: 950 m south of the last row of HALS lights
– Stop: 100 m south of the last row of HALS lights

• B→C: forward flight phase 1 with POSIT and camera pitched down
– Start: 100 m south of the last row of HALS lights
– End: 250 m north of the last row of HALS lights

• C→D: forward flight phase 2 with homography (non-POSIT) and downward facing camera
– Start: 250 m north of the last row of HALS lights

7



Fig. 4 FAA and the National Campaign ppt slide 27 [32]

Fig. 5 FAA and the National Campaign ppt: modified slide 27
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– End: 318 m north of the last row of HALS lights (68 m north of the helipad’s H)
• D→H: vertical descent once centered on the helipad’s H

With a camera tilted down at a fixed angle, there will be fewer landing lights within view during forward flight (B→C
and C→D), which directly affects the accuracy of the vision-based navigation solution. An insufficient number of
features or landing lights will be detrimental and difficult to determine the aircraft’s position relative to the TDP. Thus,
the considered flight phase in this paper focuses on the glideslope descent (A→B) to ensure all the landing lights are
within view.

V. Extended Kalman Filter Design
This paper utilizes a continuous-discrete extended Kalman filter for a stationary system, i.e., F is time-invariant and

follows a similar approach in Ref. [33]-[34]. The input vector, u ∈ R6, includes the IMU measurements in the body
frame:

u =

[
𝑎𝑐𝑐𝑥 𝑎𝑐𝑐𝑦 𝑎𝑐𝑐𝑧 𝑔𝑦𝑟𝑜𝑥 𝑔𝑦𝑟𝑜𝑦 𝑔𝑦𝑟𝑜𝑧

]
. (11)

The predicted state is defined as:

¤x = f (x(𝑡), u(𝑡), 𝑡) , x̂𝑘 (−) = x̂𝑘 (+) +
∫ 𝑘

𝑘−1
f (x(𝑡), u(𝑡), 𝑡)𝑑𝑡 (12)

with (−) to denote before measurements and 𝑘 represents the 𝑘th iteration. The predicted covariance before measurements
is defined as:

P𝑘 (−) = 𝚽(𝑘)P𝑘−1 (+)𝚽(𝑘)𝑇 + 𝚪(𝑘)Q(𝑘)𝚪(𝑘)𝑇 (13)
such that with (+) denotes after measurements. 𝚽(𝑘) and 𝚪(𝑘) are defined as:

𝚽(𝑘) = 𝑒F(𝑘)Δ𝑡 , 𝚪(𝑘) =
( ∫

𝚽(𝑘)Δ𝑡
)
G(𝑘) (14)

The F(𝑘),G(𝑘), and H(𝑘) matrices are defined as:

F(𝑘) = 𝜕f (x(𝑡), u(𝑡), 𝑡)
𝜕x(𝑡)

����
x=x̂𝑘 (+)

, G(𝑘) = 𝜕G(x(𝑡))
𝜕x(𝑡)

����
x=x̂𝑘 (+)

, H(𝑘) = 𝜕h(f (x(𝑡), u(𝑡), 𝑡)
𝜕x(𝑡)

����
x=x̂𝑘 (+)

(15)

The Kalman gain matrix is:
K𝑘 = P𝑘 (−)H𝑇

𝑘

(
H𝑘P𝑘 (−)H𝑇

𝑘 + R𝑘

)−1 (16)
The state estimate update equation is:

x̂𝑘 (+) = x̂𝑘 (−) + K𝑘 (𝒛𝑘 − H𝑘 x̂𝑘 (−)) (17)

Using the Joseph stabilized version of the covariance measurement update is a more stable and robust formulation such
that it guarantees P𝑘 (+) will be symmetric and positive definite if P𝑘 (−) is symmetric and positive definite: [35]

P𝑘 (+) = (I − K𝑘H𝑘 )P𝑘 (−)(I − K𝑘H𝑘 )𝑇 + K𝑘R𝑘K𝑇
𝑘 . (18)

The process and measurement noise covariances are assumed to be constant, diagonal, and utilize the Gaussian
distribution, i.e., Q,R ∼ 𝑁 [`, 𝜎2] with ` as the mean and 𝜎 as the standard deviation. The EKF uses the IMU as the
input vector and coplanar POSIT for pose measurements, so Q,R ∈ R6×6. Thus, the process noise covariance includes
uses the IMU measurement variances:

Q = 𝑑𝑖𝑎𝑔

[
𝜎2
𝑎𝑐𝑐,𝑥 𝜎2

𝑎𝑐𝑐,𝑦 𝜎2
𝑎𝑐𝑐,𝑧 𝜎2

𝑔𝑦𝑟𝑜,𝑥 𝜎2
𝑔𝑦𝑟𝑜,𝑦 𝜎2

𝑔𝑦𝑟𝑜,𝑧

]
. (19)

The measurement noise covariance utilizes the variances from the coplanar POSIT algorithm:

R = 𝑑𝑖𝑎𝑔

[
𝜎2
𝑁 ,𝑃𝑂𝑆𝐼𝑇

𝜎2
𝐸,𝑃𝑂𝑆𝐼𝑇

𝜎2
𝑈,𝑃𝑂𝑆𝐼𝑇

𝜎2
𝜙,𝑃𝑂𝑆𝐼𝑇

𝜎2
\,𝑃𝑂𝑆𝐼𝑇

𝜎2
𝜓,𝑃𝑂𝑆𝐼𝑇

]
. (20)

Figure 6 shows the block diagram of the proposed EKF. The black box with "c2d" utilizes the functions in Eq. (14)
to compute Φ and Γ. The box with "Plant" contains the kinematic equations for predicting the state, x̂(−), before
taking measurements. The solid black lines represent computations for the state, while the dashed blue lines represent
computations for covariance. Figure 7 shows the outputs of the IMU and POSIT as u and z, respectively, which feed into
the EKF as the input vector and measurement vector. The accelerometer and gyroscope measurements in the body frame
feed into the input vector, u, which feeds into the plant and computations for F and G with white Gaussian noise, w.
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Fig. 6 Extended Kalman Filter Block Diagram

Fig. 7 Extended Kalman Filter Outputs for IMU and POSIT
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VI. Simulation Results

A. Initial Coplanar POSIT Algorithm Results
After downloading and altering the coplanar POSIT C code ∗∗, initial simulation tests show that coplanar POSIT

works for a downward-facing camera tilted down by 9◦ descending on a 9◦ glideslope (recall A→B in Fig. 5). It
takes approximately 0.027 seconds per iteration to run the coplanar POSIT algorithm, which demonstrates real-time
capabilities for onboard implementation in the future.

Tables 1-2 show the initial coplanar POSIT estimations for the position (WCS) in meters with North being the most
inaccurate. The camera Euler angles are in degrees with high accuracy (𝜓des = 0◦, \des = −9◦, 𝜓des = 0◦), especially the
camera pitch down angle. Eq. (21) computes the errors between the desired and estimated variables with subscript, des,
to denote desired variables subscripts and subscript, est, to denote estimated variables.

Δ𝐸 = 𝐸des − 𝐸est , Δ𝜙 = 𝜙des − 𝜙est

Δ𝑁 = 𝑁des − 𝑁est , Δ\ = \des − \est

Δ𝑈 = 𝑈des −𝑈est , Δ𝜓 = 𝜓des − 𝜓est

Δ 𝒑 =
√︁
Δ𝑁2 + Δ𝐸2 + Δ𝑈2 , Δ𝚯 =

√︃
Δ𝜙2 + Δ\2 + Δ𝜓2

(21)

Table 1 Initial Position Estimation Coplanar POSIT Glideslope Test

𝐸des 𝑁des 𝑈des 𝐸est 𝑁est 𝑈est Δ𝐸 Δ𝑁 Δ𝑈 Δ 𝒑

0 -950 152 0 -948.2 151.84 0 1.794 -0.1564 1.801
0 -850 136 0 -845.9 135.63 0 4.071 -0.3699 4.087
0 -750 120 -0.1434 -745.1 119.46 -0.1434 4.942 -0.5428 4.974
0 -650 104 0.1241 -644.9 103.53 0.1241 5.062 -0.4698 5.086
0 -550 88 0 -548.0 88.07 0 2.026 0.07176 2.027
0 -450 72 -0.0867 -450.4 72.40 -0.08668 -0.4449 0.3966 0.602
0 -350 56 0 -347.9 55.91 0 2.119 -0.0877 2.121
0 -250 40 -0.04761 -247.4 39.95 -0.04761 2.636 -0.0501 2.637
0 -150 24 0 -148.0 23.99 0 1.983 -0.008429 1.983
0 -100 16 -0.01888 -98.1 16.01 -0.01888 1.934 0.00991 1.935

Table 2 Initial Attitude Estimation Coplanar POSIT Glideslope Test

𝐸des 𝑁des 𝑈des 𝜙est \est 𝜓est Δ𝜙 Δ\ Δ𝜓 Δ𝚯

0 -950 152 0.2421 -8.969 -0.2394 -0.2421 -0.03142 0.2394 0.3419
0 -850 136 0.1721 -8.975 -0.1696 -0.1721 -0.02539 0.1696 0.2430
0 -750 120 0.1060 -8.968 -0.1001 -0.1060 -0.03177 0.1001 0.1492
0 -650 104 -0.1605 -8.974 0.1543 0.1605 -0.02584 -0.1543 0.2241
0 -550 88 -0.1087 -9.014 0.1079 0.1087 0.01351 -0.1079 0.1537
0 -450 72 0.0653 -9.031 -0.06225 -0.06534 0.03135 0.06225 0.09554
0 -350 56 -0.0400 -8.986 0.03924 0.03999 -0.01378 -0.03924 0.05770
0 -250 40 -0.0392 -9.000 0.03974 0.03918 -0.000318 -0.03974 0.05580
0 -150 24 -0.0872 -8.995 0.08633 0.08719 -0.00453 -0.08633 0.1228
0 -100 16 -0.00245 -9.002 0.00308 0.00245 0.00195 -0.00308 0.00439

∗∗http://www.daniel.umiacs.io/Site_2/Code.html
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For forward flight, initial tests show that coplanar POSIT fails at 29 m (AGL altitude is 16 m) from the TDP because
there are less than four coplanar points in the camera’s view. Consequently, forward flight (B→C & C→D in Fig. 5)
requires alternative methods to determine pose estimation. It is unknown what vision-based methods will be best for
forward and is part of future work. The last flight phase, D→H, in Fig. 5 can utilize similar techniques shown in Ref.
[12] through a nadir camera and applying SIFT and the homography matrix to match a reference image of the landing
pad.

B. EKF Results
The VMS provided telemetry data of a simulated RVLT quad model for manual approach and landing at NASA Neil

Armstrong Flight Research Center (AFRC). Figure 8 shows a screenshot of the video. After modifying the simulated

Fig. 8 Screenshot of VMS Manual Descent at NASA AFRC

VMS telemetry for a 9◦ glideslope, taking the variances of the accelerometer and gyroscope measurements in the body
frame leads to values for the process noise covariance:

Q = 𝑑𝑖𝑎𝑔

[
1.764 · 10−5 1.8279 · 10−8 3.844 · 10−5 5.29 · 10−6 5.29 · 10−6 1.053 · 10−7

]
. (22)

The measurement noise covariance values come from expanding the initial simulated coplanar POSIT test to numerous
more iterations during the glideslope descent:

R = 𝑑𝑖𝑎𝑔

[
2.329 0.0052 0.0625 1.218 · 10−7 3.046 · 10−8 2.467 · 10−6

]
. (23)

The initial covariance matrix, P0, contains values of 1000 along the diagonal to provide significant initial uncertainties
to ensure quick convergence. The IMU measurements, coplanar POSIT pose measurements, and the EKF time steps all
use a timestep of 0.01 seconds to keep time synchronization simple. It takes approximately 0.2 ms per iteration, which
demonstrates real-time capabilities for onboard implementation.

1. Covariance
Figure 9 shows the position and velocity error covariances, which quickly converge to zero. Similarly, Fig. 10 shows

that the Euler angle error covariances also converge to zero. Since all the state variables’ covariances converge to zero,
this demonstrates high confidence in the state estimation increases as time marches forward. Quick convergence with
small covariance values shows that the proposed EKF design produces confident results.
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Fig. 9 Error Covariance: Position & Velocity

Error Covariance for Euler angles
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Fig. 10 Error Covariance: Euler Angles
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2. State Estimation
Figure 11 shows the position and velocity state estimates, which align closely with the black line, nominal path

(A→B in Fig. 5). Figure 12 shows the aircraft Euler angle camera estimates, which have tiny fluctuations in the roll and
pitch angles. There is a positive bias in the pitch angle estimation but as much in the roll angle estimation. Overall, the
state estimation is fairly accurate despite the North estimation average and standard deviation for 𝑣𝑁 . Table 3 shows the
state estimation statistics.

State Estimation: Position

0 5 10 15 20 25 30 35

time (s)

-1000

-500

0

N
 (

m
)

Estimated

Nominal

0 5 10 15 20 25 30 35

time (s)

-0.1

0

0.1

0.2

E
 (

m
)

Estimated

Nominal

0 5 10 15 20 25 30 35

time (s)

0

50

100

150

U
 (

m
)

Estimated

Nominal

(a) State Estimation: Position

State Estimation: Velocity

0 5 10 15 20 25 30

time (s)

20

25

30

35
Estimated

Nominal

0 5 10 15 20 25 30

time (s)

-0.05

0

0.05 Estimated

Nominal

0 5 10 15 20 25 30

time (s)

-5

-4

-3
Estimated

Nominal

(b) State Estimation: Velocity

Fig. 11 State Estimation: Position & Velocity

State Estimation: Euler angles
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Fig. 12 State Estimation: Euler Angles

Table 3 State Estimation Statistics

𝑁 𝐸 𝑈 𝑣𝑁 𝑣𝐸 𝑣𝑈 𝜙 \ 𝜓

` 1.9136 0.01690 0.02258 0.2095 0.02556 0.05556 0.000212 0.000165 0.000467
𝜎 0.2549 0.009755 0.04175 1.299 0.3620 0.5992 0.000204 0.000114 0.000115

3. Bounded Error
Figure 13 shows the position error bounded by ±2, 3𝜎, centered around the mean error. The blue lines represent the

±2𝜎 bounds, while the red lines represent the ±3𝜎 bounds. An initial glance at the errors seem to yield errors within
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the ±2, 3𝜎 bounds, but zooming in shows that the position errors remain within the ±2, 3𝜎 for most of the time with
small fluctuations outside the boundaries, which demonstrates confidence in the position estimation. Figure 14 shows
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Fig. 13 Error with ±2, 3𝜎 Bounds: Position (Zoomed In)

the average velocity error and sigma bounds, which are centered around zero since the mean errors are tiny. A quick
glance shows that the mean errors converge quickly. Zooming in shows that the error tends to gravitate towards the
+2, 3𝜎 bounds with some values outside the ±2, 3𝜎 bounds. However, the + ± 2, 3𝜎 bounds are tiny, so having small
errors fall outside these bounds is acceptable. For instance, the last few values for +3𝜎𝑣𝐸 are 0.005 𝑚/𝑠, while the
error is 0.01 𝑚/𝑠. Figure 15 shows the Euler angle errors and ±2, 3𝜎 bounds centered around the mean error. Rapid
convergence occurs with minimal fluctuations based on the small order of magnitude. Some spikes exceed the +3𝜎
bounds for 𝜙 and \, but these values are minuscule, i.e., order of 10−4𝑟𝑎𝑑. Despite these few spikes, the errors generally
stay within the ±2, 3𝜎 bounds, demonstrating confidence in the Euler angle state estimation computations.

C. Glideslope & Localizer Error
Confident and accurate EKF state estimations lead to accurate glideslope and localizer error computations. Figure

16 depicts a geometric representation of the aircraft’s distance from the glidepath to compute the glideslope and localizer
error. The 2D back plane is in the UE plane, and the side plane is in the UN plane. The glidepath vector, 𝒈 𝒑, is the
vector from P to O and yields the shortest path to return to the glidepath because 𝒈 𝒑 is perpendicular to 𝑨𝑶. It breaks
down into three components:

𝒈𝒔 =
[
𝒈 𝒑𝑙𝑎𝑡 ,𝐸 𝒈 𝒑𝑙𝑎𝑡 ,𝑁 𝒈 𝒑𝑣

]
=

[
𝒈 𝒑𝑙𝑎𝑡 𝒈 𝒑𝑣

]
(24)

in which 𝒈 𝒑𝑙𝑎𝑡 ,𝐸 is the East component of 𝒈 𝒑𝑙𝑎𝑡, 𝒈 𝒑𝑙𝑎𝑡 ,𝑁 is the North component of 𝒈 𝒑𝑙𝑎𝑡 , and 𝒈 𝒑𝑣 is the vertical
component of 𝒈 𝒑. The glideslope error is the magnitude of 𝒈 𝒑𝑣 , while the localizer error is the magnitude of 𝒈 𝒑𝑙𝑎𝑡 ,𝐸 .
Figures 17a-17b show the 2D view of the aircraft’s position, P, relative to the glidepath and the components of 𝒈 𝒑.
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Fig. 14 Error with ±2, 3𝜎 Bounds: Velocity
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Fig. 16 Glideslope/Localizer Diagram (WCS): P is the aircraft, A is a fixed point at the top of the glideslope, B
is a fixed point at the bottom of the glideslope, and O is the closest point on the glidepath from P. The points, A
and B, have the same WCS coordinates as in Fig. 5.

(a) Glideslope/Localizer Diagram - Back Plane (b) Glideslope/Localizer Diagram - Side Plane

Fig. 17 Glideslope/Localizer Diagrams
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Figure 18 shows a block diagram of the glideslope and localizer error computations. First, the vector, 𝑨𝑩 is constant
and computed along with its unit vector, 𝒂𝒃. Then, the vector, 𝑨𝑷 can be calculated based on the WCS position estimate
from the EKF state estimation results. Next, the vector, 𝑨𝑶 can be computed by:

𝑨𝑶 = (𝑨𝑷 · 𝒂𝒃) (𝒂𝒃). (25)

Then, the glidepath vector, 𝒈 𝒑 is the difference between 𝑨𝑶 and 𝑨𝑷:

𝒈 𝒑 = 𝑨𝑶 − 𝑨𝑷. (26)

The glidepath vector’s vertical component can then be computed by dotting with �̂� = [0 0 1]𝑇 :

𝒈 𝒑𝑣 = (𝒈 𝒑 · �̂�) �̂� , (27)

which yields the glideslope error. Finally, the localizer error comes from the computation of the glidepath vector’s
lateral component:

𝒈 𝒑𝑙𝑎𝑡 = 𝒈 𝒑 − 𝒈 𝒑𝑣 . (28)

Fig. 18 Glideslope/Localizer - Flow Chart

Figure 19 shows the glideslope and localizer errors based on the EKF position state estimates. The glideslope error
diverges due to minor errors that accumulate over time. The localizer error has some minor fluctuations but tends to be
very small due to the highly accurate East estimations. This paper does not include guidance laws during descent to
steer the aircraft back onto the nominal glidepath utilizing feedback control. This paper focuses on navigation, so future
work involves deriving and implementing guidance laws to bring the aircraft back onto the glidepath.

D. X-Plane Simulation
As nighttime AAM operations and technologies progress forward, future studies may need to monitor health and

alertness for long-term exposure to the vertiport landing lights [36]. X-Plane is a flight simulator software with aircraft,
airports, and scenery packages to resemble mock flights in the real world. X-Plane has a 2D airport editor called World
Editor, allowing users to create and modify airports and scenery. Importing orthophotos of tiles around the globe into
World Editor and then exporting them into X-Plane provides higher quality images of the scenery. Importing orthophotos
and the landing light configuration into World Editor and X-Plane provides a high-fidelity AAM PAL simulation. The
NASA Data & Reasoning Fabric (DRF) †† selected eleven veriport locations for their simulations, and two of them are
Fifth and Mission Garage (San Francisco) and Middle Harbor Shoreline Park (Oakland). Figure 20a shows an example
of importing an orthophoto of a portion of Middle Harbor Shoreline Park (Oakland, CA) into World Editor. See Fig.
20b for rendering the landing light configuration as green plus signs in World Editor. Figure 22 shows an X-Plane 9◦
camera tilt down view at daytime and nighttime view of the descent at Middle Harbor Shoreline Park, starting in San
Francisco at Fifth and Mission Garage (see Fig. 21 for their locations relative to the San Francisco International Airport

18



Glideslope & Localizer Error

0 5 10 15 20 25 30 35

time (s)

-2

-1.5

-1

-0.5

0

G
lid

e
s
lo

p
e
 e

rr
o
r 

(m
)

0 5 10 15 20 25 30 35

time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

L
o
c
a
liz

e
r 

e
rr

o
r 

(m
)

Fig. 19 Glideslope & Localizer Error vs. Time

(a) X-Plane World Editor Middle Harbor Shoreline Park
Orthophoto

(b) X-Plane World Editor Middle Harbor Shoreline Park
Veriport Lights and Helipad (green plus signs)

Fig. 20 X-Plane Middle Harbor Shoreline Park Veriport Landing Simulation
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Fig. 21 Fifth & Mission Garage and Middle Harbor Shoreline Park DRF Vertiports Relative to the San
Francisco International Airport (Google Earth)

Fig. 22 X-Plane Day & Night Approach and Landing at Middle Harbor Shoreline Park, Oakland, CA

in Google Earth). Future work includes determining the camera tilt down specifications and conducting further analysis
and investigation on adequate computer vision methods to determine feature correspondence, i.e., finding the lights in
pixel coordinates in the images to feed into coplanar POSIT.

VII. Conclusion
This paper demonstrates a vision-based navigation solution for AAM PAL by fusing VMS IMU telemetry data and

the coplanar POSIT algorithm in an extended Kalman filter. State estimation results demonstrate high accuracy, quick
covariance convergence shows increased confidence in the state estimation, and short runtime offers AAM a baseline
and real-time vision-based navigation solution for glideslope descent. Future work includes augmenting the high-fidelity
PAL simulation in X-Plane and World Editor with guidance laws for steering the aircraft back onto the glidepath. Other
future work includes feature correspondence to determine the landing lights in pixel coordinates to insert into coplanar
POSIT and the other blue blocks in Fig. 1, which will lead to real-time integrated guidance, navigation, and control
simulation for AAM PAL.

††https://drf.nasa.gov/
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