Crucial Role of Thermal Gradients
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Overview Mystery #1: Different Behavior Mystery #3: ‘Hockey Sticks’ Near Application: De-coupling Thermal
Magnetic field measurements are critical to the success of the Magnetospheric Multiscale In Sunlig ht and Shadow Perigee Gradient from Tem peratu re

(MMS) mission. To meet the science goals of the mission, the Fluxgate Magnetometer (FGM)

instrument must measure the ambient magnetic field with an accuracy of 0.1 nT. The in-flight - - ’ i i MMS3 Ul Ul UIUSY — UlUos

calibration process uses the spacecraft spin to determine the offset (or zero level) of the T weaeer In the low field regime of A baseline offset, oy, , Sg . Fig8. Forascending (left) and | Uncometed Offeet o Offset with Thermal Gradient Corrections
sensor at ~15 minute time scale, revealing that on a typical MMS orbit, the offsets (or zero . : the MMS region of interest is determined on each w7 descending (right) portion of the F 3 | 1_ (b) 3
levels) of the 3-axis FGM can vary by ~0.5 nT (exclusive of periods in Earth shadow). The el o Suntight Stowly Changing T (ROI), offsets are the sensor. i. for the sunlit W, e T orbit: Spin axis field (top); : 1 o f .
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variations in .the ambient field within the MMS region of interest (.ROI). limit the precision of ? - primary source of portion of each orbit, ‘(a) ey dynamic offsets and expected 14f L _
these dynamic measurements. Thus, e.mplrlcally dete.rm.med relationships of the. offset vs l (a) measurement error, and The residual oy is fit — offset from 7 trend for s§l§cted o3 ER P+ E
sensor temperature are used to determine the offset within the ROI. However, this approach » e w e = w must be characterized to two separate spline - sensors (a,b,c,d) that exhibit the _ I
raises new questions and has some limitations: y W perature 7 o accurately. finetions of sensor largest residuals; T (bottom). 12f 1 Boep E
1) Why do offsets respond to sensor temperature differently in sunlight vs. shadow? Y W temperature on 7-day I E o - of S
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2) Why does the offset baseline change abruptly after maneuvers? A | ; MMS offsets are corrected  intervals: s R - Fig 9. MMS orbit in GSE T e tomp (@ e temp © |
3) Why do offsets deviate from the sensor temperature relationship near perigee? ° ’ : ' | using a technique that N (d) """"""""" ) e coordinates, showing attitude Fig 14. Offset vs Temperature (a) before and (b) after correction for thermal loading effects
| o D) e et saessin |1 characterizes the 0,8 (Ts) for times in | and position of MMS in the _
We address these questions by considering the the fact that thermal load from the Sun and the o] 's relationship of offset to sunlight, and 3 \ -ascending and descending Could it be... A simol del eor th "
Earth will change as a function of spacecraft attitude and position. g \, f sensor temperature, 7 w1/ lintervals shown in Fig. 8. the Earth? SHmpe THOTE corrects for the £8
% 3 : . b S s . . s 00 040 B0 oM 20 20 éEaCh aXlS extends tO 4 R e a r - changlng thermal load: (%LLI
§ 1% * Tecomespondngtodnamic | -0 enabling offsets to be 0,” (Tg) for times 1n E E-
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€ nstrumen Fig. 5 An ensemble of 7 orbits showing the dynamic offsets, ol, measured on 15-min red points at the highest temperatures). Residuals can be as large as 0.2 nT at 4-5 Earth radii .
MMS consists of 4 spacecraft (MMS1, MMS2, MMS3 and MMS4) 1n.tervals. for MMS3 AFG SEeNsor 1. (3)001 plotted with res.pect to sensor temperature, I , (Rp). the that. th.e direction of the h(?ckey stick dev1at19n§ alternates a.scen(.hng VS S. is the linear factor determined for
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flying in close (10-100 km) formation. Each 1s equipped with DFG : .. : , , , , : -

. . . S measurements of ol (b) and 75 (¢), referenced to the time of minimum 7§ on each orbit. In bottom of the spacecraft while ascending, and onto the top while descending (Fig 9). angles of sunlight (Fig. 10). Cis an -8
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