OVERFLOW Analysis of Supersonic Retropropulsion Testing on the CobraMRV Mars Entry Vehicle Concept

K. V. Matsuno¹, R. E. Childs², T. H. Pulliam², P. M. Stremel² & J. A. Garcia¹

NASA Ames Research Center, Moffett Field, California 94305 ¹ NASA Systems Analysis Office ² Science & Technology Corporation

2022 AIAA SciTech Forum

Kristen Matsuno

APA-30/GT-02 Mars Powered Descent Vehicles I

Background: CobraMRV

The CobraMRV considered for landing large payloads:

Mach number isosurfaces

Background: Tunnel & Model Geometry

 $M = 2.4, \alpha = 90^{\circ}, CT = 2.5$

Background: Tunnel & Model Geometry

Close up view of the model & sting (heatshield highlighted by C_p contours)

- $M = 2.386, \alpha = 90^{\circ}$ and CT = 2.5
- T_0 isosurfaces showing plume structures

- $M = 2.386, \alpha = 90^{\circ} \text{ and } CT = 2.5$
- T_0 isosurfaces showing plume structures

NASA

- $M = 2.386, \alpha = 90^{\circ}$ and CT = 2.5:
- Mach number isosurfaces
- Black lines indicating the 'saddle' shock
- Bow shock changes load dynamics

- $M = 2.386, \alpha = 90^{\circ}$ and CT = 2.5:
- Mach number isosurfaces
- Black lines indicating the 'saddle' shock
- Bow shock changes load dynamics

 $M=4.6, \alpha=90^\circ \text{ and } CT=1.0:$ An example of flow unsteadiness in heatshield C_p

Time

Objectives

- Highlight CobraMRV SRP flow characteristics*
- Summarize CobraMRV aerodynamics*
- Investigate vehicle loads' sensitivity to CFD parameters

Objectives

- Highlight CobraMRV SRP flow characteristics*
- Summarize CobraMRV aerodynamics*
- Investigate vehicle loads' sensitivity to CFD parameters
 - Shock capturing*
 - Temporal accuracy
 - Adaptive mesh refinement (AMR)
 - Tunnel inflow conditions
 - URANS vs. DES
 - *See paper more detailed discussion

Objectives

- Highlight CobraMRV SRP flow characteristics*
- Summarize CobraMRV aerodynamics*
- Investigate vehicle loads' sensitivity to CFD parameters
 - Shock capturing*
 - Temporal accuracy
 - Adaptive mesh refinement (AMR)
 - Tunnel inflow conditions
 - URANS vs. DES
 - *See paper more detailed discussion

Operating conditions of particular interest: $M=3.5, \alpha=85^\circ, CT=2.5$

Shown: transition from 1 to 2 levels of AMR

- $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$
- What contributes to load unsteadiness, if it exists?

Temporal Accuracy: Δt

 $M=3.5, \alpha=85^\circ, CT=2.5$

Time-step size was not a factor in observed unsteadiness.

 $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Mesh adaption frequency was not a factor in observed unsteadiness.

$M=3.5, \alpha=85^\circ, CT=2.5$

Effect of mesh adaption frequency on heatshield loads: Dynamic vs. 'frozen' grid adaption

$M=3.5, \alpha=85^\circ, CT=2.5$

Effect of mesh adaption frequency on heatshield loads: Dynamic vs. 'frozen' grid adaption

Kristen Matsuno

 $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Dynamic grid adaption captures near-surface vortical structures as they travel.

 $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Kristen Matsuno

APA-30/GT-02 Mars Powered Descent Vehicles I

¹Childs et al. "Flow Characterization of the NASA Langley Unitary Plan Wind Tunnel, Test Section 2: Computational Results," AIAA Aviation (2021)

• Wind tunnel upstream of the test section has physical asymmetry

¹Childs et al. "Flow Characterization of the NASA Langley Unitary Plan Wind Tunnel, Test Section 2: Computational Results," AIAA Aviation (2021)

- Wind tunnel upstream of the test section has physical asymmetry
- Test section inflow BC from empty tunnel CFD¹

¹Childs et al. "Flow Characterization of the NASA Langley Unitary Plan Wind Tunnel, Test Section 2: Computational Results," AIAA Aviation (2021)

- Wind tunnel upstream of the test section has physical asymmetry
- Test section inflow BC from empty tunnel CFD¹
- Does inflow BC asymmetry propagate to heatshield loads?

¹Childs et al. "Flow Characterization of the NASA Langley Unitary Plan Wind Tunnel, Test Section 2: Computational Results," AIAA Aviation (2021)

- Wind tunnel upstream of the test section has physical asymmetry
- Test section inflow BC from empty tunnel CFD¹
- Does inflow BC asymmetry propagate to heatshield loads?
- $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

¹Childs et al. "Flow Characterization of the NASA Langley Unitary Plan Wind Tunnel, Test Section 2: Computational Results," AIAA Aviation (2021)

$M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Momentum ρv contours at the tunnel inflow plane

$M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Momentum ρv contours at the tunnel inflow plane

 $M = 3.5, \alpha = 85^{\circ}, CT = 2.5$

Momentum ρv contours at the tunnel inflow plane

$$\label{eq:massive} \begin{split} M = 3.5, \alpha = 85^\circ, CT = 2.5 \\ \text{Averaged heatshield } C_p \text{ contours} \end{split}$$

$$\label{eq:massive} \begin{split} M = 3.5, \alpha = 85^\circ, CT = 2.5 \\ \text{Averaged heatshield } C_p \text{ contours} \end{split}$$

Original BCs

• SST $k - \omega$ unsteady RANS (URANS) compared to detached eddy simulation (DES)

- SST $k \omega$ unsteady RANS (URANS) compared to detached eddy simulation (DES)
- Differences in load prominent for higher ${\cal CT}$ cases

- SST $k \omega$ unsteady RANS (URANS) compared to detached eddy simulation (DES)
- Differences in load prominent for higher ${\cal CT}$ cases
- $M = 2.4, \alpha = 90^{\circ}, CT = 2.5$

 $M = 2.4, \alpha = 90^{\circ}, CT = 2.5$ DES raises the heatshield c_x by about 20% and greatly increases load unsteadiness compared to URANS

	c_x mean	c_x std. dev.
URANS	1.113	7.9×10^{-3}
DES	1.334	1.01×10^{-1}

$M=2.4, \alpha=90^\circ, CT=2.5$

Contours of stagnation pressure coefficient C_{p0}

$M=2.4, \alpha=90^\circ, CT=2.5$

Contours of stagnation pressure coefficient C_{p0}

SST $k - \omega$ DES Z=-4.47" 1.8 1.74 1.72 1.7

Summary

- Present CobraMRV pre-test solutions are independent of time stepping and mesh adaption frequency
- Dynamic AMR must be used to capture the full range of vehicle dynamics
- Inflow asymmetry impacts vehicle loads
- SST $k \omega$: DES gives 20% increase in loads compared to URANS

Z=-4.47

Acknowledgements: Funding provided by AETC DSS and NESC LAV projects. Contact: kristen.v.matsuno@nasa.gov

Numerical methods

000

- 5th order WENO
- HLLE++ in shock region, HLLC elsewhere
- 'time-accurate' mode
- Two levels of AMR in shock and plume regions
- Inflow conditions: averaged 'empty tunnel' solutions (Childs et al. AIAA Aviation (2021))
- Base turbulence model: SST $k \omega$
 - QCR on in tunnel wall grids; disabled elsewhere
 - RC on
 - CC off

$M = 2.4, \alpha = 90^{\circ}, CT = 0.5$

Heatshield loads at each AMR level

Misc. Notes

000

- Due to unsteadiness and scale resolution, DES is likely (at least) an order of magnitude more expensive that URANS
- Nozzle boundary conditions: P_0, T_0 specified, then run with mutigridding through transient period