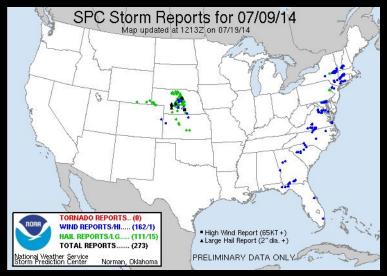
Using Satellite Remote Sensing and Geographic Information Systems (GIS) to Create an Extensive Hail Damage Swath Database

Emily F. Wisinski¹, Jordan R. Bell², Emma Gilligan³, Andrew L. Molthan², and Christopher J. Schultz²

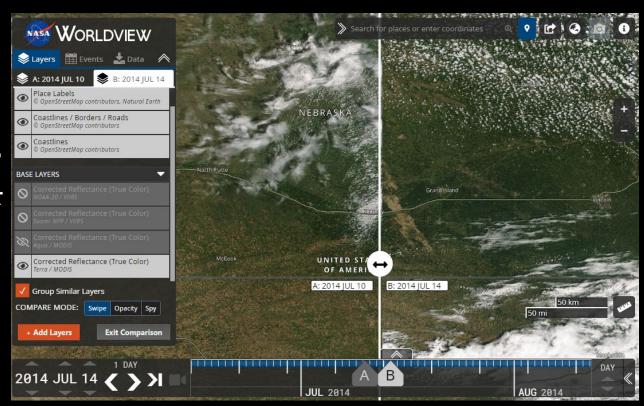
¹Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama ²Earth Science Branch, NASA/Marshall Space Flight Center, Huntsville, Alabama ³Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, Maryland

Background / Motivation


- Growing season overlaps severe & intense thunderstorms that bring damaging winds and large hail (Bell et al. 2020)
 - A number of these storms leave behind visible swaths of damage
- Create database of hail damage swaths events
 - Midwest and Great Plains
 - o 2000 2020
 - Derived from daily NASA true color imagery
- Improve understanding of geospatial range and frequency

Nebraska, 07/09/2014

Methods – Archive Work


- Storm Prediction Center Storm Reports
 - 1 May to 15 September
- Local Storm Reports (Hail) vs Maximum Estimated Size of Hail (MESH)
 - · 2012-2017

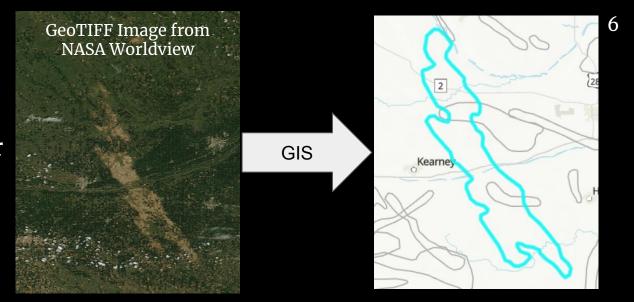
Methods – Archive Work

- Storm Prediction Center Storm Reports
- Local Storm Reports (Hail) vs MESH
- NASA Worldview

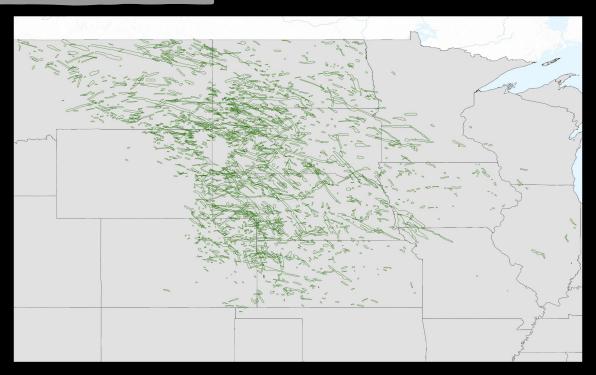
Diversity in Swaths

- Time of the growing season
- Background land cover
 - Ag vs grassland
- Size of swath

Methods -Archive Work

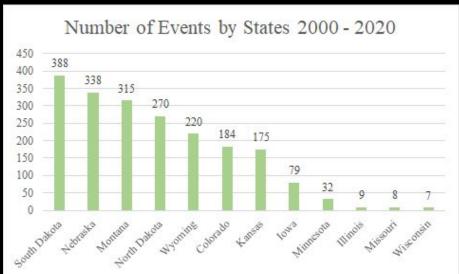

- Storm Prediction Center Storm Reports
- Local Storm Reports (Hail) vs MESH
- NASA Worldview
- Catalog events in Google Sheet

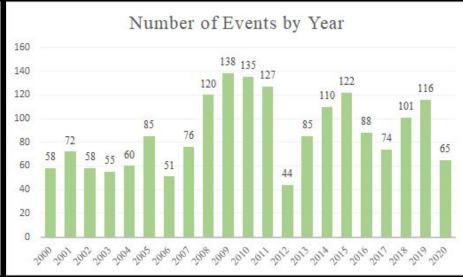
- Collected additional metadata on each event
 - Metadata includes when the swath first appeared in imagery, which sensor saw it best, etc.
- Each event was assigned a confidence for identified swaths
 - Swaths that had high confidence did not require additional analysis for confirmation.
 - Swaths that had moderate confidence levels required additional input and analysis from experts involved to confirm.


Methods -Archive Work

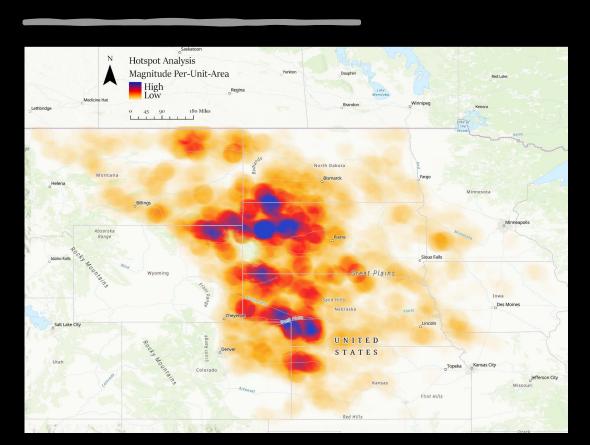
- Storm Prediction Center Storm Reports
- Local Storm Reports (Hail) vs MESH
- NASA Worldview
- Catalog events in Google Sheet
- Create GIS record of event database

- For each confirmed event in Google Sheets
 - True color geotiffs from the "Best Date" were downloaded
 - Geotiffs were imported into desktop GIS software where analysts outline each swath into a shapefile
 - Metadata from Google Sheets were also entered into the shapefile.


Results



Full extent of the hail swath damage across the Midwest and Great Plains. Over 71,000,000 acres of land were affected by hail damage swaths from 2000 - 2020.


Results

- 1839 events occurred throughout 2000 2020
 - 2025 polygons drawn across 12 states

Results

- Analysis visualizes
 hotspots for hail
 damage swaths based
 on the polygons drawn.
 Western ND, SD, and
 NE show the largest
 frequency of events
 occurring.
- Preparing manuscript that details methodology and impacts to agriculture - submitting early 2022.

Continuations and Applications

- Develop machine learning technique to detect swaths through an automated process
 - Create databases in other locations where there is damaging hail events through this process
- Improve seasonal and subseasonal forecasting of active vs inactive years
- Investigate potential climatological teleconnections

Two South Dakota swaths in 2018

Contact Information

- Contact information:
 - o Emily Wisinski, <u>efw0003@uah.edu</u>
 - o Jordan Bell, <u>jordan.r.bell@nasa.gov</u>

References

Bell, J. R., Gebremichael, E., Molthan, A. L., Schultz, L. A., Meyer, F. J., Hain, C. R., Shrestha, S., & Payne, K. C. (2020). Complementing optical remote sensing. *American*Meteorological Society, 59(4), 665-685. https://doi.org/10.1175/JAMC-D-19-0124.1

Metadata Fields Within Google Spreadsheet

A	8	C	D	E	F	g	н	1	J	K	L	4 > N	0	P
	Location	States	Analyst			NA SA V	Worldview		Best View			Additional Validation (Initials)		
Year			Initials	Confid	Event Date	Worldview Link	First Appears	Best Date*		SPC Reports Link	Notes/Social Media/WFO Event Summaries	# 1	# 2	#3
2020	Cheyenne, WY into CO	WY, CO	EW	10	06/26/2020	https://go.nasa.gov/3bsifdd	06/27/2020	07/01/2020	Terra	https://www.spc.noaa.gov/climo/reports/200626_rpts.html		JB 10		
	In	dividual Sta	te Swaths	0										
	Overlapping State Swaths Total Swaths for the Year													

- Year
- Location
- States
- Analyst (Initials & Confidence)
- Event Date
- Worldview Link
- First Appears
- Best Date
- Best View Sensor
- SPC Reports Link
- Notes/Social Media/ WFO Event Summaries
- Additional Validations 1, 2, 3 (if needed)

Investigator #1	Investigator #2	Investigator #3	Included or not Inlcuded in Database
7 or Higher	7 or Higher	Not Needed	Included in Database
7 or Higher	7 or Below	7 or Higher	If 2 of 3 Investigator Confidence Above 5, Included in Database
7 or Higher	5 or Below	5 or Below	If 2 of 3 Investigator Confidence Below 5, Not Included in Database

Methods – Archive Work

- Storm Prediction Center Storm Reports
 - LSR Hail vs. MESH Reports (2012 – 2017)
- NASA Worldview
- Google Drive Spreadsheet
- ArcGIS Pro Digitizing & Attribute Table

4	OBJECTID *	Shape *	swathYear	swathMonth	swathDay	swathDate	firstYear	firstMonth	firstDay	firstDate	bestYear -	bestMonth	bestDay
	300	Polygon Z	2000	7	21	2000-07-21	2000	7	25	2000-07-25	2000	7	25
	301	Polygon Z	2000	7	21	2000-07-21	2000	7	25	2000-07-25	2000	7	25
	302	Polygon Z	2000	7	19	2000-07-19	2000	7	21	2000-07-21	2000	7	21
	303	Polygon Z	2000	7	10	2000-07-10	2000	7	11	2000-07-11	2000	7	14

bestDate	states_impacted	Sensor	SPC_Report	AREA	Shape_Area	Shape_Length
2000-07-25	NE	Terra	https://www.spc.noaa	17057.73	0.007459	0.373866
2000-07-25	NE	Terra	https://www.spc.noaa	4906.82	0.002134	0.281309
2000-07-21	NE	Terra	https://www.spc.noaa	60002.13	0.025776	0.831265
2000-07-14	NE	Terra	https://www.spc.noaa	22121.93	0.009852	0.487914
2000-06-30	NE	Terra	https://www.spc.noaa	28652.92	0.012329	0.502367