

Vision-Based Precision Approach and Landing for Advanced Air Mobility

Evan Kawamura Keerthana Kannan Thomas Lombaerts Corey Ippolito

NASA Ames Research Center (ARC): Intelligent Systems Autonomous Systems – Perception & Distributed Sensing 2022 AIAA Scitech Forum January 3, 2022

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

IS-05, 3604871 presented at 2022 AIAA Scitech Forum, January 3, 2022

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Result
- 7. Conclusion

Problem

- AAM needs accurate and autonomous approach and landing systems
- Baseline perception and requirements come from existing technology: vision, IR, radar, glideslope indicators, GPS, etc.
- No active FAA vertiport documents for requirements (canceled in 2010 [1])
- Similar FAA document provides adequate requirements and standards: FAA AC 150/5390-2C: Heliport Design [2]
- FAA plays a critical role in enabling AAM operations, while NASA addresses technical and structural research gaps [3]

[1] Federal Aviation Administration, "AC 150/5390-3 (Cancelled) - Vertiport Design," 2010. URL <u>https://www.faa.gov/documentLibrary/media/advisory_circular/150-5390-3/150_5390_3.PDF</u>

[2] Federal Aviation Administration, "AC 150/5390-2C - Heliport Design," 2012. URL https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5390_2c.pdf

[3] National Academies of Sciences, Engineering, and Medicine, Advancing Aerial Mobility: A National Blueprint, The National Academies Press, 2020.

SCATECHE Traditional and Current Landing Systems

SCATECHEN Traditional and Current Landing Systems

GPS & IR Beacons

IR

Ground Based Augmentation System (GBAS)

Has more flexibility and economic benefits than ILS

- Several approach angles for landing
- Transitioning from ILS to GBAS will potentially take decades

[4] Wang, Z., Wang, S., Zhu, Y., and Xin, P., "Assessment of ionospheric gradient impacts on ground-based augmentation system
(GBAS) data in Guangdong province, China," *Sensors*, Vol. 17, No. 10, 2017, p. 2313.

GPS

FIG. 14. Topographic map of the area, with feature points and object coordinate system.

Constraint: requires at least four coplanar points

Experiment at Mall in Washington, DC (camera at the top of Washington Monument): $\Delta U = 3 m, \Delta V = 4 m, \Delta W = 2 m$

[5] Oberkampf, D., DeMenthon, D. F., and Davis, L. S., "Iterative pose estimation using coplanar feature points," Computer Vision and Image Understanding, Vol. 63, No. 3, 1996, pp. 495–51

Overview of Work

- Use FAA AC 150/5390-2C: Heliport Design for baseline requirements and standards
- Implement coplanar POSIT for vision-based AAM navigation
- Deliver perception precision approach and landing requirements and data sets to other NASA projects and industry partners
- Provides AAM safe and accurate approach and landing
- Autonomous approach and landing removes pilots -> increase efficiency and payload capacity
- Paves the way for AAM approach and landing research to enhance future AAM operations

Overview of Work

1. Introduction

- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

Kinematics & Dynamics

- State vector:
 - $\boldsymbol{s} = [N E U v_N v_E v_U \phi \theta \psi]^T$
- Direction cosine matrix (3-1-2)
- Relation between body angular velocity and Euler angular rates [6]:
 - $\mathbf{\Omega} = \begin{bmatrix} 0 & \cos\phi & -\cos\theta\sin\phi \\ 1 & 0 & \sin\theta \\ 0 & \sin\phi & \cos\theta\cos\phi \end{bmatrix}$ Ø • $\mathbf{\Omega} = [r q p]^{\mathrm{T}}, \dot{\mathbf{\Theta}} = [\dot{\psi} \dot{\theta} \dot{\phi}]^{\mathrm{T}}$
- Relate body frame velocities to inertial velocities through DCM [6]:

WCS = World Coordinate System (inertial) VCS = Vehicle Coordinate System (body) CCS = Camera Coordinate System

[6] Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, 4th ed., AIAA, 2018.

Kinematics & Dynamics

- General aircraft translational dynamic equations:
 - $F_x = m(\dot{u} + qw rv) + mg\sin\theta$
 - $F_y = m(\dot{v} + ru pw) mg\cos\theta\sin\phi$
 - $F_z = m(\dot{w} + pv qu) mg\cos\theta\cos\phi$
- Specific forces (accelerometers)
 - $F_x = A_x m, F_y = A_y m, F_z = A_z m$
- General kinematic equations for all aircraft:
 - $\dot{u} = A_x g\sin\theta qw + rv$
 - $\dot{v} = A_y g\cos\theta\sin\phi ru + pw$
 - $\dot{w} = A_z + g \cos \theta \cos \phi pv + qu$

[7] Chu, P., Mulder, J. A. B., and Breeman, J., "Real-time identification of aircraft physical models for fault tolerant flight control," *Fault Tolerant Flight Control*, Springer, 2010, pp. 129–155. Take accelerometer measurements assuming at CG → specific aerodynamic forces

- Combine general aircraft translational dynamic equations with accelerometer measurements at CG
- 2. Divide by mass

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

Scitech 2020 Forum, 2020, p. 1619.

Tentative Vertiport Landing Light Configuration

Figure 2–2. TLOF/FATO Safety Area Relationships and Minimum Dimensions: General Aviation

FORUM

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

Approach and Landing Profile

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

 [10] Stepanyan, V., Lombaerts, T., Shish, K. H., and Cramer, N. B., "Adaptive Multi-Sensor Information Fusion For Autonomous Urban Air Mobility Operations," AIAA Scitech 2021 Forum, 2021, p. 1115.
 [11] Gelb, A., Applied Optimal Estimation, MIT press, 1974.

[12] Simon, D., Optimal State Estimation: Kalman, H1, and Nonlinear Approaches, John Wiley & Sons, 2006.

IS-05, 3604871 presented at 2022 AIAA Scitech Forum, January 3, 2022

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

Simulation Results: Initial Coplanar POSIT

21

- East estimation is the most accurate
- North estimation is the least accurate

 $\Delta \mathbf{p} = \sqrt{\Delta N^2 + \Delta E^2 + \Delta U^2}$

E_{des}	N _{des}	U_{des}	E_{est}	Nest	Uest	ΔE	ΔN	ΔU	Δp
0	-950	152	0	-948.2	151.84	0	1.794	-0.1564	1.801
0	-850	136	0	-845.9	135.63	0	4.071	-0.3699	4.087
0	-750	120	-0.1434	-745.1	119.46	-0.1434	4.942	-0.5428	4.974
0	-650	104	0.1241	-644.9	103.53	0.1241	5.062	-0.4698	5.086
0	-550	88	0	-548.0	88.07	0	2.026	0.07176	2.027
0	-450	72	-0.0867	-450.4	72.40	-0.08668	-0.4449	0.3966	0.602
0	-350	56	0	-347.9	55.91	0	2.119	-0.0877	2.121
0	-250	40	-0.04761	-247.4	39.95	-0.04761	2.636	-0.0501	2.637
0	-150	24	0	-148.0	23.99	0	1.983	-0.008429	1.983
0	-100	16	-0.01888	-98.1	16.01	-0.01888	1.934	0.00991	1.935

Simulation Results: Initial Coplanar POSIT

NASA

22

			$\phi_{des} = 0^{\circ}$	$\theta_{des} = -9^{\circ}$	$\psi_{des} = 0^{\circ}$	$\Delta \Theta = \sqrt{\Delta \phi^2 + \Delta \theta^2 + \Delta u}$					$\theta^2 + \Delta \psi^2$
E_{des}	N _{des}	U_{des}	ϕ_{est}	θ_{est}	ψ_{est}	$\Delta \phi$	Г	$\Delta \theta$		$\Delta \psi$	$\Delta \Theta$
0	-950	152	0.2421	-8.969	-0.2394	-0.2421	-0.	.03142		0.2394	0.3419
0	-850	136	0.1721	-8.975	-0.1696	-0.1721	-0.	.02539		0.1696	0.2430
0	-750	120	0.1060	-8.968	-0.1001	-0.1060	-0.	.03177		0.1001	0.1492
0	-650	104	-0.1605	-8.974	0.1543	0.1605	-0.	.02584		-0.1543	0.2241
0	-550	88	-0.1087	-9.014	0.1079	0.1087	0.	01351		-0.1079	0.1537
0	-450	72	0.0653	-9.031	-0.06225	-0.06534	0.	03135		0.06225	0.09554
0	-350	56	-0.0400	-8.986	0.03924	0.03999	-0.	.01378		-0.03924	0.05770
0	-250	40	-0.0392	-9.000	0.03974	0.03918	-0.0	000318		-0.03974	0.05580
0	-150	24	-0.0872	-8.995	0.08633	0.08719	-0.	.00453		-0.08633	0.1228
0	-100	16	-0.00245	-9.002	0.00308	0.00245	0.	00195		-0.00308	0.00439

Simulation Results: VMS Telemetry Data

- VMS at NASA Ames Research Center
- Modified Vertical Motion Simulator (VMS) telemetry data for a 9° glideslope (manual control)
- Extract IMU data: accelerometer & gyroscope in body frame $\rightarrow u$ (EKF)

Simulation Results: EKF

- Quick convergence
- Initial covariance values were 1000
- High confidence (low uncertainty) in state estimation
- Runtime of 2 ms per iteration -> real-time capabilities and onboard implementation in the future

Simulation Results: EKF

Simulation Results: EKF

- Errors stay within $\pm 2,3 \sigma$ bounds centered around the mean errors
- Minor fluctuations (small scale)

Simulation Results: Glideslope & Localizer

27

- Glideslope error diverges due to accumulating minor errors over time
- Localizer error has minor fluctuations due to accurate lateral (East) estimations
- Next step: guidance law based on glideslope and localizer error to return to the nominal glidepath

Simulation Results: X-Plane & World Editor

Fifth & Mission Garage Vertiport

Data & Reasoning Fabric (DRF) at NASA Ames Research Center

Middle Harbor Shoreline Park Vertiport

SFO Airport

A MANY YE IS IN ALL THE

- 1. Introduction
- 2. Kinematics & Dynamics
- 3. Tentative Vertiport Landing Light Configuration
- 4. Approach and Landing Profile
- 5. Extended Kalman Filter Design
- 6. Simulation Results
- 7. Conclusion

Conclusion

- Vision-based navigation solution
- EKF fused VMS IMU telemetry data and coplanar POSIT algorithm (post-processed)
- EKF performance
 - accurate state estimation
 - quick convergence
 - short runtime (2 ms) -> real-time implementation
- Future work
 - Guidance laws for steering aircraft back onto the glidepath based on glideslope & localizer errors
 - Feature correspondence to determine landing lights in pixel coordinates
 -> high-fidelity X-Plane simulation with coplanar POSIT in real-time

References

- 1. Federal Aviation Administration, "AC 150/5390-3 (Cancelled) Vertiport Design,", 2010. URL https://www.faa.gov/documentLibrary/media/advisory_circular/150-5390-3/150_5390_3.PDF
- 2. Federal Aviation Administration, "AC 150/5390-2C Heliport Design,", 2012. URL https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5390_2c.pdf
- 3. National Academies of Sciences, Engineering, and Medicine, Advancing Aerial Mobility: A National Blueprint, The National Academies Press, 2020.
- 4. Wang, Z., Wang, S., Zhu, Y., and Xin, P., "Assessment of ionospheric gradient impacts on ground-based augmentation system (GBAS) data in Guangdong province, China," Sensors, Vol. 17, No. 10, 2017, p. 2313.
- 5. Oberkampf, D., DeMenthon, D. F., and Davis, L. S., "Iterative pose estimation using coplanar feature points," Computer Vision and Image Understanding, Vol. 63, No. 3, 1996, pp. 495–511.
- 6. Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, 4th ed., AIAA, 2018.
- 7. Chu, P., Mulder, J. A. B., and Breeman, J., "Real-time identification of aircraft physical models for fault tolerant flight control," Fault Tolerant Flight Control, Springer, 2010, pp. 129–155.
- 8. Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., and Hardy, G., "Dynamic Inversion based Full Envelope Flight Control for an eVTOL Vehicle using a Unified Framework," AIAA Scitech 2020 Forum, 2020, p. 1619.
- 9. Webber, D., and Zahn, D., "FAA and the National Campaign," [Powerpoint], 2021.
- 10. Stepanyan, V., Lombaerts, T., Shish, K. H., and Cramer, N. B., "Adaptive Multi-Sensor Information Fusion For Autonomous Urban Air Mobility Operations," AIAA Scitech 2021 Forum, 2021, p. 1115.
- 11. Gelb, A., Applied Optimal Estimation, MIT press, 1974.
- 12. Simon, D., Optimal State Estimation: Kalman, H1, and Nonlinear Approaches, John Wiley & Sons, 2006.

Acknowledgements

- Daniel DeMenthon, Computer Scientist POSIT and SoftPOSIT discussions
- NASA ARC Mentors: Uland Wong & Xavier Bouyssounouse computer vision & rendering
- NASA ARC Vertical Motion Simulator (VMS) video and telemetry data
- NASA ARC Data & Reasoning Fabric (DRF) vertiport locations and trajectory planning

Thank you for listening! Questions?

